1
|
Zhao Y, Li Q, Chai J, Liu Y. Cargo‐Templated Crosslinked Polymer Nanocapsules and Their Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Jingshan Chai
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
2
|
Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways. Nat Commun 2020; 11:594. [PMID: 32001707 PMCID: PMC6992617 DOI: 10.1038/s41467-019-14036-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Activation of receptor tyrosine kinase (RTK) protein is frequently observed in malignant progression of gliomas. In this study, the crosstalk activation of epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition factor (MET) signaling pathways is demonstrated to contribute to temozolomide (TMZ) resistance, resulting in an unfavorable prognosis for patients with glioblastoma. To simultaneously mitigate EGFR and MET activation, a dual functionalized brain-targeting nanoinhibitor, BIP-MPC-NP, is developed by conjugating Inherbin3 and cMBP on the surface of NHS-PEG8-Mal modified MPC-nanoparticles. In the presence of BIP-MPC-NP, DNA damage repair is attenuated and TMZ sensitivity is enhanced via the down-regulation of E2F1 mediated by TTP in TMZ resistant glioma. In vivo magnetic resonance imaging (MRI) shows a significant repression in tumor growth and a prolonged survival of mice after injection of the BIP-MPC-NP and TMZ. These results demonstrate the promise of this nanoinhibitor as a feasible strategy overcoming TMZ resistance in glioma.
Collapse
|
3
|
Callahan A, Abeyruwan SW, Al-Ali H, Sakurai K, Ferguson AR, Popovich PG, Shah NH, Visser U, Bixby JL, Lemmon VP. RegenBase: a knowledge base of spinal cord injury biology for translational research. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2016; 2016:baw040. [PMID: 27055827 PMCID: PMC4823819 DOI: 10.1093/database/baw040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/03/2016] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) research is a data-rich field that aims to identify the biological mechanisms resulting in loss of function and mobility after SCI, as well as develop therapies that promote recovery after injury. SCI experimental methods, data and domain knowledge are locked in the largely unstructured text of scientific publications, making large scale integration with existing bioinformatics resources and subsequent analysis infeasible. The lack of standard reporting for experiment variables and results also makes experiment replicability a significant challenge. To address these challenges, we have developed RegenBase, a knowledge base of SCI biology. RegenBase integrates curated literature-sourced facts and experimental details, raw assay data profiling the effect of compounds on enzyme activity and cell growth, and structured SCI domain knowledge in the form of the first ontology for SCI, using Semantic Web representation languages and frameworks. RegenBase uses consistent identifier schemes and data representations that enable automated linking among RegenBase statements and also to other biological databases and electronic resources. By querying RegenBase, we have identified novel biological hypotheses linking the effects of perturbagens to observed behavioral outcomes after SCI. RegenBase is publicly available for browsing, querying and download. Database URL:http://regenbase.org
Collapse
Affiliation(s)
- Alison Callahan
- Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA 94305
| | | | - Hassan Al-Ali
- Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136
| | - Kunie Sakurai
- Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136
| | - Adam R Ferguson
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco; San Francisco Veterans Affairs Medical Center, San Francisco, CA 94143
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair and the Department of Neuroscience, The Ohio State University, Columbus, OH 43210
| | - Nigam H Shah
- Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA 94305
| | - Ubbo Visser
- Department of Computer Science, University of Miami, Coral Gables, FL 33146
| | - John L Bixby
- Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136 Center for Computational Science, University of Miami, Coral Gables, FL 33146 Department of Cellular and Molecular Pharmacology, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Vance P Lemmon
- Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136 Center for Computational Science, University of Miami, Coral Gables, FL 33146
| |
Collapse
|