1
|
Zhang Q, Li Y, Zhuo Y. Synaptic or Non-synaptic? Different Intercellular Interactions with Retinal Ganglion Cells in Optic Nerve Regeneration. Mol Neurobiol 2022; 59:3052-3072. [PMID: 35266115 PMCID: PMC9016027 DOI: 10.1007/s12035-022-02781-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/24/2022] [Indexed: 12/31/2022]
Abstract
Axons of adult neurons in the mammalian central nervous system generally fail to regenerate by themselves, and few if any therapeutic options exist to reverse this situation. Due to a weak intrinsic potential for axon growth and the presence of strong extrinsic inhibitors, retinal ganglion cells (RGCs) cannot regenerate their axons spontaneously after optic nerve injury and eventually undergo apoptosis, resulting in permanent visual dysfunction. Regarding the extracellular environment, research to date has generally focused on glial cells and inflammatory cells, while few studies have discussed the potentially significant role of interneurons that make direct connections with RGCs as part of the complex retinal circuitry. In this study, we provide a novel angle to summarize these extracellular influences following optic nerve injury as "intercellular interactions" with RGCs and classify these interactions as synaptic and non-synaptic. By discussing current knowledge of non-synaptic (glial cells and inflammatory cells) and synaptic (mostly amacrine cells and bipolar cells) interactions, we hope to accentuate the previously neglected but significant effects of pre-synaptic interneurons and bring unique insights into future pursuit of optic nerve regeneration and visual function recovery.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Yang M, Jian L, Fan W, Chen X, Zou H, Huang Y, Chen X, Zhou YG, Yuan R. Axon regeneration after optic nerve injury in rats can be improved via PirB knockdown in the retina. Cell Biosci 2021; 11:158. [PMID: 34380548 PMCID: PMC8359350 DOI: 10.1186/s13578-021-00670-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/25/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In the central nervous system (CNS), three types of myelin-associated inhibitors (MAIs) exert major inhibitory effects on nerve regeneration: Nogo-A, myelin-associated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp). MAIs have two co-receptors, Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PirB). Existing studies confirm that inhibiting NgR only exerted a modest disinhibitory effect in CNS. However, the inhibitory effects of PirB on nerve regeneration after binding to MAIs are controversial too. We aimed to further investigate the effect of PirB knockdown on the neuroprotection and axonal regeneration of retinal ganglion cells (RGCs) after optic nerve injury in rats. METHODS The differential expression of PirB in the retina was observed via immunofluorescence and western blotting after 1, 3, and 7 days of optic nerve injury (ONI). The retina was locally transfected with adeno-associated virus (AAV) PirB shRNA, then, the distribution of virus in tissues and cells was observed 21 days after AAV transfection to confirm the efficiency of PirB knockdown. Level of P-Stat3 and expressions of ciliary neurotrophic factor (CNTF) were detected via western blotting. RGCs were directly labeled with cholera toxin subunit B (CTB). The new axons of the optic nerve were specifically labeled with growth associated protein-43 (GAP43) via immunofluorescence. Flash visual evoked potential (FVEP) was used to detect the P1 and N1 latency, as well as N1-P1, P1-N2 amplitude to confirm visual function. RESULTS PirB expression in the retina was significantly increased after ONI. PirB knockdown was successful and significantly promoted P-Stat3 level and CNTF expression in the retina. PirB knockdown promoted the regeneration of optic nerve axons and improved the visual function indexes such as N1-P1 and P1-N2 amplitude. CONCLUSIONS PirB is one of the key molecules that inhibit the regeneration of the optic nerve, and inhibition of PirB has an excellent effect on promoting nerve regeneration, which allows the use of PirB as a target molecule to promote functional recovery after ONI.
Collapse
Affiliation(s)
- Mei Yang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Lan Jian
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Wei Fan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Xing Chen
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, 10 Changjiang Zhilu, Chongqing, 400042, People's Republic of China
| | - Huan Zou
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Yanming Huang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Xiaofan Chen
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China
| | - Yuan-Guo Zhou
- The Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, 10 Changjiang Zhilu, Chongqing, 400042, People's Republic of China.
| | - Rongdi Yuan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, 183 Xinqiao Zhengjie, Shapingba District, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
3
|
Deng M, Chen H, Liu X, Huang R, He Y, Yoo B, Xie J, John S, Zhang N, An Z, Zhang CC. Leukocyte immunoglobulin-like receptor subfamily B: therapeutic targets in cancer. Antib Ther 2021; 4:16-33. [PMID: 33928233 PMCID: PMC7944505 DOI: 10.1093/abt/tbab002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibitory leukocyte immunoglobulin-like receptors (LILRBs 1–5) transduce signals via intracellular immunoreceptor tyrosine-based inhibitory motifs that recruit phosphatases to negatively regulate immune activation. The activation of LILRB signaling in immune cells may contribute to immune evasion. In addition, the expression and signaling of LILRBs in cancer cells especially in certain hematologic malignant cells directly support cancer development. Certain LILRBs thus have dual roles in cancer biology—as immune checkpoint molecules and tumor-supporting factors. Here, we review the expression, ligands, signaling, and functions of LILRBs, as well as therapeutic development targeting them. LILRBs may represent attractive targets for cancer treatment, and antagonizing LILRB signaling may prove to be effective anti-cancer strategies.
Collapse
Affiliation(s)
- Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Byounggyu Yoo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel John
- Department of Pediatrics, Pediatric Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, TX 77030, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Yuan R, Yang M, Fan W, Lan J, Zhou YG. Paired Immunoglobulin-like Receptor B Inhibition in Müller Cells Promotes Neurite Regeneration After Retinal Ganglion Cell Injury in vitro. Neurosci Bull 2020; 36:972-984. [PMID: 32445021 DOI: 10.1007/s12264-020-00510-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
In the central nervous system (CNS), three types of myelin-associated inhibitors (MAIs) have major inhibitory effects on nerve regeneration. They include Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein. MAIs possess two co-receptors, Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PirB). Previous studies have confirmed that the inhibition of NgR only results in a modest increase in regeneration in the CNS; however, the inhibitory effects of PirB with regard to nerve regeneration after binding to MAIs remain controversial. In this study, we demonstrated that PirB is expressed in primary cultures of retinal ganglion cells (RGCs), and the inhibitory effects of the three MAIs on the growth of RGC neurites are not significantly decreased after direct PirB knockdown using adenovirus PirB shRNA. Interestingly, we found that retinal Müller cells expressed PirB and that its knockdown enhanced the regeneration of co-cultured RGC neurites. PirB knockdown also activated the JAK/Stat3 signaling pathway in Müller cells and upregulated ciliary neurotrophic factor levels. These findings indicate that PirB plays a novel role in retinal Müller cells and that its action in these cells may indirectly affect the growth of RGC neurites. The results also reveal that PirB in Müller cells affects RGC neurite regeneration. Our findings provide a novel basis for the use of PirB as a target molecule to promote nerve regeneration.
Collapse
Affiliation(s)
- Rongdi Yuan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.,The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Mei Yang
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wei Fan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jian Lan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuan-Guo Zhou
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
5
|
Li HJ, Sun ZL, Yang XT, Zhu L, Feng DF. Exploring Optic Nerve Axon Regeneration. Curr Neuropharmacol 2018; 15:861-873. [PMID: 28029073 PMCID: PMC5652030 DOI: 10.2174/1570159x14666161227150250] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/14/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022] Open
Abstract
Background: Traumatic optic nerve injury is a leading cause of irreversible blindness across the world and causes progressive visual impairment attributed to the dysfunction and death of retinal ganglion cells (RGCs). To date, neither pharmacological nor surgical interventions are sufficient to halt or reverse the progress of visual loss. Axon regeneration is critical for functional recovery of vision following optic nerve injury. After optic nerve injury, RGC axons usually fail to regrow and die, leading to the death of the RGCs and subsequently inducing the functional loss of vision. However, the detailed molecular mechanisms underlying axon regeneration after optic nerve injury remain poorly understood. Methods: Research content related to the detailed molecular mechanisms underlying axon regeneration after optic nerve injury have been reviewed. Results: The present review provides an overview of regarding potential strategies for axonal regeneration of RGCs and optic nerve repair, focusing on the role of cytokines and their downstream signaling pathways involved in intrinsic growth program and the inhibitory environment together with axon guidance cues for correct axon guidance. A more complete understanding of the factors limiting axonal regeneration will provide a rational basis, which contributes to develop improved treatments for optic nerve regeneration. These findings are encouraging and open the possibility that clinically meaningful regeneration may become achievable in the future. Conclusion: Combination of treatments towards overcoming growth-inhibitory molecules and enhancing intrinsic growth capacity combined with correct guidance using axon guidance cues is crucial for developing promising therapies to promote axon regeneration and functional recovery after ON injury.
Collapse
Affiliation(s)
- Hong-Jiang Li
- Department of Neurosurgery, No.9 People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201999, China
| | - Zhao-Liang Sun
- Department of Neurosurgery, No.9 People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201999, China
| | - Xi-Tao Yang
- Department of Neurosurgery, No.9 People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201999, China
| | - Liang Zhu
- Department of Neurosurgery, No.9 People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201999, China
| | - Dong-Fu Feng
- Department of Neurosurgery, No.9 People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 201999, China
| |
Collapse
|
6
|
Mi YJ, Chen H, Guo N, Sun MY, Zhao ZH, Gao XC, Wang XL, Zhang RS, Zhou JB, Gou XC. Inhibition of PirB Activity by TAT-PEP Improves Mouse Motor Ability and Cognitive Behavior. Front Aging Neurosci 2017; 9:199. [PMID: 28676756 PMCID: PMC5476690 DOI: 10.3389/fnagi.2017.00199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/02/2017] [Indexed: 01/07/2023] Open
Abstract
Paired immunoglobulin-like receptor B (PirB), a functional receptor for myelin-associated inhibitory proteins, plays an important role in axon regeneration in injured brains. However, its role in normal brain function with age has not been previously investigated. Therefore in this study, we examined the expression level of PirB in the cerebral cortex, hippocampus and cerebellum of mice at 1 month, 3 months and 18 months of age. The results showed that the expression of PirB increased with age. We further demonstrated that overexpression of PirB inhibited neurite outgrowth in PC12 cells, and this inhibitory activity of PirB could be reversed by TAT-PEP, which is a recombinant soluble PirB ectodomain fused with TAT domain for blood-brain barrier penetration. In vivo study, intraperitoneal administration of TAT-PEP was capable of enhancing motor capacity and spatial learning and memory in mice, which appeared to be mediated through regulation of brain-derived neurotrophic factor (BDNF) secretion. Our study suggests that PirB is associated with aging and TAT-PEP may be a promising therapeutic agent for modulation of age-related motor and cognitive dysfunctions.
Collapse
Affiliation(s)
- Ya-Jing Mi
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China
| | - Hai Chen
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China.,Department of Anesthesiology, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Na Guo
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China
| | - Meng-Yi Sun
- Department of Neurosurgery, School of Medicine, Yale UniversityNew Haven, CT, United States
| | - Zhao-Hua Zhao
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China
| | - Xing-Chun Gao
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China
| | - Xiao-Long Wang
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China
| | - Rui-San Zhang
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China
| | - Jiang-Bing Zhou
- Department of Neurosurgery, School of Medicine, Yale UniversityNew Haven, CT, United States
| | - Xing-Chun Gou
- Institute of Basic and Translational Medicine, and School of Basic Medical Sciences, and Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical UniversityXi'an, China.,Department of Neurosurgery, School of Medicine, Yale UniversityNew Haven, CT, United States
| |
Collapse
|
7
|
Burshtyn DN, Morcos C. The Expanding Spectrum of Ligands for Leukocyte Ig-like Receptors. THE JOURNAL OF IMMUNOLOGY 2016; 196:947-55. [PMID: 26802060 DOI: 10.4049/jimmunol.1501937] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The human leukocyte Ig-like receptor family is part of the paired receptor system. The receptors are widely expressed by various immune cells, and new functions continue to emerge. Understanding the range of functions of the receptors is of general interest because several types of pathogens exploit the receptors and genetic diversity of the receptors has been linked to various autoimmune diseases. Class I major histocompatibility molecules were the first ligands appreciated for these receptors, but the types of ligands identified over the last several years are quite diverse, including intact pathogens, immune-modulatory proteins, and molecules normally found within the CNS. This review focuses on the types of ligands described to date, how the individual receptors bind to several distinct types of ligands, and the known functional consequences of those interactions.
Collapse
Affiliation(s)
- Deborah N Burshtyn
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Chris Morcos
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
8
|
Liu J, Wang Y, Fu W. Axon regeneration impediment: the role of paired immunoglobulin-like receptor B. Neural Regen Res 2015; 10:1338-1342. [PMID: 26487866 PMCID: PMC4590251 DOI: 10.4103/1673-5374.162771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2015] [Indexed: 02/05/2023] Open
Abstract
Regenerative capacity is weak after central nervous system injury because of the absence of an enhancing microenvironment and presence of an inhibitory microenvironment for neuronal and axonal repair. In addition to the Nogo receptor (NgR), the paired immunoglobulin-like receptor B (PirB) is a recently discovered coreceptor of Nogo, myelin-associated glycoprotein, and myelin oligodendrocyte glycoprotein. Concurrent blocking of NgR and PirB almost completely eliminates the inhibitory effect of myelin-associated inhibitory molecules on axonal regeneration. PirB participates in a key pathological process of the nervous system, specifically axonal regeneration inhibition. PirB is an inhibitory receptor similar to NgR, but their effects are not identical. This study summarizes the structure, distribution, relationship with common nervous system diseases, and known mechanisms of PirB, and concludes that PirB is also distributed in cells of the immune and hematopoietic systems. Further investigations are needed to determine if immunomodulation and blood cell migration involve inhibition of axonal regeneration.
Collapse
Affiliation(s)
- Jing Liu
- Neonatal Intensive Care Center, BAYI Children's Hospital, Beijing Military General Hospital of Chinese PLA, Beijing, China
| | - Yan Wang
- Neonatal Intensive Care Center, BAYI Children's Hospital, Beijing Military General Hospital of Chinese PLA, Beijing, China
- Graduate School, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wei Fu
- Neonatal Intensive Care Center, BAYI Children's Hospital, Beijing Military General Hospital of Chinese PLA, Beijing, China
- Graduate School, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Yang X, Bi Y, Chen E, Feng D. Overexpression of Wnt3a facilitates the proliferation and neural differentiation of neural stem cells in vitro and after transplantation into an injured rat retina. J Neurosci Res 2013; 92:148-61. [PMID: 24254835 DOI: 10.1002/jnr.23314] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/12/2013] [Accepted: 09/20/2013] [Indexed: 01/07/2023]
Affiliation(s)
- Xi‐Tao Yang
- Department of NeurosurgeryNo. 3 People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai China
| | - Yong‐Yan Bi
- Department of NeurosurgeryNo. 3 People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai China
| | - Er‐Tao Chen
- Department of NeurosurgeryNo. 3 People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai China
| | - Dong‐Fu Feng
- Department of NeurosurgeryNo. 3 People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai China
- Institute of Traumatic MedicineShanghai Jiao Tong University School of MedicineShanghai China
| |
Collapse
|
10
|
Diekmann H, Fischer D. Glaucoma and optic nerve repair. Cell Tissue Res 2013; 353:327-37. [PMID: 23512141 DOI: 10.1007/s00441-013-1596-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/21/2013] [Indexed: 01/10/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and causes progressive visual impairment attributable to the dysfunction and death of retinal ganglion cells (RGCs). Progression of visual field damage is slow and typically painless. Thus, glaucoma is often diagnosed after a substantial percentage of RGCs has been damaged. To date, clinical interventions are mainly restricted to the reduction of intraocular pressure (IOP), one of the major risk factors for this disease. However, the lowering of IOP is often insufficient to halt or reverse the progress of visual loss, underlining the need for the development of alternative treatment strategies. Several lines of evidence suggest that axonal damage of RGCs occurs primary at the optic nerve head, where axons appear to be most vulnerable. Axonal injury leads to the functional loss of RGCs and subsequently induces the death of the neurons. However, the detailed molecular mechanism(s) underlying IOP-induced optic nerve injury remain poorly understood. Moreover, whether glaucoma pathophysiology is primarily axonal, glial, or vascular remains unclear. Therefore, protective strategies to prevent further axonal and subsequent soma degeneration are of great importance to limit the progression of sight loss. In addition, strategies that stimulate injured RGCs to regenerate and reconnect axons with their central targets are necessary for functional restoration. The present review provides an overview of the context of glaucoma pathogenesis and surveys recent findings regarding potential strategies for axonal regeneration of RGCs and optic nerve repair, focusing on the role of cytokines and their downstream signaling pathways.
Collapse
Affiliation(s)
- Heike Diekmann
- Department of Neurology, Experimental Neurology, Heinrich Heine University, Merowingerplatz 1a, 40225, Düsseldorf, Germany
| | | |
Collapse
|
11
|
Luo X, Salgueiro Y, Beckerman SR, Lemmon VP, Tsoulfas P, Park KK. Three-dimensional evaluation of retinal ganglion cell axon regeneration and pathfinding in whole mouse tissue after injury. Exp Neurol 2013; 247:653-62. [PMID: 23510761 DOI: 10.1016/j.expneurol.2013.03.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 11/24/2022]
Abstract
Injured retinal ganglion cell (RGC) axons do not regenerate spontaneously, causing loss of vision in glaucoma and after trauma. Recent studies have identified several strategies that induce long distance regeneration in the optic nerve. Thus, a pressing question now is whether regenerating RGC axons can find their appropriate targets. Traditional methods of assessing RGC axon regeneration use histological sectioning. However, tissue sections provide fragmentary information about axonal trajectory and termination. To unequivocally evaluate regenerating RGC axons, here we apply tissue clearance and light sheet fluorescence microscopy (LSFM) to image whole optic nerve and brain without physical sectioning. In mice with PTEN/SOCS3 deletion, a condition known to promote robust regeneration, axon growth followed tortuous paths through the optic nerve, with many axons reversing course and extending towards the eye. Such aberrant growth was prevalent in the proximal region of the optic nerve where strong astroglial activation is present. In the optic chiasms of PTEN/SOCS3 deletion mice and PTEN deletion/Zymosan/cAMP mice, many axons project to the opposite optic nerve or to the ipsilateral optic tract. Following bilateral optic nerve crush, similar divergent trajectory is seen at the optic chiasm compared to unilateral crush. Centrally, axonal projection is limited predominantly to the hypothalamus. Together, we demonstrate the applicability of LSFM for comprehensive assessment of optic nerve regeneration, providing in-depth analysis of the axonal trajectory and pathfinding. Our study indicates significant axon misguidance in the optic nerve and brain, and underscores the need for investigation of axon guidance mechanisms during optic nerve regeneration in adults.
Collapse
Affiliation(s)
- Xueting Luo
- Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Fischer D, Leibinger M. Promoting optic nerve regeneration. Prog Retin Eye Res 2012; 31:688-701. [PMID: 22781340 DOI: 10.1016/j.preteyeres.2012.06.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/13/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
Vision is the most important sense for humans and it is irreversibly impaired by axonal damage of retinal ganglion cells (RGCs) in the optic nerve due to the lack of axonal regeneration. The failure of regeneration is partially attributable to factors located in the inhibitory environment of the forming glial scar and myelin as well as an insufficient intrinsic ability for axonal regrowth. Moreover, RGCs undergo apoptotic cell death after optic nerve injury, eliminating any chance for regeneration. In this review, we discuss the different aspects that cause regenerative failure in the optic nerve. Moreover, we describe discoveries of the last two decades demonstrating that under certain circumstances mature RGCs can be transformed into an active regenerative state allowing these neurons to survive axotomy and to regenerate axons in the injured optic nerve. In this context we focus on the role of the cytokines ciliary neutrophic factor (CNTF) and leukemia inhibitory factor (LIF), their receptors and the downstream signaling pathways. Furthermore, we discuss strategies to overcome inhibitory signaling induced by molecules associated with optic nerve myelin and the glial scar as well as the regenerative outcome after combinatorial treatments. These findings are encouraging and may open the possibility that clinically meaningful regeneration may become achievable one day in the future.
Collapse
Affiliation(s)
- Dietmar Fischer
- Department of Neurology, Experimental Neurology, Heinrich Heine University Düsseldorf, Merowingerplatz 1a, 40225 Düsseldorf, Germany.
| | | |
Collapse
|