1
|
De Simone G, Mazza B, Vellucci L, Barone A, Ciccarelli M, de Bartolomeis A. Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment. Antioxidants (Basel) 2023; 12:antiox12040975. [PMID: 37107350 PMCID: PMC10135787 DOI: 10.3390/antiox12040975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants' mechanisms in antipsychotic action and the impact of first- and second-generation compounds on mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment. EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism, and regulation of oxidative systems were reported to be significantly modified by antipsychotic treatment with differences between first- and second-generation drugs. Finally, antioxidants may affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence is only preliminary, the results indicate that further studies are warranted.
Collapse
Affiliation(s)
- Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
2
|
Andreou D, Steen NE, Jørgensen KN, Smelror RE, Wedervang-Resell K, Nerland S, Westlye LT, Nærland T, Myhre AM, Joa I, Reitan SMK, Vaaler A, Morken G, Bøen E, Elvsåshagen T, Boye B, Malt UF, Aukrust P, Skrede S, Kroken RA, Johnsen E, Djurovic S, Andreassen OA, Ueland T, Agartz I. Lower circulating neuron-specific enolase concentrations in adults and adolescents with severe mental illness. Psychol Med 2023; 53:1479-1488. [PMID: 35387700 PMCID: PMC10009386 DOI: 10.1017/s0033291721003056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/05/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Both neurodegenerative and neurodevelopmental abnormalities have been suggested to be part of the etiopathology of severe mental illness (SMI). Neuron-specific enolase (NSE), mainly located in the neuronal cytoplasm, may indicate the process as it is upregulated after neuronal injury while a switch from non-neuronal enolase to NSE occurs during neuronal maturation. METHODS We included 1132 adult patients with SMI [schizophrenia (SZ) or bipolar spectrum disorders], 903 adult healthy controls (HC), 32 adolescent patients with SMI and 67 adolescent HC. Plasma NSE concentrations were measured by enzyme immunoassay. For 842 adults and 85 adolescents, we used total grey matter volume (TGMV) based on T1-weighted magnetic resonance images processed in FreeSurfer v6.0. We explored NSE case-control differences in adults and adolescents separately. To investigate whether putative case-control differences in NSE were TGMV-dependent we controlled for TGMV. RESULTS We found significantly lower NSE concentrations in both adult (p < 0.001) and adolescent patients with SMI (p = 0.007) compared to HC. The results remained significant after controlling for TGMV. Among adults, both patients with SZ spectrum (p < 0.001) and bipolar spectrum disorders (p = 0.005) had lower NSE than HC. In both patient subgroups, lower NSE levels were associated with increased symptom severity. Among adults (p < 0.001) and adolescents (p = 0.040), females had lower NSE concentrations than males. CONCLUSION We found lower NSE concentrations in adult and adolescent patients with SMI compared to HC. The results suggest the lack of progressive neuronal injury, and may reflect abnormal neuronal maturation. This provides further support of a neurodevelopmental rather than a neurodegenerative mechanism in SMI.
Collapse
Affiliation(s)
- Dimitrios Andreou
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway
| | - Kjetil Nordbø Jørgensen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Runar Elle Smelror
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Kirsten Wedervang-Resell
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Child and Adolescent Mental Health Research Unit, Division of Mental Health and Addiction, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Stener Nerland
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Lars T. Westlye
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Terje Nærland
- K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Anne Margrethe Myhre
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Inge Joa
- TIPS – Network for Clinical Research in Psychosis, Stavanger University Hospital, Stavanger, Norway
- Faculty of Health, Network for Medical Sciences, University of Stavanger, Stavanger, Norway
| | - Solveig Merete Klæbo Reitan
- Faculty of Medicine and Health Sciences, Department of Mental Health, NTNU, Trondheim, Norway
- St Olavs Hospital, Department of Mental Health, Trondheim, Norway
| | - Arne Vaaler
- Faculty of Medicine and Health Sciences, Department of Mental Health, NTNU, Trondheim, Norway
- St Olavs Hospital, Department of Mental Health, Trondheim, Norway
| | - Gunnar Morken
- Faculty of Medicine and Health Sciences, Department of Mental Health, NTNU, Trondheim, Norway
- St Olavs Hospital, Department of Mental Health, Trondheim, Norway
| | - Erlend Bøen
- Psychosomatic and C-L Psychiatry, Adult, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Torbjørn Elvsåshagen
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway
- Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Birgitte Boye
- Psychosomatic and C-L Psychiatry, Adult, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Behavioural Medicine, University of Oslo, Oslo, Norway
| | - Ulrik Fredrik Malt
- Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Silje Skrede
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Rune Andreas Kroken
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Bergen, Norway
| | - Erik Johnsen
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Haukeland University Hospital, Bergen, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, Norwegian Centre for Mental Disorders Research (NORMENT), University of Bergen, Bergen, Norway
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
3
|
Xia Z, Gao M, Sheng P, Shen M, Zhao L, Gao L, Yan B. Fe 3O 4 Nanozymes Improve Neuroblast Differentiation and Blood-Brain Barrier Integrity of the Hippocampal Dentate Gyrus in D-Galactose-Induced Aged Mice. Int J Mol Sci 2022; 23:ijms23126463. [PMID: 35742908 PMCID: PMC9224281 DOI: 10.3390/ijms23126463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is a process associated with blood-brain barrier (BBB) damage and the reduction in neurogenesis, and is the greatest known risk factor for neurodegenerative disorders. However, the effects of Fe3O4 nanozymes on neurogenesis have rarely been studied. This study examined the effects of Fe3O4 nanozymes on neuronal differentiation in the dentate gyrus (DG) and BBB integrity of D-galactose-induced aged mice. Long-term treatment with Fe3O4 nanozymes (10 μg/mL diluted in ddH2O daily) markedly increased the doublecortin (DCX) immunoreactivity and decreased BBB injury induced by D-galactose treatment. In addition, the decreases in the levels of antioxidant proteins including superoxide dismutase (SOD) and catalase as well as autophagy-related proteins such as Becin-1, LC3II/I, and Atg7 induced by D-galactose treatment were significantly ameliorated by Fe3O4 nanozymes in the DG of the mouse hippocampus. Furthermore, Fe3O4 nanozyme treatment showed an inhibitory effect against apoptosis in the hippocampus. In conclusion, Fe3O4 nanozymes can relieve neuroblast damage and promote neuroblast differentiation in the hippocampal DG by regulating oxidative stress, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Zihao Xia
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; (Z.X.); (M.G.); (P.S.); (M.S.); (L.Z.)
| | - Manman Gao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; (Z.X.); (M.G.); (P.S.); (M.S.); (L.Z.)
| | - Peng Sheng
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; (Z.X.); (M.G.); (P.S.); (M.S.); (L.Z.)
| | - Mengmeng Shen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; (Z.X.); (M.G.); (P.S.); (M.S.); (L.Z.)
| | - Lin Zhao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; (Z.X.); (M.G.); (P.S.); (M.S.); (L.Z.)
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Bingchun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225001, China; (Z.X.); (M.G.); (P.S.); (M.S.); (L.Z.)
- Correspondence: ; Tel.: +86-514-87992215
| |
Collapse
|
4
|
Caruso G, Grasso M, Fidilio A, Tascedda F, Drago F, Caraci F. Antioxidant Properties of Second-Generation Antipsychotics: Focus on Microglia. Pharmaceuticals (Basel) 2020; 13:ph13120457. [PMID: 33322693 PMCID: PMC7764768 DOI: 10.3390/ph13120457] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Recent studies suggest a primary role of oxidative stress in an early phase of the pathogenesis of schizophrenia and a strong neurobiological link has been found between dopaminergic system dysfunction, microglia overactivation, and oxidative stress. Different risk factors for schizophrenia increase oxidative stress phenomena raising the risk of developing psychosis. Oxidative stress induced by first-generation antipsychotics such as haloperidol significantly contributes to the development of extrapyramidal side effects. Haloperidol also exerts neurotoxic effects by decreasing antioxidant enzyme levels then worsening pro-oxidant events. Opposite to haloperidol, second-generation antipsychotics (or atypical antipsychotics) such as risperidone, clozapine, and olanzapine exert a strong antioxidant activity in experimental models of schizophrenia by rescuing the antioxidant system, with an increase in superoxide dismutase and glutathione (GSH) serum levels. Second-generation antipsychotics also improve the antioxidant status and reduce lipid peroxidation in schizophrenic patients. Interestingly, second-generation antipsychotics, such as risperidone, paliperidone, and in particular clozapine, reduce oxidative stress induced by microglia overactivation, decreasing the production of microglia-derived free radicals, finally protecting neurons against microglia-induced oxidative stress. Further, long-term clinical studies are needed to better understand the link between oxidative stress and the clinical response to antipsychotic drugs and the therapeutic potential of antioxidants to increase the response to antipsychotics.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (F.C.)
- Correspondence: or
| | - Margherita Grasso
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (F.C.)
- Department of Laboratories, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Annamaria Fidilio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.F.); (F.D.)
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.F.); (F.D.)
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (F.C.)
- Department of Laboratories, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
5
|
Bortolasci CC, Spolding B, Kidnapillai S, Connor T, Truong TT, Liu ZS, Panizzutti B, Richardson MF, Gray L, Berk M, Dean OM, Walder K. Transcriptional Effects of Psychoactive Drugs on Genes Involved in Neurogenesis. Int J Mol Sci 2020; 21:ijms21218333. [PMID: 33172123 PMCID: PMC7672551 DOI: 10.3390/ijms21218333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Although neurogenesis is affected in several psychiatric diseases, the effects and mechanisms of action of psychoactive drugs on neurogenesis remain unknown and/or controversial. This study aims to evaluate the effects of psychoactive drugs on the expression of genes involved in neurogenesis. Neuronal-like cells (NT2-N) were treated with amisulpride (10 µM), aripiprazole (0.1 µM), clozapine (10 µM), lamotrigine (50 µM), lithium (2.5 mM), quetiapine (50 µM), risperidone (0.1 µM), or valproate (0.5 mM) for 24 h. Genome wide mRNA expression was quantified and analysed using gene set enrichment analysis, with the neurogenesis gene set retrieved from the Gene Ontology database and the Mammalian Adult Neurogenesis Gene Ontology (MANGO) database. Transcription factors that are more likely to regulate these genes were investigated to better understand the biological processes driving neurogenesis. Targeted metabolomics were performed using gas chromatography-mass spectrometry. Six of the eight drugs decreased the expression of genes involved in neurogenesis in both databases. This suggests that acute treatment with these psychoactive drugs negatively regulates the expression of genes involved in neurogenesis in vitro. SOX2 and three of its target genes (CCND1, BMP4, and DKK1) were also decreased after treatment with quetiapine. This can, at least in part, explain the mechanisms by which these drugs decrease neurogenesis at a transcriptional level in vitro. These results were supported by the finding of increased metabolite markers of mature neurons following treatment with most of the drugs tested, suggesting increased proportions of mature relative to immature neurons consistent with reduced neurogenesis.
Collapse
Affiliation(s)
- Chiara C. Bortolasci
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
- Correspondence:
| | - Briana Spolding
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Srisaiyini Kidnapillai
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Timothy Connor
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Trang T.T. Truong
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Zoe S.J. Liu
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Bruna Panizzutti
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Mark F. Richardson
- School of Life and Environmental Sciences, Genomics Centre, Deakin University, Geelong 3220, Australia;
| | - Laura Gray
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville 3052, Australia
- Centre of Youth Mental Health, University of Melbourne, Parkville 3052, Australia
- Orygen Youth Health Research Centre, Parkville 3052, Australia
| | - Olivia M. Dean
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville 3052, Australia
| | - Ken Walder
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong 3220, Australia; (B.S.); (T.C.); (T.T.T.T.); (Z.S.J.L.); (B.P.); (L.G.); (M.B.); (O.M.D.); (K.W.)
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong 3220, Australia;
| |
Collapse
|
6
|
Murata Y, Matsuda H, Mikami Y, Hirose S, Mori M, Ohe K, Mine K, Enjoji M. Chronic administration of quetiapine stimulates dorsal hippocampal proliferation and immature neurons of male rats, but does not reverse psychosocial stress-induced hyponeophagic behavior. Psychiatry Res 2019; 272:411-418. [PMID: 30611957 DOI: 10.1016/j.psychres.2018.12.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 12/14/2022]
Abstract
Quetiapine, an atypical antipsychotic, has been used for the treatment of several neuropsychiatric disorders. However, the underlying mechanism of the broad therapeutic range of quetiapine remains unknown. We previously reported that several aversive conditions affect dorsal/ventral hippocampal neurogenesis differentially. This study was aimed to elucidate the positive effects of chronic treatment with quetiapine on regional differences in hippocampal proliferation and immature neurons and behavioral changes under psychosocial stress using the Resident-Intruder paradigm. Twenty-three male Sprague-Dawley rats were intraperitoneally administered a vehicle or quetiapine (10 mg/kg) once daily for 28 days. Two weeks after starting the injections, animals were exposed to intermittent social defeat (four times over two weeks). The behavioral effects of stress and quetiapine were evaluated by the Novelty-Suppressed Feeding (NSF) test. The stereological quantification of hippocampal neurogenesis was estimated using immunostaining with Ki-67 and doublecortin (DCX). Chronic quetiapine treatment stimulated the Ki-67- and DCX-positive cells in the dorsal hippocampus, but not in the ventral subregion. The stress-induced changes in neurogenesis and hyponeophagic behavior were not reversed by repeated administration of quetiapine. Future study with additional behavioral tests is needed to elucidate the functional significance of the quetiapine-induced increase in dorsal hippocampal neurogenesis.
Collapse
Affiliation(s)
- Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Hiroko Matsuda
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yoko Mikami
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shiori Hirose
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazunori Mine
- Faculty of Neurology and Psychiatry, Mito Hospital, 4-1-1, Shime-Higashi, Shime-Machi, Kasuya-Gun, Fukuoka 811-2243, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
7
|
Ahn JH, Shin BN, Song M, Kim H, Park JH, Lee TK, Park CW, Park YE, Lee JC, Yong JH, Lee CH, Hwang IK, Won MH, Lee YL. Intermittent fasting increases the expressions of SODs and catalase in granule and polymorphic cells and enhances neuroblast dendrite complexity and maturation in the adult gerbil dentate gyrus. Mol Med Rep 2019; 19:1721-1727. [PMID: 30628688 PMCID: PMC6390044 DOI: 10.3892/mmr.2019.9822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/31/2018] [Indexed: 11/06/2022] Open
Abstract
Intermittent fasting (ImF) is known to reduce oxidative stress and affects adult neurogenesis in the hippocampal dentate gyrus. However, it is unknown how ImF affects endogenous antioxidants expressions, cell proliferation, and neuroblast differentiation and their dendrite remodeling over 3 months in the dentate gyrus of adult gerbils. The present study subjected 6‑month old male gerbils to a normal diet or alternate‑day ImF for 1, 2 and 3 months. Changes in body weight were not significantly different between gerbils fed a normal diet and on ImF. The present study also investigated the effects of ImF on antioxidant enzymes [superoxide dismutase (SOD)‑1, SOD2 and catalase] using immunohistochemistry, and endogenous cell proliferation, neuroblast differentiation and neuroblast dendrite complexity by using Ki67 (a cell proliferation marker) and doublecortin (neuroblast differentiation marker) immunohistochemistry in the dentate gyrus. SOD1, SOD2 and CAT immunoreactivities were shown in cells in the granule cell and polymorphic layers. SOD1, SOD2 and catalase immunoreactivity in the cells peaked at 2, 1 and 1 month, respectively, following ImF. Cell proliferation was ~250, 129 and 186% of the control, at 1, 2 and 3 months of ImF, respectively. Neuroblast differentiation was ~41, 32 and 12% of the control, at 1, 2 and 3 months of ImF, respectively, indicating that dendrites of neuroblasts were more arborized and developed at 3 months of ImF. Taken together, these results indicate that ImF for 3 months improves endogenous SOD1, SOD2 and catalase expressions and enhances cell proliferation, and neuroblast dendrites complexity and maturation in the adult gerbil dentate gyrus.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Bich Na Shin
- Danchunok Company, Chuncheon, Gangwon 24210, Republic of Korea
| | - Minah Song
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyunjung Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun-Hwan Yong
- Department of Occupational Therapy, Dongnam Health University, Suwon, Gyeonggi 16238, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam 31116, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| |
Collapse
|
8
|
Chen BH, Park JH, Kim DW, Park J, Choi SY, Kim IH, Cho JH, Lee TK, Lee JC, Lee CH, Hwang IK, Kim YM, Yan BC, Kang IJ, Shin BN, Lee YL, Shin MC, Cho JH, Lee YJ, Jeon YH, Won MH, Ahn JH. Melatonin Improves Cognitive Deficits via Restoration of Cholinergic Dysfunction in a Mouse Model of Scopolamine-Induced Amnesia. ACS Chem Neurosci 2018; 9:2016-2024. [PMID: 28901737 DOI: 10.1021/acschemneuro.7b00278] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Melatonin is known to improve cognitive deficits, and its functions have been studied in various disease models, including Alzheimer's disease. In this study, we investigated effects of melatonin on cognition and the cholinergic system of the septum and hippocampus in a mouse model of scopolamine-induced amnesia. Scopolamine (1 mg/kg) and melatonin (10 mg/kg) were administered intraperitoneally to mice for 2 and 4 weeks. The Morris water maze and passive avoidance tests revealed that both treatments of scopolamine significantly impaired spatial learning and memory; however, 2- and 4-week melatonin treatments significantly improved spatial learning and memory. In addition, scopolamine treatments significantly decreased protein levels and immunoreactivities of choline acetyltransferase (ChAT), high-affinity choline transporter (CHT), vesicular acetylcholine transporter (VAChT), and muscarinic acetylcholine receptor M1 (M1R) in the septum and hippocampus. However, the treatments with melatonin resulted in increased ChAT-, CHT-, VAChT-, and M1R-immunoreactivities and their protein levels in the septum and hippocampus. Our results demonstrate that melatonin treatment is effective in improving the cognitive deficits via restoration of the cholinergic system in the septum and hippocampus of a mouse model of scopolamine-induced amnesia.
Collapse
Affiliation(s)
- Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung 25457, South Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Jae Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bing Chun Yan
- Jiangsu Key Laboratory
of Integrated Traditional Chinese and Western Medicine for Prevention
and Treatment of Senile Diseases, Yangzhou 225001, People’s Republic of China
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, South Korea
| | - Bich Na Shin
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 24252, South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 24252, South Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Young Joo Lee
- Department of Emergency Medicine, Seoul Hospital, College of Medicine, Sooncheonhyang University, Seoul 04401, South Korea
| | - Yong Hwan Jeon
- Department of Radiology, School of Medicine, Kangwon National University, Chuncheon 24289, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| |
Collapse
|
9
|
Chen BH, Park JH, Lee TK, Song M, Kim H, Lee JC, Kim YM, Lee CH, Hwang IK, Kang IJ, Yan BC, Won MH, Ahn JH. Melatonin attenuates scopolamine-induced cognitive impairment via protecting against demyelination through BDNF-TrkB signaling in the mouse dentate gyrus. Chem Biol Interact 2018; 285:8-13. [DOI: 10.1016/j.cbi.2018.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 12/11/2022]
|
10
|
Chen BH, Ahn JH, Park JH, Song M, Kim H, Lee TK, Lee JC, Kim YM, Hwang IK, Kim DW, Lee CH, Yan BC, Kang IJ, Won MH. Rufinamide, an antiepileptic drug, improves cognition and increases neurogenesis in the aged gerbil hippocampal dentate gyrus via increasing expressions of IGF-1, IGF-1R and p -CREB. Chem Biol Interact 2018; 286:71-77. [DOI: 10.1016/j.cbi.2018.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/23/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022]
|
11
|
Gholampour H, Moezi L, Shafaroodi H. Aripiprazole prevents renal ischemia/reperfusion injury in rats, probably through nitric oxide involvement. Eur J Pharmacol 2017; 813:17-23. [PMID: 28734929 DOI: 10.1016/j.ejphar.2017.07.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 01/06/2023]
Abstract
Renal ischemia/reperfusion (I/R) injury is strongly related to morbidity and mortality. Oxidative stress, inflammation, and apoptosis play key roles in renal dysfunction following renal I/R. Aripiprazole is an atypical antipsychotic which used for the treatment of schizophrenia and bipolar disorder. Recent studies have reported aripiprazole as displaying certain anti-inflammatory effects. Regarding the underlying mechanisms of renal ischemia-reperfusion, therefore, nephroprotective effects might be predicted to be seen with aripiprazole. I/R injury was induced by bilateral clamping of the renal pedicles (45min) followed by reperfusion (24h). The mechanism of aripiprazole-mediated nephroprotection was explored by a combined use of aripiprazole and L-NAME (non-selective nitric oxide synthase inhibitor). Animals were given aripiprazole (2.5, 5, 10 and 20mg/kg) intraperitoneally, 30min before ischemia. L-NAME was administered before the aripiprazole injection. Serum creatinine and blood urea nitrogen were assessed after 24h of reperfusion. Serum levels of malondialdehyde (MDA), TNF-α and IL-1β were measured for rats treated with aripiprazole. The extent of necrosis was measured by the stereology method. Ischemia/reperfusion caused significant renal dysfunction and marked renal injury. Aripiprazole reduced creatinine and blood urea nitrogen. Serum levels of MDA, IL-1β and TNF-α were significantly lower in the aripiprazole group. Aripiprazole treatment also decreased the volume of kidney necrosis. The administration of L-NAME reversed the renoprotective effect of aripiprazole on BUN and creatinine, but enhanced the anti-necrotic effect of aripiprazole. The results show that a single dose of aripiprazole significantly improved renal function following ischemia/reperfusion injury - probably through the involvement of nitric oxide.
Collapse
Affiliation(s)
- Hanieh Gholampour
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Leila Moezi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Kim YR, Kim HN, Hong KW, Shin HK, Choi BT. Antidepressant Effects of Aripiprazole Augmentation for Cilostazol-Treated Mice Exposed to Chronic Mild Stress after Ischemic Stroke. Int J Mol Sci 2017; 18:ijms18020355. [PMID: 28208711 PMCID: PMC5343890 DOI: 10.3390/ijms18020355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/29/2017] [Accepted: 02/03/2017] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine the effects and underlying mechanism of aripiprazole (APZ) augmentation for cilostazol (CLS)-treated post-ischemic stroke mice that were exposed to chronic mild stress (CMS). Compared to treatment with either APZ or CLS alone, the combined treatment resulted in a greater reduction in depressive behaviors, including anhedonia, despair-like behaviors, and memory impairments. This treatment also significantly reduced atrophic changes in the striatum, cortex, and midbrain of CMS-treated ischemic mice, and inhibited neuronal cell apoptosis, particularly in the striatum and the dentate gyrus of the hippocampus. Greater proliferation of neuronal progenitor cells was also observed in the ipsilateral striatum of the mice receiving combined treatment compared to mice receiving either drug alone. Phosphorylation of the cyclic adenosine monophosphate response element binding protein (CREB) was increased in the striatum, hippocampus, and midbrain of mice receiving combined treatment compared to treatment with either drug alone, particularly in the neurons of the striatum and hippocampus, and dopaminergic neurons of the midbrain. Our results suggest that APZ may augment the antidepressant effects of CLS via co-regulation of the CREB signaling pathway, resulting in the synergistic enhancement of their neuroprotective effects.
Collapse
Affiliation(s)
- Yu Ri Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea.
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Korea.
| | - Ha Neui Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea.
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Korea.
| | - Ki Whan Hong
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea.
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea.
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Korea.
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea.
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea.
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Korea.
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
13
|
Meyer E, Mori MA, Campos AC, Andreatini R, Guimarães FS, Milani H, de Oliveira RMW. Myricitrin induces antidepressant-like effects and facilitates adult neurogenesis in mice. Behav Brain Res 2017; 316:59-65. [DOI: 10.1016/j.bbr.2016.08.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 01/19/2023]
|
14
|
Chen BH, Park JH, Cho JH, Kim IH, Lee JC, Lee TK, Ahn JH, Tae HJ, Shin BN, Kim JD, Kang IJ, Won MH, Lee YL. Tanshinone I Enhances Neurogenesis in the Mouse Hippocampal Dentate Gyrus via Increasing Wnt-3, Phosphorylated Glycogen Synthase Kinase-3β and β-Catenin Immunoreactivities. Neurochem Res 2016; 41:1958-68. [PMID: 27053301 DOI: 10.1007/s11064-016-1906-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/26/2016] [Accepted: 03/30/2016] [Indexed: 12/17/2022]
Abstract
Tanshinone I (TsI), a lipophilic diterpene extracted from Danshan (Radix Salvia miltiorrhizae), exerts neuroprotection in cerebrovascular diseases including transient ischemic attack. In this study, we examined effects of TsI on cell proliferation and neuronal differentiation in the subgranular zone (SGZ) of the mouse dentate gyrus (DG) using Ki-67, BrdU and doublecortin (DCX) immunohistochemistry. Mice were treated with 1 and 2 mg/kg TsI for 28 days. In the 1 mg/kg TsI-treated-group, distribution patterns of BrdU, Ki-67 and DCX positive ((+)) cells in the SGZ were similar to those in the vehicle-treated-group. However, in the 2 mg/kg TsI-treated-group, double labeled BrdU(+)/NeuN(+) cells, which are mature neurons, as well as Ki-67(+), DCX(+) and BrdU(+) cells were significantly increased compared with those in the vehicle-treated-group. On the other hand, immunoreactivities and protein levels of Wnt-3, β-catenin and serine-9-glycogen synthase kinase-3β (p-GSK-3β), which are related with morphogenesis, were significantly increased in the granule cell layer of the DG only in the 2 mg/kg TsI-treated-group. Therefore, these findings indicate that TsI can promote neurogenesis in the mouse DG and that the neurogenesis is related with increases of Wnt-3, p-GSK-3β and β-catenin immunoreactivities.
Collapse
Affiliation(s)
- Bai Hui Chen
- Department of Physiology, Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jae Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Hyun Jin Tae
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Bich Na Shin
- Department of Physiology, Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, 24341, South Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, 24252, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea.
| | - Yun Lyul Lee
- Department of Physiology, Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
15
|
Bodnar M, Malla AK, Makowski C, Chakravarty MM, Joober R, Lepage M. The effect of second-generation antipsychotics on hippocampal volume in first episode of psychosis: longitudinal study. BJPsych Open 2016; 2:139-146. [PMID: 27703766 PMCID: PMC4995582 DOI: 10.1192/bjpo.bp.115.002444] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Current neuroscience literature has related treatment with aripiprazole to improved memory performance and subcellular changes in the hippocampus. AIMS To explore the volumetric changes in hippocampal grey matter in people with a first episode of psychosis (FEP) treated with second-generation antipsychotics. METHOD Baseline and 1-year follow-up magnetic resonance images were obtained. Hippocampal volumes were estimated by using FreeSurfer and MAGeT-Brain. Subgroups included: aripiprazole (n=13), olanzapine (n=12), risperidone/paliperidone (n=24), refused-antipsychotics (n=13) and controls (n=44). RESULTS Aripiprazole subgroup displayed significant increases in bilateral hippocampal volume compared with all other subgroups (FreeSurfer: all P's<0.012; MAGeT-Brain: all P's<0.040). CONCLUSIONS Aripiprazole is a first-line, second-generation treatment option that may provide an added benefit of pro-hippocampal growth. The biological underpinnings of these changes should be the focus of future investigations and may be key towards achieving a better clinical outcome for more individuals. DECLARATION OF INTEREST M.L. received financial assistance/compensation for research and educational events from Janssen-Ortho, Eli Lilly, Roche and Otsuka/Lundbeck Alliance. A.K.M. received financial assistance/compensation for research and educational activities from Pfizer, Janssen-Ortho, AstraZeneca and Bristol-Myers Squibb. R.J. received consultancy honorariums from Pfizer and Janssen-Ortho. COPYRIGHT AND USAGE © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) licence.
Collapse
Affiliation(s)
- Michael Bodnar
- , PhD, Prevention and Early Intervention Program for Psychoses (PEPP - Montreal), Douglas Mental Health University Institute, Montreal, Canada; Department of Psychology, McGill University, Montreal, Canada
| | - Ashok K Malla
- , MD, Prevention and Early Intervention Program for Psychoses (PEPP - Montreal), Douglas Mental Health University Institute, Montreal, Canada; Department of Psychiatry, McGill University, Montreal, Canada
| | - Carolina Makowski
- , BSc, Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - M Mallar Chakravarty
- , PhD, Department of Psychiatry, McGill University, Montreal, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Ridha Joober
- , MD, PhD, Prevention and Early Intervention Program for Psychoses (PEPP - Montreal), Douglas Mental Health University Institute, Montreal, Canada; Department of Psychiatry, McGill University, Montreal, Canada
| | - Martin Lepage
- , PhD, Prevention and Early Intervention Program for Psychoses (PEPP - Montreal), Douglas Mental Health University Institute, Montreal, Canada; Department of Psychology, McGill University, Montreal, Canada; Department of Psychiatry, McGill University, Montreal, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Canada
| |
Collapse
|
16
|
Cho JH, Park JH, Ahn JH, Lee JC, Hwang IK, Park SM, Ahn JY, Kim DW, Cho JH, Kim JD, Kim YM, Won MH, Kang IJ. Vanillin and 4-hydroxybenzyl alcohol promotes cell proliferation and neuroblast differentiation in the dentate gyrus of mice via the increase of brain-derived neurotrophic factor and tropomyosin-related kinase B. Mol Med Rep 2016; 13:2949-56. [PMID: 26935641 PMCID: PMC4805080 DOI: 10.3892/mmr.2016.4915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022] Open
Abstract
4-Hydroxy-3-methoxybenzaldehyde (vanillin) and 4-hydroxybenzyl alcohol (4-HBA) are well-known phenolic compounds, which possess various therapeutic properties and are widely found in a variety of plants. In the present study, the effects of vanillin and 4-HBA were first investigated on cell proliferation, as well as neuronal differentiation and integration of granule cells in the dentate gyrus (DG) of adolescent mice using Ki-67, doublecortin (DCX) immunohistochemistry and 5-bromo-2′-de-oxyuridine (BrdU)/feminizing Locus on X 3 (NeuN) double immunofluorescence. In both the vanillin and 4-HBA groups, the number of Ki-67+ cells, DCX+ neuroblasts and BrdU+/NeuN+ neurons were significantly increased in the subgranular zone of the DG, as compared with the vehicle group. In addition, the levels of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB), a BDNF receptor, were significantly increased in the DG in the vanillin and 4-HBA groups compared with the vehicle group. These results indicated that vanillin and 4-HBA enhanced cell proliferation, neuroblast differentiation and integration of granule cells in the DG of adolescent mice. These neurogenic effects of vanillin and 4-HBA may be closely associated with increases in BDNF and TrkB.
Collapse
Affiliation(s)
- Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Seung Min Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Ji Yun Ahn
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Dong Won Kim
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| |
Collapse
|
17
|
Chen BH, Park JH, Cho JH, Kim IH, Shin BN, Ahn JH, Hwang SJ, Yan BC, Tae HJ, Lee JC, Bae EJ, Lee YL, Kim JD, Won MH, Kang IJ. Ethanol extract of Oenanthe javanica increases cell proliferation and neuroblast differentiation in the adolescent rat dentate gyrus. Neural Regen Res 2015; 10:271-6. [PMID: 25883627 PMCID: PMC4392676 DOI: 10.4103/1673-5374.152382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 12/31/2022] Open
Abstract
Oenanthe javanica is an aquatic perennial herb that belongs to the Oenanthe genus in Apiaceae family, and it displays well-known medicinal properties such as protective effects against glutamate-induced neurotoxicity. However, few studies regarding effects of Oenanthe javanica on neurogenesis in the brain have been reported. In this study, we examined the effects of a normal diet and a diet containing ethanol extract of Oenanthe javanica on cell proliferation and neuroblast differentiation in the subgranular zone of the hippocampal dentate gyrus of adolescent rats using Ki-67 (an endogenous marker for cell proliferation) and doublecortin (a marker for neuroblast). Our results showed that Oenanthe javanica extract significantly increased the number of Ki-67-immunoreactive cells and doublecortin-immunoreactive neuroblasts in the subgranular zone of the dentate gyrus in the adolescent rats. In addition, the immunoreactivity of brain-derived neurotrophic factor was significantly increased in the dentate gyrus of the Oenanthe javanica extract-treated group compared with the control group. However, we did not find that vascular endothelial growth factor expression was increased in the Oenanthe javanica extract-treated group compared with the control group. These results indicate that Oenanthe javanica extract improves cell proliferation and neuroblast differentiation by increasing brain-derived neurotrophic factor immunoreactivity in the rat dentate gyrus.
Collapse
Affiliation(s)
- Bai Hui Chen
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bich Na Shin
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Seok Joon Hwang
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Bing Chun Yan
- Department of Integrative Traditional & Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Hyun Jin Tae
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon, South Korea
| | - Jae Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Eun Joo Bae
- Department of Pediatrics, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chunchen, South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, South Korea
| | - Jong Dai Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, South Korea
| |
Collapse
|
18
|
Yan BC, Park JH, Chen BH, Cho JH, Kim IH, Ahn JH, Lee JC, Hwang IK, Cho JH, Lee YL, Kang IJ, Won MH. Long-term administration of scopolamine interferes with nerve cell proliferation, differentiation and migration in adult mouse hippocampal dentate gyrus, but it does not induce cell death. Neural Regen Res 2014; 9:1731-9. [PMID: 25422633 PMCID: PMC4238160 DOI: 10.4103/1673-5374.143415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2014] [Indexed: 11/04/2022] Open
Abstract
Long-term administration of scopolamine, a muscarinic receptor antagonist, can inhibit the survival of newly generated cells, but its effect on the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus remain poorly understood. In this study, we used immunohistochemistry and western blot methods to weekly detect the biological behaviors of nerve cells in the hippocampal dentate gyrus of adult mice that received intraperitoneal administration of scopolamine for 4 weeks. Expression of neuronal nuclear antigen (NeuN; a neuronal marker) and Fluoro-Jade B (a marker for the localization of neuronal degeneration) was also detected. After scopolamine treatment, mouse hippocampal neurons did not die, and Ki-67 (a marker for proliferating cells)-immunoreactive cells were reduced in number and reached the lowest level at 4 weeks. Doublecortin (DCX; a marker for newly generated neurons)-immunoreactive cells were gradually shortened in length and reduced in number with time. After scopolamine treatment for 4 weeks, nearly all of the 5-bromo-2'-deoxyuridine (BrdU)-labeled newly generated cells were located in the subgranular zone of the dentate gyrus, but they did not migrate into the granule cell layer. Few mature BrdU/NeuN double-labeled cells were seen in the subgranular zone of the dentate gyrus. These findings suggest that long-term administration of scopolamine interferes with the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus, but it does not induce cell death.
Collapse
Affiliation(s)
- Bing Chun Yan
- Department of Integrative Traditional & Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, South Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, South Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
19
|
Islam M, Moriguchi S, Tagashira H, Fukunaga K. Rivastigmine improves hippocampal neurogenesis and depression-like behaviors via 5-HT1A receptor stimulation in olfactory bulbectomized mice. Neuroscience 2014; 272:116-30. [DOI: 10.1016/j.neuroscience.2014.04.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 11/29/2022]
|