1
|
Wang J, Li M, Zhang J, Gao Q, Ding Z, Sun J. Paliperidone alleviates MK-801-induced damage to prefrontal cortical neurons via the PP2A/PTEN pathway. J Affect Disord 2022; 317:265-277. [PMID: 36031001 DOI: 10.1016/j.jad.2022.08.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND The putative mechanisms underlying the efficacy of the US Food and Drug Administration-approved antipsychotic drug paliperidone for the treatment of schizophrenia deserve additional investigation, which is the aim of the present animal study. METHODS The behavioral activities of mice were recorded in the open field test and light-dark box test. The effects of paliperidone on MK-801-induced neuronal damage in the prefrontal cortex were tested by flow cytometry, TUNEL staining assays, and ROS staining assays. The neuroprotective effects of paliperidone on neural dendrites and synapses were evaluated using Golgi staining and Sholl analysis. An adenovirus vector containing a Ca2+ indicator was used to monitor the calcium ion concentration in the prefrontal cortex. The expression levels of protein phosphatase 2A (PP2A) and phosphatase and tensin homolog (PTEN) were investigated using Western blotting. RESULTS The data showed that MK-801 caused stereotyped behavior in mice and induced synaptic damage and dendritic spine impairment compared with the control, whereas paliperidone ameliorated these changes. Moreover, paliperidone reversed MK-801-induced decreases in PP2A and PTEN levels in prefrontal cortical neurons. Furthermore, in primary cultured cortical neurons and HT-22 cells, paliperidone inhibited cell apoptosis caused by MK-801. In particular, pretreatment with the PP2A inhibitor LB-100 significantly restrained the protective effects of paliperidone on MK-801-treated neurons and on locomotor activity and stereotypical behavior of mice. LIMITATIONS Whether other proteins are involved in this pathway and how the pathway works have not been revealed. CONCLUSION Our data show that paliperidone alleviates neuronal damage induced by MK-801 via the PP2A/PTEN pathway.
Collapse
Affiliation(s)
- Jiaxu Wang
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Meng Li
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jing Zhang
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qing Gao
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhaoxi Ding
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinhao Sun
- Department of Anatomy and Neurobiology, School of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Zhu S, Hu X, Bennett S, Xu J, Mai Y. The Molecular Structure and Role of Humanin in Neural and Skeletal Diseases, and in Tissue Regeneration. Front Cell Dev Biol 2022; 10:823354. [PMID: 35372353 PMCID: PMC8965846 DOI: 10.3389/fcell.2022.823354] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/03/2022] [Indexed: 12/29/2022] Open
Abstract
Humanin (HN) belongs to a member of mitochondrial-derived peptides (MDPs) which are encoded by mitochondrial genes. HN shares sequence homology with thirteen HN-like proteins, named MTRNR2L1 to MTRNR2L13, which encompass 24–28 amino acid residues in length. HN mediates mitochondrial status and cell survival by acting via an intracellular mechanism, or as a secreted factor via extracellular signals. Intracellularly, it binds Bcl2-associated X protein (BAX), Bim and tBid, and IGFBP3 to inhibit caspase activity and cell apoptosis. When released from cells as a secreted peptide, HN interacts with G protein-coupled formyl peptide receptor-like 1 (FPRL1/2) to mediate apoptosis signal-regulating kinase (ASK) and c-Jun N-terminal kinase (JNK) signalling pathways. Additionally, it interacts with CNTFR-α/gp130/WSX-1 trimeric receptors to induce JAK2/STA3 signalling cascades. HN also binds soluble extracellular proteins such as VSTM2L and IGFBP3 to modulate cytoprotection. It is reported that HN plays a role in neuronal disorders such as Alzheimer’s disease, as well as in diabetes mellitus, infertility, and cardiac diseases. Its roles in the skeletal system are emerging, where it appears to be involved with the regulation of osteoclasts, osteoblasts, and chondrocytes. Understanding the molecular structure and role of HN in neural and skeletal diseases is vital to the application of HN in tissue regeneration.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Sipin Zhu, ; Yuliang Mai,
| | - Xiaoyong Hu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Samuel Bennett
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Yuliang Mai
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- *Correspondence: Sipin Zhu, ; Yuliang Mai,
| |
Collapse
|
3
|
Xu Y, Wei L, Tang S, Shi Q, Wu B, Yang X, Zou Y, Wang X, Ao Q, Meng L, Wei X, Zhang N, Li Y, Lan C, Chen M, Li X, Lu C. Regulation PP2Ac methylation ameliorating autophagy dysfunction caused by Mn is associated with mTORC1/ULK1 pathway. Food Chem Toxicol 2021; 156:112441. [PMID: 34363881 DOI: 10.1016/j.fct.2021.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/18/2023]
Abstract
Manganese (Mn) exposure leads to autophagy dysfunction and causes neurodegenerative diseases such as Parkinson's syndrome and Alzheimer's disease. However, the mechanism of neurotoxicity of Mn has been less clear. The methylation of the protein phosphatase 2A catalytic subunit determines the dephosphorylation activity of protein phosphatase and plays an important role in autophagy regulation. In this investigation, we established a model of Mn (0-2000 μmol/L) exposure to N2a cells for 12 h, used the PPME-1 inhibitor ABL-127, and constructed an LCMT1-overexpressing N2a cell line. We also regulated the PP2Ac methylation level and explored the effect of PP2Ac methylation on Mn-induced (0-1000 μmol/L) N2a cellular autophagy. Our results showed that Mn > 500 μmol/L induced N2a cell damage and increased oxidative stress. Moreover, Mn modulated autophagy in N2a cells by downregulating PP2Ac methylation, which regulated mTORC1 signaling pathway activation. Both ABL-127 and LCMT1 overexpression can upregulate PP2Ac methylation in parallel with ameliorating N2a cell abnormal autophagy induced by Mn, Briefly, the upregulation of PP2Ac methylation can ameliorate the autophagy disorder of N2a by Mn and effectively alleviate Mn-induced cytotoxicity and oxidative stress, indicating that regulation of autophagy is a protective strategy against Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Yilu Xu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Lancheng Wei
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Shen Tang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Nanning, 530021, China
| | - Qianqian Shi
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Bin Wu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiaobo Yang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xinhang Wang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Nanning, 530021, China
| | - Qingqing Ao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Ling Meng
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xuejing Wei
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Ning Zhang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yunqing Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Chunhua Lan
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Muting Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiyi Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| | - Cailing Lu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
4
|
Baldauf C, Sondhi M, Shin BC, Ko YE, Ye X, Lee KW, Devaskar SU. Murine maternal dietary restriction affects neural Humanin expression and cellular profile. J Neurosci Res 2019; 98:902-920. [PMID: 31840315 DOI: 10.1002/jnr.24568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/06/2019] [Accepted: 11/15/2019] [Indexed: 11/10/2022]
Abstract
To understand the cellular basis for the neurodevelopmental effects of intrauterine growth restriction (IUGR), we examined the global and regional expression of various cell types within murine (Mus musculus) fetal brain. Our model employed maternal calorie restriction to 50% daily food intake from gestation day 10-19, producing IUGR offspring. Offspring had smaller head sizes with larger head:body ratios indicating a head sparing IUGR effect. IUGR fetuses at embryonic day 19 (E19) had reduced nestin (progenitors), β-III tubulin (immature neurons), Glial fibrillary acidic protein (astrocytes), and O4 (oligodendrocytes) cell lineages via immunofluorescence quantification and a 30% reduction in cortical thickness. No difference was found in Bcl-2 or Bax (apoptosis) between controls and IUGR, though qualitatively, immunoreactivity of doublecortin (migration) and Ki67 (proliferation) was decreased. In the interest of examining a potential therapeutic peptide, we next investigated a novel pro-survival peptide, mouse Humanin (mHN). Ontogeny examination revealed highest mHN expression at E19, diminishing by postnatal day 15 (P15), and nearly absent in adult (3 months). Subanalysis by sex at E19 yielded higher mHN expression among males during fetal life, without significant difference between sexes postnatally. Furthermore, female IUGR mice at E19 had a greater increase in cortical mHN versus the male fetus over their respective controls. We conclude that maternal dietary restriction-associated IUGR interferes with neural progenitors differentiating into the various cellular components populating the cerebral cortex, and reduces cerebral cortical size. mHN expression is developmental stage and sex specific, with IUGR, particularly in the females, adaptively increasing its expression toward mediating a pro-survival approach against nutritional adversity.
Collapse
Affiliation(s)
- Claire Baldauf
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Monica Sondhi
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Bo-Chul Shin
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Young Eun Ko
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Xin Ye
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuk-Wha Lee
- Department of Pediatrics, Division of Endocrinology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Sherin U Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Gurunathan S, Jeyaraj M, Kang MH, Kim JH. Mitochondrial Peptide Humanin Protects Silver Nanoparticles-Induced Neurotoxicity in Human Neuroblastoma Cancer Cells (SH-SY5Y). Int J Mol Sci 2019; 20:ijms20184439. [PMID: 31505887 PMCID: PMC6770400 DOI: 10.3390/ijms20184439] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
The extensive usage of silver nanoparticles (AgNPs) as medical products such as antimicrobial and anticancer agents has raised concerns about their harmful effects on human beings. AgNPs can potentially induce oxidative stress and apoptosis in cells. However, humanin (HN) is a small secreted peptide that has cytoprotective and neuroprotective cellular effects. The aim of this study was to assess the harmful effects of AgNPs on human neuroblastoma SH-SY5Y cells and also to investigate the protective effect of HN from AgNPs-induced cell death, mitochondrial dysfunctions, DNA damage, and apoptosis. AgNPs were prepared with an average size of 18 nm diameter to study their interaction with SH-SY5Y cells. AgNPs caused a dose-dependent decrease of cell viability and proliferation, induced loss of plasma-membrane integrity, oxidative stress, loss of mitochondrial membrane potential (MMP), and loss of ATP content, amongst other effects. Pretreatment or co-treatment of HN with AgNPs protected cells from several of these AgNPs induced adverse effects. Thus, this study demonstrated for the first time that HN protected neuroblastoma cells against AgNPs-induced neurotoxicity. The mechanisms of the HN-mediated protective effect on neuroblastoma cells may provide further insights for the development of novel therapeutic agents against neurodegenerative diseases.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Muniyandi Jeyaraj
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
6
|
Release of methylene blue from graphene oxide-coated electrospun nanofibrous scaffolds to modulate functions of neural progenitor cells. Acta Biomater 2019; 88:346-356. [PMID: 30822551 DOI: 10.1016/j.actbio.2019.02.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/09/2019] [Accepted: 02/22/2019] [Indexed: 01/14/2023]
Abstract
Transplantation of neural progenitor cells (NPCs) can repair the damaged neurons and therefore holds significant promise as a new treatment strategy for Alzheimer's disease (AD). Development of functional scaffolds for the growth, proliferation, and differentiation of NPCs offers a useful approach for AD therapy. In our study, the functional scaffolds were obtained by fabrication of a poly(lactic-co-glycolic acid) (PLGA) nanofibrous mat by the electrospinning technique, followed by coating of a layer of graphene oxide (GO) and then physisorption of methylene blue (MB) under mild conditions. The precoating of GO on the nanofibrous scaffolds allows efficient loading and release of MB from the substrate for regulating the functions of NPCs. The NPCs cultured on the scaffolds remained in the quiescence phase due to the activation of autophagy signaling pathway by MB. Moreover, the MB-loaded nanofibrous scaffolds diminish tau phosphorylation and protect NPCs from apoptosis. Definitely, more work, especially the in vivo experiment, is highly desired to demonstrate the feasibility of the current strategy for AD treatment. STATEMENT OF SIGNIFICANCE: Transplantation of neural progenitor cells (NPCs) can repair the damaged neurons and hold significant promise as a new treatment strategy for Alzheimer's disease (AD). Development of functional scaffolds for the growth, proliferation, and differentiation of NPCs offers a novel and useful approach for AD therapy. In this work, we have developed a GO and MB sequentially coated PLGA nanofibrous mat as a new scaffold for NPC transplantation and tauopathy inhibition. The coating of GO that we have demonstrated significantly enhanced the loading and release of MB on the scaffolds. Furthermore, NPCs cultured on the nanofibrous scaffolds entered quiescence phase through the activation of autophagy signaling pathway, leading to improved performance of NPCs to cope with stressors of disease. More importantly, the release of MB from the scaffolds leads to attenuation of tauopathy and protection of NPCs, which may represent a novel, versatile, and effective therapeutic approach for AD and other neurodegenerative diseases.
Collapse
|
7
|
Yang X, Zhang H, Wu J, Yin L, Yan LJ, Zhang C. Humanin Attenuates NMDA-Induced Excitotoxicity by Inhibiting ROS-dependent JNK/p38 MAPK Pathway. Int J Mol Sci 2018; 19:2982. [PMID: 30274308 PMCID: PMC6213259 DOI: 10.3390/ijms19102982] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/19/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
Humanin (HN) is a novel 24-amino acid peptide that protects neurons against N-methyl-d-aspartate (NMDA)-induced toxicity. However, the contribution of the different mitogen-activated protein kinases (MAPKs) signals to HN neuroprotection against NMDA neurotoxicity remains unclear. The present study was therefore aimed to investigate neuroprotective mechanisms of HN. We analyzed intracellular Ca2+ levels, reactive oxygen species (ROS) production, and the MAPKs signal transduction cascade using an in vitro NMDA-mediated excitotoxicity of cortical neurons model. Results showed that: (1) HN attenuated NMDA-induced neuronal insults by increasing cell viability, decreasing lactate dehydrogenase (LDH) release, and increasing cell survival; (2) HN reversed NMDA-induced increase in intracellular calcium; (3) pretreatment by HN or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM), an intracellular calcium chelator, decreased ROS generation after NMDA exposure; (4) administration of HN or N-Acetyl-l-cysteine (NAC), a ROS scavenger, inhibited NMDA-induced JNK and p38 MAPK activation. These results indicated that HN reduced intracellular elevation of Ca2+ levels, which, in turn, inhibited ROS generation and subsequent JNK and p38 MAPK activation that are involved in promoting cell survival in NMDA-induced excitotoxicity. Therefore, the present study suggests that inhibition of ROS-dependent JNK/p38 MAPK signaling pathway serves an effective strategy for HN neuroprotection against certain neurological diseases.
Collapse
Affiliation(s)
- Xiaorong Yang
- National Key Disciplines, Key Laboratory for Cellular Physiology of Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Hongmei Zhang
- Department of Environmental Health, Shanxi Medical University, Taiyuan 030001, China.
| | - Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Litian Yin
- National Key Disciplines, Key Laboratory for Cellular Physiology of Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Ce Zhang
- National Key Disciplines, Key Laboratory for Cellular Physiology of Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
8
|
Wu X, Kosaraju J, Tam KY. SLM, a novel carbazole-based fluorophore attenuates okadaic acid-induced tau hyperphosphorylation via down-regulating GSK-3β activity in SH-SY5Y cells. Eur J Pharm Sci 2017; 110:101-108. [PMID: 28359686 DOI: 10.1016/j.ejps.2017.03.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/25/2017] [Accepted: 03/25/2017] [Indexed: 12/23/2022]
Abstract
Phosphorylated tau dissociates from microtubules and aggregates to form neurofibrillary tangles resulting in neuronal toxicity and cognitive deficits. Attenuating tau hyperphosphorylation is considered as an effective therapeutic approach for Alzheimer's disease (AD). From our previous study, SLM, a carbazole-based fluorophore prevents Aβ aggregation, reduced glycogen synthase kinase-3β (GSK-3β) activity and tau hyperphosphorylation in triple transgenic mouse model of AD. However, the mechanism by which SLM attenuates tau hyperphosphorylation warrants further investigation. In the current study, we intend to evaluate the effects of SLM against okadaic acid (OA)-induced tau hyperphosphorylation and microtubules instability in human neuroblastoma (SH-SY5Y) cells. The results showed that, SLM reduced the OA-induced cell neurotoxicity and tau hyperphosphorylation in SH-SY5Y cells. SLM treatment down-regulated GSK-3β activity. However, in the presence of GSK-3β inhibitor (SB216763, 10μM), SLM treatment could not reduce GSK-3β activity and tau hyperphosphorylation as compared with SB216763 treatment alone. Furthermore, SLM treatment also ameliorated OA-induced microtubules instability and cytoskeleton damage. Collectively, SLM attenuated OA-induced tau hyperphosphorylation via down-regulating GSK-3β activity in SH-SY5Y cells. Therefore, this study supports SLM as a potential compound for AD and other tau pathology-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoli Wu
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | | | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
9
|
Knockdown of GSK3β increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Biosci Rep 2016; 36:BSR20160174. [PMID: 27534430 PMCID: PMC5025810 DOI: 10.1042/bsr20160174] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/14/2016] [Indexed: 12/28/2022] Open
Abstract
Suppression of the enzyme glycogen synthase kinase 3β (GSK3β) increases both the turnover of damaged cellular material and the activity of the enzyme AMP-activated protein kinase (AMPK) to potentially attenuate the damage inflicted by excess sugar and fat on blood vessels. High concentrations of glucose and palmitate increase endothelial cell inflammation and apoptosis, events that often precede atherogenesis. They may do so by decreasing basal autophagy and AMP-activated protein kinase (AMPK) activity, although the mechanisms by which this occurs are not clear. Decreased function of the lysosome, an organelle required for autophagy and AMPK, have been associated with hyperactivity of glycogen synthase kinase 3β (GSK3β). To determine whether GSK3β affects nutrient-induced changes in autophagy and AMPK activity, we used a primary human aortic endothelial cell (HAEC) model of type 2 diabetes that we had previously characterized with impaired AMPK activity and autophagy [Weikel et al. (2015) Am. J. Phys. Cell Physiol. 308, C249–C263]. Presently, we found that incubation of HAECs with excess nutrients (25 mM glucose and 0.4 mM palmitate) increased GSK3β activity and impaired lysosome acidification. Suppression of GSK3β in these cells by treatment with a chemical inhibitor or overexpression of kinase-dead GSK3β attenuated these lysosomal changes. Under control and excess nutrient conditions, knockdown of GSK3β increased autophagosome formation, forkhead box protein O1 (FOXO1) activity and AMPK signalling and decreased Akt signalling. Similar changes in autophagy, AMPK and Akt signalling were observed in aortas from mice treated with the GSK3β inhibitor CHIR 99021. Thus, increasing basal autophagy and AMPK activity by inhibiting GSK3β may be an effective strategy in the setting of hyperglycaemia and dyslipidaemia for restoring endothelial cell health and reducing atherogenesis.
Collapse
|
10
|
Zhao L, Xiao Y, Wang XL, Pei J, Guan ZZ. Original Research: Influence of okadaic acid on hyperphosphorylation of tau and nicotinic acetylcholine receptors in primary neurons. Exp Biol Med (Maywood) 2016; 241:1825-33. [PMID: 27190248 DOI: 10.1177/1535370216650759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/25/2016] [Indexed: 11/15/2022] Open
Abstract
The aim of the study was to investigate the influence of hyperphosphorylation of tau induced by okadaic acid on the expression of nicotinic acetylcholine receptors and the neurotoxicity of β-amyloid peptide. Primary cultures of neurons isolated from the hippocampus of the brains of neonatal rats were exposed to okadaic acid or/and Aβ1-42 Tau phosphorylated at Ser404 and Ser202, and the protein expressions of α7, α4 and α3 nAChR subunits were quantified by Western blotting, and their corresponding mRNAs by real-time PCR. Superoxide dismutase activity was assayed biochemically and malondialdehyde by thiobarbituric acid-reactive substance. As compared to controls, phosphorylations of tau at Ser404 and Ser202 in the neurons were elevated by exposure to 20 nM okadaic acid for 48 h but not by 1 or 2 µM Aβ1-42 Treatment with 20 nM okadaic acid or 1 µM Aβ1-42 for 48 h resulted in the reduced α7, α4 and α3 proteins, and α4 and α3 mRNAs, as well as the decreased activity of superoxide dismutase and the increased malondialdehyde. Okadaic acid and Aβ1-42 together caused more pronounced changes in the expressions of α7 and α4, superoxide dismutase activity and lipid peroxidation than either alone. When pre-treatment with vitamin E or lovastatin, the neurotoxicity induced by okadaic acid was significantly attenuated. These findings indicate that hyperphosphorylation of tau induced by okadaic acid inhibits the expression of nicotinic acetylcholine receptors at both the protein and mRNA levels, as well as enhances the neurotoxicity of β-amyloid peptide.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Pathology at the Affiliated Hospital, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Yan Xiao
- The Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Xiao-Liang Wang
- The Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Jinjing Pei
- KI-Alzheimer Disease Research Center, Karolinska Institutet, Novum, SE14186 Huddinge, Sweden
| | - Zhi-Zhong Guan
- Department of Pathology at the Affiliated Hospital, Guizhou Medical University, Guiyang 550004, Guizhou, PR China The Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| |
Collapse
|
11
|
Qiao A, Wang Y, Zhang W, He X. Neuroprotection of brain-targeted bioactive dietary artoindonesianin O (AIO) from mulberry on rat neurons as a novel intervention for Alzheimer's disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3687-3693. [PMID: 25824329 DOI: 10.1021/acs.jafc.5b00396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The novel effects of artoindonesianin O, a dietary phenolic compound from mulberry, were investigated on oligomer Aβ42-, NMDA- or okadaic-acid-induced neurotoxicity and the restorative effect on the oligomer Aβ42-induced synapses dysfunction using rat hippocampus neuron cells in vitro. The phenolic compound of AIO can exert neuroprotection by blocking oligomer Aβ42- or NMDA-induced neurotoxicity and okadaic-acid-induced tau protein hyperphosphorylation through inhibiting the expression of kinase p-ERK1/2. Meanwhile, it is also beneficial to synaptic plasticity. These interesting results strongly suggest that AIO, which is rich in abundant sources of mulberry and other fruits, is suitable and possible candidate for the development of general food type neuroprotection on AD by protecting against brain damage and memory impairment.
Collapse
Affiliation(s)
- Aimin Qiao
- †School of Biosciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yihai Wang
- §School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wanwan Zhang
- †School of Biosciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiangjiu He
- §School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
12
|
Humanin Does Not Protect Against STZ-Induced Spatial Memory Impairment. J Mol Neurosci 2015; 56:290-8. [PMID: 25744099 DOI: 10.1007/s12031-015-0531-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/17/2015] [Indexed: 01/05/2023]
Abstract
[Gly14]-Humanin (HNG) is a 24-amino acid peptide which was first identified in the brains of patients diagnosed with Alzheimer's disease (AD). In this region, some neurons were protected against cell damage occurring in this disease. Further studies suggested a neuroprotective role for humanin against Aβ and some other insults. Intraventricularly administered streptozotocin (STZ) disrupts insulin signaling pathway which leads to behavioral and biochemical changes resemble to early signs of AD; therefore, STZ model has been proposed as a model for sporadic Alzheimer's disease (sAD). Regarding the reported beneficial effects of humanin in AD, this study was aimed to investigate if this peptide prevents spatial memory and hippocampal PI3/Akt signaling impairment induced by centrally injected STZ. Adult male Sprague-Dawely rats weighting 250-300 g were used, and cannuls were implanted bilaterally into lateral ventricles. STZ was administered on days 1 and 3 (3 mg/kg), and humanin (0.01, 0.05, 0.1, and 1 nmol) or saline were injected from day 4 and continued till day 14. The animal's learning and memory capability was assessed on days 15-18 using Morris water maze. After complement of behavioral studies, the hippocampi were isolated, and the level of phosphorylated Akt (pAkt) was assessed through Western blot analysis. The results showed that STZ significantly impaired spatial memory, and humanin in a wide range of doses (0.01, 0.05, 0.1, and 1 nmol) failed to restore STZ-induced deficit. It was also revealed that humanin was not efficient in restoring pAkt disruption. It seems that humanin is not capable in restoring memory deterioration that resulted from insulin signaling disruption.
Collapse
|