1
|
Priya R, Brutkiewicz RR. Brain astrocytes and microglia express functional MR1 molecules that present microbial antigens to mucosal-associated invariant T (MAIT) cells. J Neuroimmunol 2020; 349:577428. [PMID: 33096293 DOI: 10.1016/j.jneuroim.2020.577428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022]
Abstract
It is unknown whether brain astrocytes and microglia have the capacity to present microbial antigens via the innate immune MR1/MAIT cell axis. We have detected MAIT cells in the normal mouse brain and found that both astrocytes and microglia are MR1+. When we stimulated brain astrocytes and microglia with E. coli, and then co-cultured them with MAIT cells, MR1 surface expression was upregulated and MAIT cells were activated in an antigen-dependent manner. Considering the association of MAIT cells with inflammatory conditions, including those in the CNS, the MR1/MAIT cell axis could be a novel therapeutic target in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Raj Priya
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
2
|
Torres AR, Sweeten TL, Johnson RC, Odell D, Westover JB, Bray-Ward P, Ward DC, Davies CJ, Thomas AJ, Croen LA, Benson M. Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder. Front Neurosci 2016; 10:463. [PMID: 27812316 PMCID: PMC5071356 DOI: 10.3389/fnins.2016.00463] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/26/2016] [Indexed: 11/13/2022] Open
Abstract
The "common variant-common disease" hypothesis was proposed to explain diseases with strong inheritance. This model suggests that a genetic disease is the result of the combination of several common genetic variants. Common genetic variants are described as a 5% frequency differential between diseased vs. matched control populations. This theory was recently supported by an epidemiology paper stating that about 50% of genetic risk for autism resides in common variants. However, rare variants, rather than common variants, have been found in numerous genome wide genetic studies and many have concluded that the "common variant-common disease" hypothesis is incorrect. One interpretation is that rare variants are major contributors to genetic diseases and autism involves the interaction of many rare variants, especially in the brain. It is obvious there is much yet to be learned about autism genetics. Evidence has been mounting over the years indicating immune involvement in autism, particularly the HLA genes on chromosome 6 and KIR genes on chromosome 19. These two large multigene complexes have important immune functions and have been shown to interact to eliminate unwanted virally infected and malignant cells. HLA proteins have important functions in antigen presentation in adaptive immunity and specific epitopes on HLA class I proteins act as cognate ligands for KIR receptors in innate immunity. Data suggests that HLA alleles and KIR activating genes/haplotypes are common variants in different autism populations. For example, class I allele (HLA-A2 and HLA-G 14 bp-indel) frequencies are significantly increased by more than 5% over control populations (Table 2). The HLA-DR4 Class II and shared epitope frequencies are significantly above the control populations (Table 2). Three activating KIR genes: 3DS1, 2DS1, and 2DS2 have increased frequencies of 15, 22, and 14% in autism populations, respectively. There is a 6% increase in total activating KIR genes in autism over control subjects. And, more importantly there is a 12% increase in activating KIR genes and their cognate HLA alleles over control populations (Torres et al., 2012a). These data suggest the interaction of HLA ligand/KIR receptor pairs encoded on two different chromosomes is more significant as a ligand/receptor complex than separately in autism.
Collapse
Affiliation(s)
- Anthony R. Torres
- Center for Persons with Disabilities, Utah State UniversityLogan, UT, USA
| | | | - Randall C. Johnson
- BSP CCR Genetics Core, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer ResearchFrederick, MD, USA
| | - Dennis Odell
- Center for Persons with Disabilities, Utah State UniversityLogan, UT, USA
| | - Jonna B. Westover
- Center for Persons with Disabilities, Utah State UniversityLogan, UT, USA
| | - Patricia Bray-Ward
- Center for Persons with Disabilities, Utah State UniversityLogan, UT, USA
| | - David C. Ward
- Center for Persons with Disabilities, Utah State UniversityLogan, UT, USA
| | | | - Aaron J. Thomas
- Division of Research, Kaiser Permanente of Northern CaliforniaOakland, CA, USA
| | - Lisa A. Croen
- Center for Integrated BioSystems, Utah State UniversityLogan, UT, USA
| | - Michael Benson
- Center for Persons with Disabilities, Utah State UniversityLogan, UT, USA
| |
Collapse
|
3
|
Tetruashvily MM, Melson JW, Park JJ, Peng X, Boulanger LM. Expression and alternative splicing of classical and nonclassical MHCI genes in the hippocampus and neuromuscular junction. Mol Cell Neurosci 2016; 72:34-45. [PMID: 26802536 DOI: 10.1016/j.mcn.2016.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/01/2015] [Accepted: 01/15/2016] [Indexed: 01/25/2023] Open
Abstract
The major histocompatibility complex class I (MHCI) is a large gene family, with over 20 members in mouse. Some MHCIs are well-known for their critical roles in the immune response. Studies in mice which lack stable cell-surface expression of many MHCI proteins suggest that one or more MHCIs also play unexpected, essential roles in the establishment, function, and modification of neuronal synapses. However, there is little information about which genes mediate MHCI's effects in neurons. In this study, RT-PCR was used to simultaneously assess transcription of many MHCI genes in regions of the central and peripheral nervous system where MHCI has a known or suspected role. In the hippocampus, a part of the CNS where MHCI regulates synapse density, synaptic transmission, and plasticity, we found that more than a dozen MHCI genes are transcribed. Single-cell RT-PCR revealed that individual hippocampal neurons can express more than one MHCI gene, and that the MHCI gene expression profile of CA1 pyramidal neurons differs significantly from that of CA3 pyramidal neurons or granule cells of the dentate gyrus. MHCI gene expression was also assessed at the neuromuscular junction (NMJ), a part of the peripheral nervous system (PNS) where MHCI plays a role in developmental synapse elimination, aging-related synapse loss, and neuronal regeneration. Four MHCI genes are expressed at the NMJ at an age when synapse elimination is occurring in three different muscles. Several MHCI mRNA splice variants were detected in hippocampus, but not at the NMJ. Together, these results establish the first profile of MHCI gene expression at the developing NMJ, and demonstrate that MHCI gene expression is under tight spatial and temporal regulation in the nervous system. They also identify more than a dozen MHCIs that could play important roles in regulating synaptic transmission and plasticity in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Mazell M Tetruashvily
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, United States; Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08901, United States
| | - John W Melson
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, United States
| | - Joseph J Park
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, United States
| | - Xiaoyu Peng
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, United States; Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08544, United States
| | - Lisa M Boulanger
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, United States; Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08544, United States.
| |
Collapse
|