1
|
Harris T, Azar A, Sapir G, Gamliel A, Nardi-Schreiber A, Sosna J, Gomori JM, Katz-Brull R. Real-time ex-vivo measurement of brain metabolism using hyperpolarized [1- 13C]pyruvate. Sci Rep 2018; 8:9564. [PMID: 29934508 PMCID: PMC6014998 DOI: 10.1038/s41598-018-27747-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/11/2018] [Indexed: 12/19/2022] Open
Abstract
The ability to directly monitor in vivo brain metabolism in real time in a matter of seconds using the dissolution dynamic nuclear polarization technology holds promise to aid the understanding of brain physiology in health and disease. However, translating the hyperpolarized signal observed in the brain to cerebral metabolic rates is not straightforward, as the observed in vivo signals reflect also the influx of metabolites produced in the body, the cerebral blood volume, and the rate of transport across the blood brain barrier. We introduce a method to study rapid metabolism of hyperpolarized substrates in the viable rat brain slices preparation, an established ex vivo model of the brain. By retrospective evaluation of tissue motion and settling from analysis of the signal of the hyperpolarized [1-13C]pyruvate precursor, the T1s of the metabolites and their rates of production can be determined. The enzymatic rates determined here are in the range of those determined previously with classical biochemical assays and are in agreement with hyperpolarized metabolite relative signal intensities observed in the rodent brain in vivo.
Collapse
Affiliation(s)
- Talia Harris
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Assad Azar
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Gal Sapir
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Ayelet Gamliel
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Atara Nardi-Schreiber
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel.
| |
Collapse
|
2
|
Xin L, Tkáč I. A practical guide to in vivo proton magnetic resonance spectroscopy at high magnetic fields. Anal Biochem 2016; 529:30-39. [PMID: 27773654 DOI: 10.1016/j.ab.2016.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 12/26/2022]
Abstract
Localized proton magnetic resonance spectroscopy (1H-MRS) is a noninvasive tool for measuring in vivo neurochemical information in animal and human brains. With the increase of magnetic field strength, whereas localized 1H-MRS benefits from higher sensitivity and spectral dispersion, it is challenged by increased spatial inhomogeneity of the B0 and B1 fields, larger chemical shift displacement error, and shortened T2 relaxation times of metabolites. Advanced localized 1H-MRS methodologies developed for high magnetic fields have shown promising results and allow the measurement of neurochemical profiles with up to 19 brain metabolites, including less-abundant metabolites, such as glutathione, glycine, γ-aminobutyric acid and ascorbate. To provide a practical guide for conducting in vivo1H-MRS studies at high magnetic field strength, we reviewed various essential technical aspects from data acquisition (hardware requirements, B1 and B0 inhomogeneity, water suppression, localization sequences and acquisition strategies) to data processing (frequency and phase correction, spectral quality control, spectral fitting and concentration referencing). Additionally, we proposed guidelines for choosing the most appropriate data acquisition and processing approaches to maximize the achievable neurochemical information.
Collapse
Affiliation(s)
- Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Ivan Tkáč
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Xin L, Lanz B, Lei H, Gruetter R. Assessment of metabolic fluxes in the mouse brain in vivo using 1H-[13C] NMR spectroscopy at 14.1 Tesla. J Cereb Blood Flow Metab 2015; 35:759-65. [PMID: 25605294 PMCID: PMC4420852 DOI: 10.1038/jcbfm.2014.251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/27/2014] [Accepted: 12/15/2014] [Indexed: 01/13/2023]
Abstract
(13)C magnetic resonance spectroscopy (MRS) combined with the administration of (13)C labeled substrates uniquely allows to measure metabolic fluxes in vivo in the brain of humans and rats. The extension to mouse models may provide exclusive prospect for the investigation of models of human diseases. In the present study, the short-echo-time (TE) full-sensitivity (1)H-[(13)C] MRS sequence combined with high magnetic field (14.1 T) and infusion of [U-(13)C6] glucose was used to enhance the experimental sensitivity in vivo in the mouse brain and the (13)C turnover curves of glutamate C4, glutamine C4, glutamate+glutamine C3, aspartate C2, lactate C3, alanine C3, γ-aminobutyric acid C2, C3 and C4 were obtained. A one-compartment model was used to fit (13)C turnover curves and resulted in values of metabolic fluxes including the tricarboxylic acid (TCA) cycle flux VTCA (1.05 ± 0.04 μmol/g per minute), the exchange flux between 2-oxoglutarate and glutamate Vx (0.48 ± 0.02 μmol/g per minute), the glutamate-glutamine exchange rate V(gln) (0.20 ± 0.02 μmol/g per minute), the pyruvate dilution factor K(dil) (0.82 ± 0.01), and the ratio for the lactate conversion rate and the alanine conversion rate V(Lac)/V(Ala) (10 ± 2). This study opens the prospect of studying transgenic mouse models of brain pathologies.
Collapse
Affiliation(s)
- Lijing Xin
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Unit for Research in Schizophrenia, Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Bernard Lanz
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hongxia Lei
- Department of Radiology, University of Geneva, Geneva, Switzerland
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology, University of Geneva, Geneva, Switzerland
- Department of Radiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Lanz B, Gruetter R, Duarte JMN. Metabolic Flux and Compartmentation Analysis in the Brain In vivo. Front Endocrinol (Lausanne) 2013; 4:156. [PMID: 24194729 PMCID: PMC3809570 DOI: 10.3389/fendo.2013.00156] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/07/2013] [Indexed: 12/16/2022] Open
Abstract
Through significant developments and progresses in the last two decades, in vivo localized nuclear magnetic resonance spectroscopy (MRS) became a method of choice to probe brain metabolic pathways in a non-invasive way. Beside the measurement of the total concentration of more than 20 metabolites, (1)H MRS can be used to quantify the dynamics of substrate transport across the blood-brain barrier by varying the plasma substrate level. On the other hand, (13)C MRS with the infusion of (13)C-enriched substrates enables the characterization of brain oxidative metabolism and neurotransmission by incorporation of (13)C in the different carbon positions of amino acid neurotransmitters. The quantitative determination of the biochemical reactions involved in these processes requires the use of appropriate metabolic models, whose level of details is strongly related to the amount of data accessible with in vivo MRS. In the present work, we present the different steps involved in the elaboration of a mathematical model of a given brain metabolic process and its application to the experimental data in order to extract quantitative brain metabolic rates. We review the recent advances in the localized measurement of brain glucose transport and compartmentalized brain energy metabolism, and how these reveal mechanistic details on glial support to glutamatergic and GABAergic neurons.
Collapse
Affiliation(s)
- Bernard Lanz
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology, University of Lausanne, Lausanne, Switzerland
- Department of Radiology, University of Geneva, Geneva, Switzerland
| | - João M. N. Duarte
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology, University of Lausanne, Lausanne, Switzerland
- *Correspondence: João M. N. Duarte, Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Bâtiment CH, Station 6, CH-1015 Lausanne, Switzerland e-mail:
| |
Collapse
|
5
|
Jeffrey FM, Marin-Valencia I, Good LB, Shestov AA, Henry PG, Pascual JM, Malloy CR. Modeling of brain metabolism and pyruvate compartmentation using (13)C NMR in vivo: caution required. J Cereb Blood Flow Metab 2013; 33:1160-7. [PMID: 23652627 PMCID: PMC3734769 DOI: 10.1038/jcbfm.2013.67] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 04/01/2013] [Accepted: 04/03/2013] [Indexed: 01/30/2023]
Abstract
Two variants of a widely used two-compartment model were prepared for fitting the time course of [1,6-(13)C2]glucose metabolism in rat brain. Features common to most models were included, but in one model the enrichment of the substrates entering the glia and neuronal citric acid cycles was allowed to differ. Furthermore, the models included the capacity to analyze multiplets arising from (13)C spin-spin coupling, known to improve parameter estimates in heart. Data analyzed were from a literature report providing time courses of [1,6-(13)C2]glucose metabolism. Four analyses were used, two comparing the effect of different pyruvate enrichment in glia and neurons, and two for determining the effect of multiplets present in the data. When fit independently, the enrichment in glial pyruvate was less than in neurons. In the absence of multiplets, fit quality and parameter values were typical of those in the literature, whereas the multiplet curves were not modeled well. This prompted the use of robust statistical analysis (the Kolmogorov-Smirnov test of goodness of fit) to determine whether individual curves were modeled appropriately. At least 50% of the curves in each experiment were considered poorly fit. It was concluded that the model does not include all metabolic features required to analyze the data.
Collapse
Affiliation(s)
- F Mark Jeffrey
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | | | | | | | | | |
Collapse
|