1
|
Pei X, Hu F, Luo F, Huang X, Li X, Xing S, Long D. The neuroprotective effects of alpha-lipoic acid on an experimental model of Alzheimer's disease in PC12 cells. J Appl Toxicol 2021; 42:285-294. [PMID: 34133789 DOI: 10.1002/jat.4213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/09/2022]
Abstract
With the growth of the aging population, the prevalence of Alzheimer's disease (AD) has increased and influenced the work and daily life of AD patients, imposing a heavy burden on society and the patients' families. AD is a progressive disease with a long duration, and the pathogenesis is very complicated. Here, we found that alpha-lipoic acid (LA), an endogenous, naturally synthesized compound, could attenuate amyloid beta fragment (Aβ25-35 )-induced PC12 cell toxicity. Aβ25-35 treatment largely decreased the viability of PC12 cells, increased reactive oxygen species (ROS) levels, and increased the percentage of apoptotic cells, which were accompanied by changes in the expression of the apoptosis-related genes. Further, the Wnt pathway was inactivated, and the expression of Wnt pathway-related proteins such as Frizzled2, GSK3β, and phosphorylated GSK3β were dysregulated after Aβ25-35 treatment. LA efficiently attenuated Aβ25-35 -induced PC12 cell apoptosis and downregulated the phosphorylation-mediated degradation of β-catenin as well as GSK3β. Our results demonstrate that LA rescues Aβ25-35 -induced neurocytotoxicity through the Wnt-β-catenin pathway.
Collapse
Affiliation(s)
- Xinrong Pei
- Institute for Food and Cosmetics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Fangyan Hu
- School of Public Health, University of South China, Hengyang, China
| | - Feiya Luo
- Institute for Food and Cosmetics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Xianglu Huang
- Institute for Food and Cosmetics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaoling Li
- School of Public Health, University of South China, Hengyang, China
| | - Shuxia Xing
- Institute for Food and Cosmetics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Dingxin Long
- School of Public Health, University of South China, Hengyang, China
| |
Collapse
|
2
|
Wang JQ, Dong Y, Li SJ, Pan CL, Liu HY, Wang YK, Xu L, Yang JH, Cui YX, He JT, Mang J, Xu ZX. Knockdown of microRNA-17-5p Enhances the Neuroprotective Effect of Act A/Smads Signal Loop After Ischemic Injury. Neurochem Res 2019; 44:1807-1817. [PMID: 31093905 DOI: 10.1007/s11064-019-02815-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/19/2019] [Accepted: 05/09/2019] [Indexed: 01/22/2023]
Abstract
Cerebral ischemic injury is a leading cause of human mortality and disability, seriously threatening human health in the world. Activin A (Act A), as a well-known neuroprotective factor, could alleviate ischemic brain injury mainly through Act A/Smads signaling. In our previous study, a noncanonical Act A/Smads signal loop with self-amplifying property was found, which strengthened the neuroprotective effect of Act A. However, this neuroprotective effect was limited due to the self-limiting behavior mediated by Smad anchor for receptor activation (SARA) protein. It was reported that microRNA-17-5p (miR-17-5p) could suppress the expression of SARA in esophageal squamous cell carcinoma. Thus we proposed that knockdown of miR-17-5p could strengthen the neuroprotective effect of Act A/Smads signal loop through SARA. To testify this hypothesis, oxygen-glucose deficiency (OGD) was introduced to highly differentiated rattus pheochromocytoma (PC12) cells. After the transfection of miR-17-5p mimic or inhibitor, the activity of Act A signal loop was quantified by the expression of phosphorylated Smad3. The results showed that suppression of miR-17-5p up-regulated the expression of SARA protein, which prolonged and strengthened the activity of Act A signaling through increased phosphorylation of downstream Smad3 and accumulation of Act A ligand. Further luciferase assay confirmed that SARA was a direct target gene of miR-17-5p. These practical discoveries will bring new insight on the endogenous neuroprotective effects of Act A signal loop by interfering a novel target: miR-17-5p.
Collapse
Affiliation(s)
- Jiao-Qi Wang
- Department of Neurology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130012, China
| | - Yue Dong
- Department of Neurology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130012, China
| | - Si-Jia Li
- Department of Clinical Medicine, College of Clinical Medicine, Bethune Medicine Institute, Jilin University, 828 Xinmin Street, Changchun, 130012, China
| | - Cheng-Liang Pan
- Department of Clinical Medicine, College of Clinical Medicine, Bethune Medicine Institute, Jilin University, 828 Xinmin Street, Changchun, 130012, China
| | - Hong-Yu Liu
- Department of Neurology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130012, China
| | - Yu-Kai Wang
- Department of Neurology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130012, China
| | - Lei Xu
- Department of Neurology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130012, China
| | - Jia-Hui Yang
- Department of Neurology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130012, China
| | - Yun-Xia Cui
- Department of Neurology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130012, China
| | - Jin-Ting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130012, China
| | - Jing Mang
- Department of Neurology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130012, China
| | - Zhong-Xin Xu
- Department of Neurology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130012, China.
| |
Collapse
|
3
|
Shinji J, Gotoh H, Miyanishi H, Lavine MD, Lavine LC. The activin signaling transcription factor Smox is an essential regulator of appendage size during regeneration after autotomy in the crayfish. Evol Dev 2018; 21:44-55. [DOI: 10.1111/ede.12277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junpei Shinji
- Department of Entomology; Washington State University; Pullman Washington
| | - Hiroki Gotoh
- Graduate School of Bioagricultural Sciences; Nagoya University, Furo-cho, Chikusa-ku; Nagoya Japan
| | - Hiroshi Miyanishi
- Faculty of Agriculture; University of Miyazaki, Gakuen-kibanadai-nishi; Miyazaki Japan
| | - Mark D. Lavine
- Department of Entomology; Washington State University; Pullman Washington
| | | |
Collapse
|
4
|
Su X, Huang L, Xiao D, Qu Y, Mu D. Research Progress on the Role and Mechanism of Action of Activin A in Brain Injury. Front Neurosci 2018; 12:697. [PMID: 30356877 PMCID: PMC6190887 DOI: 10.3389/fnins.2018.00697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Activin A belongs to the transforming growth factor superfamily and has a variety of biological functions. Studies have revealed that activin A can regulate the body's immune and inflammatory responses and participate in the regulation of cell death. In addition, activin A also has neurotrophic function and plays an important role in the repair of brain damage. This article summarizes recent advances in understanding the role and mechanism of action of activin A in brain injury and provides new hints into the application of activin A in the treatment of brain injury.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Lingyi Huang
- Department of Stomatology, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Dongqiong Xiao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|