1
|
Dienel GA, Schousboe A, McKenna MC, Rothman DL. A tribute to Leif Hertz: The historical context of his pioneering studies of the roles of astrocytes in brain energy metabolism, neurotransmission, cognitive functions, and pharmacology identifies important, unresolved topics for future studies. J Neurochem 2024; 168:461-495. [PMID: 36928655 DOI: 10.1111/jnc.15812] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Leif Hertz, M.D., D.Sc. (honōris causā) (1930-2018), was one of the original and noteworthy participants in the International Conference on Brain Energy Metabolism (ICBEM) series since its inception in 1993. The biennial ICBEM conferences are organized by neuroscientists interested in energetics and metabolism underlying neural functions; they have had a high impact on conceptual and experimental advances in these fields and on promoting collaborative interactions among neuroscientists. Leif made major contributions to ICBEM discussions and understanding of metabolic and signaling characteristics of astrocytes and their roles in brain function. His studies ranged from uptake of K+ from extracellular fluid and its stimulation of astrocytic respiration, identification, and regulation of enzymes specifically or preferentially expressed in astrocytes in the glutamate-glutamine cycle of excitatory neurotransmission, a requirement for astrocytic glycogenolysis for fueling K+ uptake, involvement of glycogen in memory consolidation in the chick, and pharmacology of astrocytes. This tribute to Leif Hertz highlights his major discoveries, the high impact of his work on astrocyte-neuron interactions, and his unparalleled influence on understanding the cellular basis of brain energy metabolism. His work over six decades has helped integrate the roles of astrocytes into neurotransmission where oxidative and glycogenolytic metabolism during neurotransmitter glutamate turnover are key aspects of astrocytic energetics. Leif recognized that brain astrocytic metabolism is greatly underestimated unless the volume fraction of astrocytes is taken into account. Adjustment for pathway rates expressed per gram tissue for volume fraction indicates that astrocytes have much higher oxidative rates than neurons and astrocytic glycogen concentrations and glycogenolytic rates during sensory stimulation in vivo are similar to those in resting and exercising muscle, respectively. These novel insights are typical of Leif's astute contributions to the energy metabolism field, and his publications have identified unresolved topics that provide the neuroscience community with challenges and opportunities for future research.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Douglas L Rothman
- Department of Radiology, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
2
|
Berg M, Eleftheriadou D, Phillips JB, Shipley RJ. Mathematical modelling with Bayesian inference to quantitatively characterize therapeutic cell behaviour in nerve tissue engineering. J R Soc Interface 2023; 20:20230258. [PMID: 37669694 PMCID: PMC10480012 DOI: 10.1098/rsif.2023.0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023] Open
Abstract
Cellular engineered neural tissues have significant potential to improve peripheral nerve repair strategies. Traditional approaches depend on quantifying tissue behaviours using experiments in isolation, presenting a challenge for an overarching framework for tissue design. By comparison, mathematical cell-solute models benchmarked against experimental data enable computational experiments to be performed to test the role of biological/biophysical mechanisms, as well as to explore the impact of different design scenarios and thus accelerate the development of new treatment strategies. Such models generally consist of a set of continuous, coupled, partial differential equations relying on a number of parameters and functional forms. They necessitate dedicated in vitro experiments to be informed, which are seldom available and often involve small datasets with limited spatio-temporal resolution, generating uncertainties. We address this issue and propose a pipeline based on Bayesian inference enabling the derivation of experimentally informed cell-solute models describing therapeutic cell behaviour in nerve tissue engineering. We apply our pipeline to three relevant cell types and obtain models that can readily be used to simulate nerve repair scenarios and quantitatively compare therapeutic cells. Beyond parameter estimation, the proposed pipeline enables model selection as well as experiment utility quantification, aimed at improving both model formulation and experimental design.
Collapse
Affiliation(s)
- Maxime Berg
- Centre for Nerve Engineering, University College London, WC1E 6BT London, UK
- Department of Mechanical Engineering, University College London, WC1E 6BT London, UK
| | - Despoina Eleftheriadou
- Centre for Nerve Engineering, University College London, WC1E 6BT London, UK
- School of Pharmacy, University College London, WC1N 1AX London, UK
| | - James B. Phillips
- Centre for Nerve Engineering, University College London, WC1E 6BT London, UK
- School of Pharmacy, University College London, WC1N 1AX London, UK
| | - Rebecca J. Shipley
- Centre for Nerve Engineering, University College London, WC1E 6BT London, UK
- Department of Mechanical Engineering, University College London, WC1E 6BT London, UK
| |
Collapse
|
3
|
Harders AR, Arend C, Denieffe SC, Berger J, Dringen R. Endogenous Energy Stores Maintain a High ATP Concentration for Hours in Glucose-Depleted Cultured Primary Rat Astrocytes. Neurochem Res 2023; 48:2241-2252. [PMID: 36914795 PMCID: PMC10182151 DOI: 10.1007/s11064-023-03903-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023]
Abstract
Adenosine triphosphate (ATP) is the central energy currency of all cells. Cultured primary rat astrocytes contain a specific cellular ATP content of 27.9 ± 4.7 nmol/mg. During incubation in a glucose- and amino acid-free incubation buffer, this high cellular ATP content was maintained for at least 6 h, while within 24 h the levels of ATP declined to around 30% of the initial value without compromising cell viability. In contrast, cells exposed to 1 mM and 5 mM glucose maintained the initial high cellular ATP content for 24 and 72 h, respectively. The loss in cellular ATP content observed during a 24 h glucose-deprivation was fully prevented by the presence of glucose, fructose or mannose as well as by the mitochondrial substrates lactate, pyruvate, β-hydroxybutyrate or acetate. The high initial specific ATP content in glucose-starved astrocytes, was almost completely abolished within 30 min after application of the respiratory chain inhibitor antimycin A or the mitochondrial uncoupler BAM-15, while these inhibitors lowered in glucose-fed cells the ATP content only to 60% (BAM-15) and 40% (antimycin A) within 5 h. Inhibition of the mitochondrial pyruvate carrier by UK5099 alone or of mitochondrial fatty acid uptake by etomoxir alone hardly affected the high ATP content of glucose-deprived astrocytes during an incubation for 8 h, while the co-application of both inhibitors depleted cellular ATP levels almost completely within 5 h. These data underline the importance of mitochondrial metabolism for the ATP regeneration of astrocytes and demonstrate that the mitochondrial oxidation of pyruvate and fatty acids strongly contributes to the maintenance of a high ATP concentration in glucose-deprived astrocytes.
Collapse
Affiliation(s)
- Antonia Regina Harders
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Christian Arend
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Sadhbh Cynth Denieffe
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Julius Berger
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany. .,Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany.
| |
Collapse
|
4
|
Eleftheriadou D, Berg M, Phillips JB, Shipley RJ. A combined experimental and computational framework to evaluate the behavior of therapeutic cells for peripheral nerve regeneration. Biotechnol Bioeng 2022; 119:1980-1996. [PMID: 35445744 PMCID: PMC9323509 DOI: 10.1002/bit.28105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 11/08/2022]
Abstract
Recent studies have explored the potential of tissue‐mimetic scaffolds in encouraging nerve regeneration. One of the major determinants of the regenerative success of cellular nerve repair constructs (NRCs) is the local microenvironment, particularly native low oxygen conditions which can affect implanted cell survival and functional performance. In vivo, cells reside in a range of environmental conditions due to the spatial gradients of nutrient concentrations that are established. Here we evaluate in vitro the differences in cellular behavior that such conditions induce, including key biological features such as oxygen metabolism, glucose consumption, cell death, and vascular endothelial growth factor secretion. Experimental measurements are used to devise and parameterize a mathematical model that describes the behavior of the cells. The proposed model effectively describes the interactions between cells and their microenvironment and could in the future be extended, allowing researchers to compare the behavior of different therapeutic cells. Such a combinatorial approach could be used to accelerate the clinical translation of NRCs by identifying which critical design features should be optimized when fabricating engineered nerve repair conduits.
Collapse
Affiliation(s)
- D Eleftheriadou
- Centre for Nerve Engineering, University College London, London, WC1E 6B.,Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX.,Department of Mechanical Engineering, University College London, London, WC1E 7JE
| | - M Berg
- Centre for Nerve Engineering, University College London, London, WC1E 6B.,Department of Mechanical Engineering, University College London, London, WC1E 7JE
| | - J B Phillips
- Centre for Nerve Engineering, University College London, London, WC1E 6B.,Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX
| | - R J Shipley
- Centre for Nerve Engineering, University College London, London, WC1E 6B.,Department of Mechanical Engineering, University College London, London, WC1E 7JE
| |
Collapse
|
5
|
Dienel GA. The “protected” glucose transport through the astrocytic endoplasmic reticulum is too slow to serve as a quantitatively‐important highway for nutrient delivery. J Neurosci Res 2019; 97:854-862. [DOI: 10.1002/jnr.24432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Gerald A. Dienel
- Department of Neurology University of Arkansas for Medical Sciences Little Rock Arkansas
- Department of Cell Biology and Physiology University of New Mexico Albuquerque New Mexico
| |
Collapse
|
6
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
7
|
Cossu V, Marini C, Piccioli P, Rocchi A, Bruno S, Orengo AM, Emionite L, Bauckneht M, Grillo F, Capitanio S, Balza E, Yosifov N, Castellani P, Caviglia G, Panfoli I, Morbelli S, Ravera S, Benfenati F, Sambuceti G. Obligatory role of endoplasmic reticulum in brain FDG uptake. Eur J Nucl Med Mol Imaging 2019; 46:1184-1196. [PMID: 30617965 DOI: 10.1007/s00259-018-4254-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/27/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE The endoplasmic reticulum (ER) contains hexose-6P-dehydrogenase (H6PD). This enzyme competes with glucose-6P-phosphatase for processing a variety of phosphorylated hexoses including 2DG-6P. The present study aimed to verify whether this ER glucose-processing machinery contributes to brain FDG uptake. METHODS Effect of the H6PD inhibitor metformin on brain 18F-FDG accumulation was studied, in vivo, by microPET imaging. These data were complemented with the in vitro estimation of the lumped constant (LC). Finally, reticular accumulation of the fluorescent 2DG analogue 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2NBDG) and its response to metformin was studied by confocal microscopy in cultured neurons and astrocytes. RESULTS Metformin halved brain 18F-FDG accumulation without altering whole body tracer clearance. Ex vivo, this same response faced the doubling of both glucose consumption and lactate release. The consequent fall in LC was not explained by any change in expression or activity of its theoretical determinants (GLUTs, hexokinases, glucose-6P-phosphatase), while it agreed with the drug-induced inhibition of H6PD function. In vitro, 2NBDG accumulation selectively involved the ER lumen and correlated with H6PD activity being higher in neurons than in astrocytes, despite a lower glucose consumption. CONCLUSIONS The activity of the reticular enzyme H6PD profoundly contributes to brain 18F-FDG uptake. These data challenge the current dogma linking 2DG/FDG uptake to the glycolytic rate and introduce a new model to explain the link between 18-FDG uptake and neuronal activity.
Collapse
Affiliation(s)
- Vanessa Cossu
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,CNR Institute of Molecular Bioimaging and Physiology (IBFM), Milan, Italy
| | - Patrizia Piccioli
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Rocchi
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology (IIT), Genoa, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Anna Maria Orengo
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,Department of Health Science, University of Genoa, Genoa, Italy
| | - Federica Grillo
- Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa, Genoa, Italy
| | - Selene Capitanio
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Enrica Balza
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nikola Yosifov
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | | | - Giacomo Caviglia
- Department of Mathematics (DIMA), University of Genoa, Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy, Section of Biochemistry, University of Genoa, Genoa, Italy
| | - Silvia Morbelli
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,Department of Health Science, University of Genoa, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology (IIT), Genoa, Italy.,Department of Experimental Medicine, Section of Physiology, University of Genoa, Genoa, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy. .,CNR Institute of Molecular Bioimaging and Physiology (IBFM), Milan, Italy.
| |
Collapse
|
8
|
Bylicky MA, Mueller GP, Day RM. Mechanisms of Endogenous Neuroprotective Effects of Astrocytes in Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6501031. [PMID: 29805731 PMCID: PMC5901819 DOI: 10.1155/2018/6501031] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/19/2018] [Indexed: 12/11/2022]
Abstract
Astrocytes, once believed to serve only as "glue" for the structural support of neurons, have been demonstrated to serve critical functions for the maintenance and protection of neurons, especially under conditions of acute or chronic injury. There are at least seven distinct mechanisms by which astrocytes protect neurons from damage; these are (1) protection against glutamate toxicity, (2) protection against redox stress, (3) mediation of mitochondrial repair mechanisms, (4) protection against glucose-induced metabolic stress, (5) protection against iron toxicity, (6) modulation of the immune response in the brain, and (7) maintenance of tissue homeostasis in the presence of DNA damage. Astrocytes support these critical functions through specialized responses to stress or toxic conditions. The detoxifying activities of astrocytes are essential for maintenance of the microenvironment surrounding neurons and in whole tissue homeostasis. Improved understanding of the mechanisms by which astrocytes protect the brain could lead to the development of novel targets for the development of neuroprotective strategies.
Collapse
Affiliation(s)
- Michelle A. Bylicky
- Department of Anatomy, Physiology, and Genetics, The Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Gregory P. Mueller
- Department of Anatomy, Physiology, and Genetics, The Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, The Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
9
|
Dienel GA. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. J Neurosci Res 2017; 95:2103-2125. [PMID: 28151548 DOI: 10.1002/jnr.24015] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/28/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022]
Abstract
Glutamate-stimulated aerobic glycolysis in astrocytes coupled with lactate shuttling to neurons where it can be oxidized was proposed as a mechanism to couple excitatory neuronal activity with glucose utilization (CMRglc ) during brain activation. From the outset, this model was not viable because it did not fulfill critical stoichiometric requirements: (i) Calculated glycolytic rates and measured lactate release rates were discordant in cultured astrocytes. (ii) Lactate oxidation requires oxygen consumption, but the oxygen-glucose index (OGI, calculated as CMRO2 /CMRglc ) fell during activation in human brain, and the small rise in CMRO2 could not fully support oxidation of lactate produced by disproportionate increases in CMRglc . (iii) Labeled products of glucose metabolism are not retained in activated rat brain, indicating rapid release of a highly labeled, diffusible metabolite identified as lactate, thereby explaining the CMRglc -CMRO2 mismatch. Additional independent lines of evidence against lactate shuttling include the following: astrocytic oxidation of glutamate after its uptake can help "pay" for its uptake without stimulating glycolysis; blockade of glutamate receptors during activation in vivo prevents upregulation of metabolism and lactate release without impairing glutamate uptake; blockade of β-adrenergic receptors prevents the fall in OGI in activated human and rat brain while allowing glutamate uptake; and neurons upregulate glucose utilization in vivo and in vitro under many stimulatory conditions. Studies in immature cultured cells are not appropriate models for lactate shuttling in adult brain because of their incomplete development of metabolic capability and astrocyte-neuron interactions. Astrocyte-neuron lactate shuttling does not make large, metabolically significant contributions to energetics of brain activation. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|