1
|
Dringen R, Arend C. Glutathione Metabolism of the Brain-The Role of Astrocytes. J Neurochem 2025; 169:e70073. [PMID: 40313177 PMCID: PMC12046376 DOI: 10.1111/jnc.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 05/03/2025]
Abstract
Astrocytes have essential functions in the brain as partners of neurons in many metabolic and homeostatic processes. The metabolism of the tripeptide GSH (γ-L-glutamyl-L-cysteinyl-glycine) is an important example of a metabolic interaction between astrocytes and neurons. GSH is present in brain cells in millimolar concentrations and has essential functions as an antioxidant and as a substrate for detoxification reactions. A high GSH content protects astrocytes against oxidative stress and toxins and is therefore beneficial for the astrocytic self-defense that helps to maintain the essential functions of astrocytes in the brain and will enable astrocytes to eliminate potential toxins before they may reach other brain cells. In addition, astrocytes provide neurons with the amino acids required for GSH synthesis in a process that involves the export of GSH from astrocytes by the multidrug resistance protein 1, the extracellular processing of GSH via the astrocytic γ-glutamyl transpeptidase to generate the dipeptide cysteinyl-glycine, and the extracellular cleavage of this dipeptide by the neuronal ectopeptidase aminopeptidase N. As GSH export from astrocytes strongly depends on the cytosolic GSH concentration, a high astrocytic GSH content will also facilitate GSH release and thereby the supply of GSH precursors to neighboring neurons. In this article, we will give an overview of the current knowledge on the GSH metabolism of astrocytes, address how a high astrocytic GSH content can help to maintain brain functions, and discuss open questions and future perspectives of research on the functions of astrocytes in the GSH metabolism of the healthy and diseased brain.
Collapse
Affiliation(s)
- Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry)University of BremenBremenGermany
- Center for Environmental Research and Sustainable TechnologiesUniversity of BremenBremenGermany
| | - Christian Arend
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry)University of BremenBremenGermany
- Center for Environmental Research and Sustainable TechnologiesUniversity of BremenBremenGermany
| |
Collapse
|
2
|
Watermann P, Kalsi GK, Dringen R, Arend C. Differential Effects of Itaconate and its Esters on the Glutathione and Glucose Metabolism of Cultured Primary Rat Astrocytes. Neurochem Res 2024; 50:24. [PMID: 39562371 PMCID: PMC11576791 DOI: 10.1007/s11064-024-04263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024]
Abstract
Itaconate is produced as endogenous metabolite by decarboxylation of the citric acid cycle intermediate cis-aconitate. As itaconate has anti-microbial and anti-inflammatory properties, this substance is considered as potential therapeutic drug for the treatment of inflammation in various diseases including traumatic brain injury and stroke. To test for potential adverse effects of itaconate on the viability and metabolism of brain cells, we investigated whether itaconate or its membrane permeable derivatives dimethyl itaconate (DI) and 4-octyl itaconate (OI) may affect the basal glucose and glutathione (GSH) metabolism of cultured primary astrocytes. Acute exposure of astrocytes to itaconate, DI or OI in concentrations of up to 300 µM for up to 6 h did not compromise cell viability. Of the tested substances, only OI stimulated aerobic glycolysis as shown by a time- and concentration-dependent increase in glucose-consumption and lactate release. None of the tested itaconates affected the pentose-phosphate pathway-dependent reduction of the water-soluble tetrazolium salt 1 (WST1). In contrast, both DI and OI, but not itaconate, depleted cellular GSH in a time- and concentration-dependent manner. For OI this depletion was accompanied by a matching increase in the extracellular GSH content that was completely prevented in the presence of the multidrug resistance protein 1 (Mrp1)-inhibitor MK571, while in DI-treated cultures GSH was depleted both in cells and medium. These data suggest that OI stimulates Mrp1-mediated astrocytic GSH export, while DI reacts with GSH to a conjugate that is not detectable by the GSH assay applied. The data presented demonstrate that itaconate, DI and OI differ strongly in their effects on the GSH and glucose metabolism of cultured astrocytes. Such results should be considered in the context of the discussed potential use of such compounds as therapeutic agents.
Collapse
Affiliation(s)
- Patrick Watermann
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 28359, Bremen, Germany
- Centre for Environmental Research and Sustainable Technology, University of Bremen, 28359, Bremen, Germany
| | - Gurleen K Kalsi
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 28359, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 28359, Bremen, Germany
- Centre for Environmental Research and Sustainable Technology, University of Bremen, 28359, Bremen, Germany
| | - Christian Arend
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 28359, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technology, University of Bremen, 28359, Bremen, Germany.
| |
Collapse
|
3
|
Jung EJ, Jo JH, Uwamahoro C, Jang SI, Lee WJ, Hwang JM, Bae JW, Kwon WS. Ritonavir Has Reproductive Toxicity Depending on Disrupting PI3K/PDK1/AKT Signaling Pathway. TOXICS 2024; 12:73. [PMID: 38251029 PMCID: PMC10819985 DOI: 10.3390/toxics12010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Ritonavir (RTV) is an antiviral and a component of COVID-19 treatments. Moreover, RTV demonstrates anti-cancer effects by suppressing AKT. However, RTV has cytotoxicity and suppresses sperm functions by altering AKT activity. Although abnormal AKT activity is known for causing detrimental effects on sperm functions, how RTV alters AKT signaling in spermatozoa remains unknown. Therefore, this study aimed to investigate reproductive toxicity of RTV in spermatozoa through phosphoinositide 3-kinase/phosphoinositide-dependent protein kinase-1/protein kinase B (PI3K/PDK1/AKT) signaling. Duroc spermatozoa were treated with various concentrations of RTV, and capacitation was induced. Sperm functions (sperm motility, motion kinematics, capacitation status, and cell viability) and expression levels of tyrosine-phosphorylated proteins and PI3K/PDK1/AKT pathway-related proteins were evaluated. In the results, RTV significantly suppressed sperm motility, motion kinematics, capacitation, acrosome reactions, and cell viability. Additionally, RTV significantly increased levels of phospho-tyrosine proteins and PI3K/PDK1/AKT pathway-related proteins except for AKT and PI3K. The expression level of AKT was not significantly altered and that of PI3K was significantly decreased. These results suggest RTV may suppress sperm functions by induced alterations of PI3K/PDK1/AKT pathway through abnormally increased tyrosine phosphorylation. Therefore, we suggest people who use or prescribe RTV need to consider its male reproductive toxicity.
Collapse
Affiliation(s)
- Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (E.-J.J.); (C.U.); (S.-I.J.); (W.-J.L.); (J.-M.H.); (J.-W.B.)
| | - Jae-Hwan Jo
- Department of Animal Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea;
| | - Claudine Uwamahoro
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (E.-J.J.); (C.U.); (S.-I.J.); (W.-J.L.); (J.-M.H.); (J.-W.B.)
| | - Seung-Ik Jang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (E.-J.J.); (C.U.); (S.-I.J.); (W.-J.L.); (J.-M.H.); (J.-W.B.)
| | - Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (E.-J.J.); (C.U.); (S.-I.J.); (W.-J.L.); (J.-M.H.); (J.-W.B.)
| | - Ju-Mi Hwang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (E.-J.J.); (C.U.); (S.-I.J.); (W.-J.L.); (J.-M.H.); (J.-W.B.)
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (E.-J.J.); (C.U.); (S.-I.J.); (W.-J.L.); (J.-M.H.); (J.-W.B.)
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea; (E.-J.J.); (C.U.); (S.-I.J.); (W.-J.L.); (J.-M.H.); (J.-W.B.)
- Department of Animal Biotechnology, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea;
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
4
|
Arend C, Grothaus IL, Waespy M, Ciacchi LC, Dringen R. Modulation of Multidrug Resistance Protein 1-mediated Transport Processes by the Antiviral Drug Ritonavir in Cultured Primary Astrocytes. Neurochem Res 2024; 49:66-84. [PMID: 37603214 PMCID: PMC10776481 DOI: 10.1007/s11064-023-04008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
The Multidrug Resistance Protein 1 (Mrp1) is an ATP-dependent efflux transporter and a major facilitator of drug resistance in mammalian cells during cancer and HIV therapy. In brain, Mrp1-mediated GSH export from astrocytes is the first step in the supply of GSH precursors to neurons. To reveal potential mechanisms underlying the drug-induced modulation of Mrp1-mediated transport processes, we investigated the effects of the antiviral drug ritonavir on cultured rat primary astrocytes. Ritonavir strongly stimulated the Mrp1-mediated export of glutathione (GSH) by decreasing the Km value from 200 nmol/mg to 28 nmol/mg. In contrast, ritonavir decreased the export of the other Mrp1 substrates glutathione disulfide (GSSG) and bimane-glutathione. To give explanation for these apparently contradictory observations, we performed in silico docking analysis and molecular dynamics simulations using a homology model of rat Mrp1 to predict the binding modes of ritonavir, GSH and GSSG to Mrp1. The results suggest that ritonavir binds to the hydrophilic part of the bipartite binding site of Mrp1 and thereby differently affects the binding and transport of the Mrp1 substrates. These new insights into the modulation of Mrp1-mediated export processes by ritonavir provide a new model to better understand GSH-dependent detoxification processes in brain cells.
Collapse
Affiliation(s)
- Christian Arend
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28359, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany.
| | - Isabell L Grothaus
- Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, MAPEX Center for Materials and Processes, University of Bremen, Am Fallturm 1, 28359, Bremen, Germany
| | - Mario Waespy
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28359, Bremen, Germany
| | - Lucio Colombi Ciacchi
- Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science, MAPEX Center for Materials and Processes, University of Bremen, Am Fallturm 1, 28359, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28359, Bremen, Germany
- Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| |
Collapse
|
5
|
Jung EJ, Lee WJ, Hwang JM, Bae JW, Kwon WS. Reproductive Toxicity of Ritonavir in Male: insight into mouse sperm capacitation. Reprod Toxicol 2022; 114:1-6. [PMID: 36198369 PMCID: PMC9527077 DOI: 10.1016/j.reprotox.2022.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/14/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Since COVID-19 began in 2019, therapeutic agents are being developed for its treatment. Among the numerous potential therapeutic agents, ritonavir (RTV), an anti-viral agent, has recently been identified as an important element of the COVID-19 treatment. Moreover, RTV has also been applied in the drug repurposing of cancer cells. However, previous studies have shown that RTV has toxic effects on various cell types. In addition, RTV regulates AKT phosphorylation within cancer cells, and AKT is known to control sperm functions (motility, capacitation, and so on). Although deleterious effects of RTV have been reported, it is not known whether RTV has male reproduction toxicity. Therefore, in this study, we aimed to investigate the effects of RTV on sperm function and male fertility. In the present study, sperm collected from the cauda epididymis of mice were incubated with various concentrations of RTV (0, 0.1, 1, 10, and 100 μM). The expression levels of AKT, phospho-AKT (Thr308 and Ser473), and phospho-tyrosine proteins, sperm motility, motion kinematics, capacitation status, and cell viability were assessed after capacitation. The results revealed that AKT phosphorylation at Thr308 and Ser473 was significantly increased, and the levels of tyrosine-phosphorylated proteins (at approximately 25 and 100 kDa) were significantly increased in a dose-dependent manner. In addition, RTV adversely affected sperm motility, motion kinematics, and cell viability. Taken together, RTV may have negative effects on sperm function through an abnormal increase in tyrosine phosphorylation and phospho-AKT levels. Therefore, individuals taking or prescribing RTV should be aware of its reproductive toxicity.
Collapse
Affiliation(s)
- Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Ju-Mi Hwang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| |
Collapse
|
6
|
Gonzalez H, Podany A, Al-Harthi L, Wallace J. The far-reaching HAND of cART: cART effects on astrocytes. J Neuroimmune Pharmacol 2020; 16:144-158. [PMID: 32147775 DOI: 10.1007/s11481-020-09907-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022]
Abstract
Following the introduction of combination antiretroviral therapy (cART), the morbidity and mortality from human immunodeficiency virus (HIV) infection has been drastically curtailed and HIV has now become a chronic manageable disease. Persons living with HIV (PLWH) are living longer and experiencing significant co-morbidities and conditions of aging. NeuroHIV, clinically defined as HIV-Associated Neurocognitive Disorders (HAND) and pathologically manifested by persistent inflammation in the CNS despite cART, is a significant co-morbid condition for PLWH. In the pre-cART era, HIV mediated much of the pathogenesis in the Central Nervous System (CNS); in the cART era, with low to undetectable viremia, other mechanisms may be contributing to persistent neuroinflammation. Emerging data point to the adverse effects at the cellular level of cART, independent of HIV. Astrocytes are the most abundant cells in the CNS, playing vital roles in maintaining CNS homeostasis (e.g. metabolic support to neurons, clearance of neurotransmitters, ion balance, modulation of synaptic functions and maintaining the structural integrity of the blood brain barrier (BBB). Therefore, any disruption of their function will have wide repercussions in the CNS. In this review, we will address current knowledge and gaps on the impact of antiretrovirals (ARVs) on astrocytes and physiologic consequences in the CNS. Understanding the status of this field, will provide a practical framework to elucidate the potential role of cART-mediated dysregulation of astrocytes in neuroHIV pathogenesis and inform therapeutic strategies that are "neuro-friendly". Graphical abstract CNS-penetrating cART have the potential to cause resting astrocytes to become activated into an A1 or neurotoxic phenotype. These cells can in turn secrete inflammatory cytokines that affect surrounding microglia macrophages, as well as neurotoxic factors that impact nearby neurons. In addition, impairment in the physiologic functions of astrocytes will result in altered BBB permeability and disrupted metabolic homeostasis. CNS=Central Nervous System; cART=combined antiretroviral therapy; BBB=blood brain barrier.
Collapse
Affiliation(s)
- Hemil Gonzalez
- Department of Internal Medicine, Division of Infectious Disease, Rush University Medical Center, Chicago, IL, USA.,Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Anthony Podany
- Department of Pharmacy Practice and Science; College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Jennillee Wallace
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
7
|
Peng L, Zhao Y, Li Y, Zhou Y, Li L, Lei S, Yu S, Zhao Y. Effect of DJ-1 on the neuroprotection of astrocytes subjected to cerebral ischemia/reperfusion injury. J Mol Med (Berl) 2018; 97:189-199. [PMID: 30506316 PMCID: PMC6348070 DOI: 10.1007/s00109-018-1719-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 11/14/2022]
Abstract
Abstract Astrocytes are involved in neuroprotection, and DJ-1 is an important antioxidant protein that is abundantly expressed in reactive astrocytes. However, the role of DJ-1 in astrocytes’ neuroprotection in cerebral ischemia/reperfusion injury and its potential mechanism is unclear. Thus, to explore effects and mechanisms of DJ-1 on the neuroprotection of astrocytes, we used primary co-cultures of neurons and astrocytes under oxygen and glucose deprivation/reoxygenation in vitro and transient middle cerebral artery occlusion/reperfusion in vivo to mimic ischemic reperfusion insult. Lentiviral was used to inhibit and upregulate DJ-1 expression in astrocytes, and DJ-1 siRNA blocked DJ-1 expression in rats. Inhibiting DJ-1 expression led to decreases in neuronal viability. DJ-1 knockdown also attenuated total and nuclear Nrf2 and glutathione (GSH) levels in vitro and vivo. Similarly, loss of DJ-1 decreased Nrf2/ARE-binding activity and expression of Nrf2/ARE pathway-driven genes. Overexpression of DJ-1 yielded opposite results. This suggests that the mechanism of action of DJ-1 in astrocyte-mediated neuroprotection may involve regulation of the Nrf2/ARE pathway to increase GSH after cerebral ischemia/reperfusion injury. Thus, DJ-1 may be a new therapeutic target for treating ischemia/reperfusion injury. Key Messages Astrocytes protect neurons in co-culture after OGD/R DJ-1 is upregulated in astrocytes and plays an important physiological roles in neuronal protection under ischemic conditions DJ-1 protects neuron by the Nrf2/ARE pathway which upregulates GSH
Collapse
Affiliation(s)
- Li Peng
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China.,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Yipeng Zhao
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China.,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Yixin Li
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China.,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Yang Zhou
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China.,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Linyu Li
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China.,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China.,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Shipeng Lei
- Department of Respiratory Medicine, Jiangjin Center Hospital, Chongqing, China
| | - Shanshan Yu
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China. .,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China. .,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China. .,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China.
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Yixueyuan Road 1, 400016, Chongqing, People's Republic of China. .,Molecular Medical Laboratory, Chongqing Medical University, 400016, Chongqing, People's Republic of China. .,Institute of Neuroscience, Chongqing Medical University, 400016, Chongqing, People's Republic of China. .,Key Laboratory of Neurobiology, Chongqing Medical University, 400016, Chongqing, People's Republic of China.
| |
Collapse
|
8
|
Raabe J, Arend C, Steinmeier J, Dringen R. Dicoumarol Inhibits Multidrug Resistance Protein 1-Mediated Export Processes in Cultured Primary Rat Astrocytes. Neurochem Res 2018; 44:333-346. [PMID: 30443714 DOI: 10.1007/s11064-018-2680-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Dicoumarol is frequently used as inhibitor of the detoxifying enzyme NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1). In order to test whether dicoumarol may also affect the cellular glutathione (GSH) metabolism, we have exposed cultured primary astrocytes to dicoumarol and investigated potential effects of this compound on the cell viability as well as on the cellular and extracellular contents of GSH and its metabolites. Incubation of astrocytes with dicoumarol in concentrations of up to 100 µM did not acutely compromise cell viability nor was any GSH consumption or GSH oxidation to glutathione disulfide (GSSG) observed. However, unexpectedly dicoumarol inhibited the cellular multidrug resistance protein (Mrp) 1-dependent export of GSH in a time- and concentration-dependent manner with half-maximal effects observed at low micromolar concentrations of dicoumarol. Inhibition of GSH export by dicoumarol was not additive to that observed for the known Mrp1 inhibitor MK571. In addition, dicoumarol inhibited also the Mrp1-mediated export of GSSG during menadione-induced oxidative stress and the export of the GSH-bimane-conjugate (GS-B) that had been generated in the cells after exposure to monochlorobimane. Half-maximal inhibition of the export of Mrp1 substrates was observed at dicoumarol concentrations of around 4 µM (GSH and GSSG) and 30 µM (GS-B). These data demonstrate that dicoumarol strongly affects the GSH metabolism of viable cultured astrocytes by inhibiting Mrp1-mediated export processes and identifies for the first time Mrp1 as additional cellular target of dicoumarol.
Collapse
Affiliation(s)
- Janice Raabe
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Christian Arend
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Johann Steinmeier
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany. .,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany.
| |
Collapse
|
9
|
Gratton R, Tricarico PM, Guimaraes RL, Celsi F, Crovella S. Lopinavir/Ritonavir Treatment Induces Oxidative Stress and Caspaseindependent Apoptosis in Human Glioblastoma U-87 MG Cell Line. Curr HIV Res 2018; 16:106-112. [DOI: 10.2174/1570162x16666180528100922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/25/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
Background:Lopinavir and Ritonavir (LPV/r) treatment is widely used to prevent HIV mother-to-child transmission. Nevertheless, studies related to the impact of these compounds on patients, in particular in the foetus and newborns, are strictly required due to the controversial findings reported in the literature concerning possible neurologic side effects following the administration of these drugs.Objectives:In our study, we evaluated the impact of LPV/r treatment on the human glioblastoma U- 87 MG cell line.Methods:In order to evaluate the influence of Lopinavir and Ritonavir in terms of oxidative stress (ROS production), mitochondrial morphology and apoptotic cell death, the latter either in the presence or in the absence of caspase-3 and -9 inhibitors, we treated U-87 MG with increasing doses (0.1-1-10-25-50 µM) of Lopinavir and Ritonavir for 24h, either in single formulation or in combination. ROS production was measured by flow cytometry using H2DCFDA dye, mitochondrial morphology was evaluated using MitoRed dye and apoptotic cell death was monitored by flow cytometry using Annexin V-FITC and Propidium Iodide.Results:We observed that co-treatment with Lopinavir and Ritonavir (25 and 50 µM) promoted a significant increase in ROS production, caused mitochondrial network damage and induced apoptosis in a caspase-independent manner.Conclusion:Based on our findings, concordant with others reported in the literature, we hypothesize that LPV/r treatment could not be entirely free from side effects, being aware of the need of validation in in vivo models, necessary to confirm our results.
Collapse
|
10
|
Cohen J, D'Agostino L, Wilson J, Tuzer F, Torres C. Astrocyte Senescence and Metabolic Changes in Response to HIV Antiretroviral Therapy Drugs. Front Aging Neurosci 2017; 9:281. [PMID: 28900395 PMCID: PMC5581874 DOI: 10.3389/fnagi.2017.00281] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/11/2017] [Indexed: 12/03/2022] Open
Abstract
With the advent of highly active antiretroviral therapy (HAART) survival rates among patients infected by HIV have increased. However, even though survival has increased HIV-associated neurocognitive disorders (HAND) still persist, suggesting that HAART-drugs may play a role in the neurocognitive impairment observed in HIV-infected patients. Given previous data demonstrating that astrocyte senescence plays a role in neurocognitive disorders such as Alzheimer’s disease (AD), we examined the role of HAART on markers of senescence in primary cultures of human astrocytes (HAs). Our results indicate HAART treatment induces cell cycle arrest, senescence-associated beta-galactosidase, and the cell cycle inhibitor p21. Highly active antiretroviral therapy treatment is also associated with the induction of reactive oxygen species and upregulation of mitochondrial oxygen consumption. These changes in mitochondria correlate with increased glycolysis in HAART drug treated astrocytes. Taken together these results indicate that HAART drugs induce the senescence program in HAs, which is associated with oxidative and metabolic changes that could play a role in the development of HAND.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, PhiladelphiaPA, United States
| | - Luca D'Agostino
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, PhiladelphiaPA, United States
| | - Joel Wilson
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, PhiladelphiaPA, United States
| | - Ferit Tuzer
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, PhiladelphiaPA, United States
| | - Claudio Torres
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, PhiladelphiaPA, United States
| |
Collapse
|
11
|
Hargreaves IP, Al Shahrani M, Wainwright L, Heales SJR. Drug-Induced Mitochondrial Toxicity. Drug Saf 2016; 39:661-74. [DOI: 10.1007/s40264-016-0417-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Uptake, Metabolic Effects and Toxicity of Arsenate and Arsenite in Astrocytes. Neurochem Res 2015; 41:465-75. [DOI: 10.1007/s11064-015-1570-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 12/17/2022]
|
13
|
Ljubisavljevic S. Oxidative Stress and Neurobiology of Demyelination. Mol Neurobiol 2014; 53:744-758. [PMID: 25502298 DOI: 10.1007/s12035-014-9041-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/30/2014] [Indexed: 12/25/2022]
Abstract
Despite a large amount of research which aims at defining the pathophysiology of human demyelination (i.e., multiple sclerosis), etiological bases of disease have been unknown so far. The point of intersection of all assumed etiological factors, which are mainly based upon immunological cascades, is neuroinflammation. The precise definition of the place and role of all pathogenetic factors in the occurrence and development of the disease is of crucial importance for understanding the clinical nature and for finding more effective therapeutic options. There are few studies whose results give more precise data about the role and the importance of other factors in neuroinflammation, besides immunological ones, with regard to clinical and paraclinical correlates of the disease. The review integrates results found in previously performed studies which have evaluated oxidative stress participation in early and late neuroinflammation. The largest number of studies indicates that the use of antioxidants affects the change of neuroinflammation course under experimental conditions, which is reflected in the reduction of the severity and the total reversibility in clinical presentation of the disease, the faster achieving of remission, and the delayed and slow course of neuroinflammation. Therapies based on the knowledge of redox biology targeting free radical generation hold great promise in modulation of the neuroinflammation and its clinical presentations.
Collapse
Affiliation(s)
- Srdjan Ljubisavljevic
- Clinic of Neurology, Clinical Center Nis, Bul. Dr Zorana Djindjica 48, Nis, 18000, Serbia.
- Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, Nis, 18000, Serbia.
| |
Collapse
|
14
|
Glutathione-Dependent Detoxification Processes in Astrocytes. Neurochem Res 2014; 40:2570-82. [PMID: 25428182 DOI: 10.1007/s11064-014-1481-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/10/2014] [Accepted: 11/15/2014] [Indexed: 01/17/2023]
Abstract
Astrocytes have a pivotal role in brain as partners of neurons in homeostatic and metabolic processes. Astrocytes also protect other types of brain cells against the toxicity of reactive oxygen species and are considered as first line of defence against the toxic potential of xenobiotics. A key component in many of the astrocytic detoxification processes is the tripeptide glutathione (GSH) which serves as electron donor in the GSH peroxidase-catalyzed reduction of peroxides. In addition, GSH is substrate in the detoxification of xenobiotics and endogenous compounds by GSH-S-transferases which generate GSH conjugates that are efficiently exported from the cells by multidrug resistance proteins. Moreover, GSH reacts with the reactive endogenous carbonyls methylglyoxal and formaldehyde to intermediates which are substrates of detoxifying enzymes. In this article we will review the current knowledge on the GSH metabolism of astrocytes with a special emphasis on GSH-dependent detoxification processes.
Collapse
|
15
|
Tadepalle N, Koehler Y, Brandmann M, Meyer N, Dringen R. Arsenite stimulates glutathione export and glycolytic flux in viable primary rat brain astrocytes. Neurochem Int 2014; 76:1-11. [PMID: 24995390 DOI: 10.1016/j.neuint.2014.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 01/30/2023]
Abstract
Intoxication with inorganic arsenicals leads to neuropathies and impaired cognitive functions. However, little is known so far on the cellular targets that are involved in the adverse effects of arsenite to brain cells. To test whether arsenite may affect neural glucose and glutathione (GSH) metabolism, primary astrocyte cultures from rat brain were used as a model system. Exposure of cultured astrocytes to arsenite in concentrations of up to 0.3mM did not compromise cell viability during incubations for up to 6h, while 1mM arsenite damaged the cells already within 2h after application. Determination of cellular arsenic contents of astrocytes that had been incubated for 2h with arsenite revealed an almost linear concentration-dependent increase in the specific cellular arsenic content. Exposure of astrocytes to arsenite stimulated the export of GSH and accelerated the cellular glucose consumption and lactate production in a time- and concentration-dependent manner. Half-maximal stimulation of GSH export and glycolytic flux were observed for arsenite in concentrations of 0.1mM and 0.3mM, respectively. The arsenite-induced stimulation of both processes was abolished upon removal of extracellular arsenite. The strong stimulation of GSH export by arsenite was prevented by MK571, an inhibitor of the multidrug resistance protein 1, suggesting that this transporter mediates the accelerated GSH export. In addition, presence of MK571 significantly increased the specific cellular arsenic content, suggesting that Mrp1 may also be involved in arsenic export from astrocytes. The data observed suggest that alterations in glucose and GSH metabolism may contribute to the reported adverse neural consequences of intoxication with arsenite.
Collapse
Affiliation(s)
- Nimesha Tadepalle
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| | - Yvonne Koehler
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Centre for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany
| | - Maria Brandmann
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Centre for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany
| | - Nils Meyer
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Centre for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany.
| |
Collapse
|
16
|
Antiretroviral Protease Inhibitors Accelerate Glutathione Export from Viable Cultured Rat Neurons. Neurochem Res 2014; 39:883-92. [DOI: 10.1007/s11064-014-1284-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
|
17
|
Petters C, Dringen R. Comparison of primary and secondary rat astrocyte cultures regarding glucose and glutathione metabolism and the accumulation of iron oxide nanoparticles. Neurochem Res 2013; 39:46-58. [PMID: 24190598 DOI: 10.1007/s11064-013-1189-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 12/31/2022]
Abstract
Astrocyte-rich primary cultures (APCs) are frequently used as a model system for the investigation of properties of brain astrocytes. However, as APCs contain a substantial number of microglial and oligodendroglial cells, biochemical parameters determined for such cultures may at least in part reflect also the presence of the contaminating cell types. To lower the potential contributions of microglial and oligodendroglial cells on properties of the astrocytes in APCs we prepared rat astrocyte-rich secondary cultures (ASCs) by subculturing of APCs and compared these ASCs with APCs regarding basal metabolic parameters, specific enzyme activities and the accumulation of iron oxide nanoparticles. Immunocytochemical characterization revealed that ASCs contained only minute amounts of microglial and oligodendroglial cells. ASCs and APCs did not significantly differ in their specific glucose consumption and lactate production rates, in their specific iron and glutathione contents, in their specific activities of various enzymes involved in glucose and glutathione metabolism nor in their accumulation of iron oxide nanoparticles. Thus, the absence or presence of some contaminating microglial and oligodendroglial cells appears not to substantially modulate the investigated metabolic parameters of astrocyte cultures.
Collapse
Affiliation(s)
- Charlotte Petters
- Center for Biomolecular Interactions Bremen, University of Bremen, PO. Box 330440, 28334, Bremen, Germany
| | | |
Collapse
|
18
|
Brandmann M, Nehls U, Dringen R. 8-Hydroxy-efavirenz, the primary metabolite of the antiretroviral drug Efavirenz, stimulates the glycolytic flux in cultured rat astrocytes. Neurochem Res 2013; 38:2524-34. [PMID: 24091996 DOI: 10.1007/s11064-013-1165-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/23/2022]
Abstract
In active antiretroviral therapy antiretroviral drugs are employed for the restoration of a functional immune system in patients suffering from the acquired immunodeficiency syndrome. However, potential adverse effects of such compounds to brain cells are discussed in connection with the development of neurocognitive impairments in patients. To investigate potential effects of antiretroviral drugs on cell viability and the glycolytic flux of brain cells, astrocyte-rich primary cultures were exposed to various antiretroviral compounds, including the non-nucleoside reverse transcriptase inhibitor efavirenz. In a concentration of 10 μM, neither efavirenz nor any of the other investigated antiretroviral compounds acutely compromised the cell viability nor altered glucose consumption or lactate production. In contrast, the primary metabolite of efavirenz, 8-hydroxy-efavirenz, stimulated the glycolytic flux in viable astrocytes in a time- and concentration-dependent manner with half-maximal and maximal effects at concentrations of 5 and 10 μM, respectively. The stimulation of glycolytic flux by 8-hydroxy-efavirenz was not additive to that obtained for astrocytes that were treated with the respiratory chain inhibitor rotenone and was abolished by removal of extracellular 8-hydroxy-efavirenz. In a concentration of 10 μM, 8-hydroxy-efavirenz and efavirenz did not affect mitochondrial respiration, while both compounds lowered in a concentration of 60 μM significantly the oxygen consumption by mitochondria that had been isolated form cultured astrocytes, suggesting that the stimulation of glycolytic flux by 8-hydroxy-efavrienz is not caused by direct inhibition of respiration. The observed alteration of astrocytic glucose metabolism by 8-hydroxy-efavirenz could contribute to the adverse neurological side effects reported for patients that are chronically treated with efavirenz-containing medications.
Collapse
Affiliation(s)
- Maria Brandmann
- Centre for Biomolecular Interactions Bremen, University of Bremen, PO. Box 330440, 28334, Bremen, Germany
| | | | | |
Collapse
|
19
|
Meyer N, Koehler Y, Tulpule K, Dringen R. Arsenate accumulation and arsenate-induced glutathione export in astrocyte-rich primary cultures. Neurochem Int 2013; 62:1012-9. [DOI: 10.1016/j.neuint.2013.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/06/2013] [Accepted: 03/15/2013] [Indexed: 12/31/2022]
|