1
|
Cheng W, Wang Y, Cheng C, Chen X, Zhang L, Huang W. Single-cell RNA Sequencing Identifies a Novel Subtype of Microglia with High Cd74 Expression that Facilitates White Matter Inflammation During Chronic Cerebral Hypoperfusion. Neurochem Res 2024; 49:2821-2841. [PMID: 39012534 DOI: 10.1007/s11064-024-04206-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/17/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Vascular dementia (VaD) causes progressive cognitive decline in the elderly population, but there is short of available therapeutic measures. Microglia-mediated neuroinflammation is vigorously involved in the pathogenesis of VaD, but the traditional classification of microglial M1/M2 phenotypes remains restrictive and controversial. This study aims to investigate whether microglia transform into novel subtypes in VaD. Chronic cerebral hypoperfusion (CCH) rat model was constructed to mimic VaD. Microglia were isolated via magnetic-activated cell sorting and analyzed by single-cell RNA sequencing (scRNA-seq) and bioinformatics. The findings inferred from scRNA-seq and bioinformatics were further validated through in vivo experiments. In this study, microglia were divided into eight clusters. The proportion of MG5 cluster was significantly increased in the white matter of the CCH group compared with the Sham group and was named chronic ischemia-associated microglia (CIAM). Immunity- and inflammation-related genes, including RT1-Db1, RT1-Da, RT1-Ba, Cd74, Spp1, C3, and Cd68, were markedly upregulated in CIAM. Enrichment analysis illustrated that CIAM possessed the function of evoking neuroinflammation. Further studies unveiled that Cd74 is associated with the most abundant GO terms involved in inflammation as well as cell proliferation and differentiation. In addition, microglia-specific Cd74 knockdown mediated by adeno-associated virus decreased the abundance of CIAM in the white matter, thereby mitigating inflammatory cytokine levels, alleviating white matter lesions, and improving cognitive impairment for CCH rats. These findings indicate that Cd74 is the core molecule of CIAM to trigger neuroinflammation and induce microglial differentiation to CIAM, suggesting that Cd74 may be a potential therapeutic target for VaD.
Collapse
Affiliation(s)
- Wenchao Cheng
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuhan Wang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Chang Cheng
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiuying Chen
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Lan Zhang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Wen Huang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China.
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China.
| |
Collapse
|
2
|
Zhu W, Hong Y, Tong Z, He X, Li Y, Wang H, Gao X, Song P, Zhang X, Wu X, Tan Z, Huang W, Liu Z, Bao Y, Ma J, Zheng N, Xie C, Ke X, Zhou W, Jia W, Li M, Zhong J, Sheng L, Li H. Activation of hepatic adenosine A1 receptor ameliorates MASH via inhibiting SREBPs maturation. Cell Rep Med 2024; 5:101477. [PMID: 38508143 PMCID: PMC10983109 DOI: 10.1016/j.xcrm.2024.101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/10/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Metabolic (dysfunction)-associated steatohepatitis (MASH) is the advanced stage of metabolic (dysfunction)-associated fatty liver disease (MAFLD) lacking approved clinical drugs. Adenosine A1 receptor (A1R), belonging to the G-protein-coupled receptors (GPCRs) superfamily, is mainly distributed in the central nervous system and major peripheral organs with wide-ranging physiological functions; however, the exact role of hepatic A1R in MAFLD remains unclear. Here, we report that liver-specific depletion of A1R aggravates while overexpression attenuates diet-induced metabolic-associated fatty liver (MAFL)/MASH in mice. Mechanistically, activation of hepatic A1R promotes the competitive binding of sterol-regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) to sequestosome 1 (SQSTM1), rather than protein kinase A (PKA) leading to SCAP degradation in lysosomes. Reduced SCAP hinders SREBP1c/2 maturation and thus suppresses de novo lipogenesis and inflammation. Higher hepatic A1R expression is observed in patients with MAFL/MASH and high-fat diet (HFD)-fed mice, which is supposed to be a physiologically adaptive response because A1R agonists attenuate MAFL/MASH in an A1R-dependent manner. These results highlight that hepatic A1R is a potential target for MAFL/MASH therapy.
Collapse
Affiliation(s)
- Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaowei Tong
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pengtao Song
- Department of Pathology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Xianshan Zhang
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Xiaochang Wu
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Zhenhua Tan
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junli Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cen Xie
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xisong Ke
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural, Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Mingxiao Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jing Zhong
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China.
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Wang Y, Cheng W, Chen X, Cheng C, Zhang L, Huang W. Serum Proteomics Identified TAFI as a Potential Molecule Facilitating the Migration of Peripheral Monocytes to Damaged White Matter During Chronic Cerebral Hypoperfusion. Neurochem Res 2024; 49:597-616. [PMID: 37978153 DOI: 10.1007/s11064-023-04050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
Neuroinflammation is assumed as the critical pathophysiologic mechanism of white matter lesions (WMLs), and infiltrated peripheral monocyte-derived macrophages are implicated in the development of neuroinflammation. This study sought to explore the blood molecules that promote the migration of peripheral monocytes to the sites of WMLs. The serum protein expression profiles of patients and Sprague-Dawley rat models with WMLs were detected by data-independent acquisition (DIA) proteomics technique. Compared with corresponding control groups, we acquired 62 and 41 differentially expressed proteins (DEPs) in the serum of patients and model rats with WMLs respectively. Bioinformatics investigations demonstrated that these DEPs were linked to various Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms involved in neuroinflammation. Afterward, we identified thrombin-activatable fibrinolysis inhibitor (TAFI) as a shared and overexpressed protein in clinical and animal serum samples, which was further verified by enzyme-linked immunosorbent assay. Additionally, an upregulation of TAFI was also observed in the white matter of rat models, and the inhibition of TAFI impeded the migration of peripheral monocytes to the area of WMLs. In vitro experiments suggested that TAFI could enhance the migration ability of RAW264.7 cells and increase the expression of Ccr2. Our study demonstrates that neuroinflammatory signals can be detected in the peripheral blood of WMLs patients and model rats. TAFI may serve as a potential protein that promotes the migration of peripheral monocytes to WMLs regions, thereby providing a novel molecular target for further investigation into the interaction between the central and peripheral immune systems.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenchao Cheng
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiuying Chen
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Chang Cheng
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Zhang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Wen Huang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China.
- Department of Neurology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China.
| |
Collapse
|
4
|
Gannon OJ, Naik JS, Riccio D, Mansour FM, Abi-Ghanem C, Salinero AE, Kelly RD, Brooks HL, Zuloaga KL. Menopause causes metabolic and cognitive impairments in a chronic cerebral hypoperfusion model of vascular contributions to cognitive impairment and dementia. Biol Sex Differ 2023; 14:34. [PMID: 37221553 DOI: 10.1186/s13293-023-00518-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND The vast majority of women with dementia are post-menopausal. Despite clinical relevance, menopause is underrepresented in rodent models of dementia. Before menopause, women are less likely than men to experience strokes, obesity, and diabetes-known risk factors for vascular contributions to cognitive impairment and dementia (VCID). During menopause, ovarian estrogen production stops and the risk of developing these dementia risk factors spikes. Here, we aimed to determine if menopause worsens cognitive impairment in VCID. We hypothesized that menopause would cause metabolic dysfunction and increase cognitive impairment in a mouse model of VCID. METHODS We performed a unilateral common carotid artery occlusion surgery to produce chronic cerebral hypoperfusion and model VCID in mice. We used 4-vinylcyclohexene diepoxide to induce accelerated ovarian failure and model menopause. We evaluated cognitive impairment using behavioral tests including novel object recognition, Barnes maze, and nest building. To assess metabolic changes, we measured weight, adiposity, and glucose tolerance. We explored multiple aspects of brain pathology including cerebral hypoperfusion and white matter changes (commonly observed in VCID) as well as changes to estrogen receptor expression (which may mediate altered sensitivity to VCID pathology post-menopause). RESULTS Menopause increased weight gain, glucose intolerance, and visceral adiposity. VCID caused deficits in spatial memory regardless of menopausal status. Post-menopausal VCID specifically led to additional deficits in episodic-like memory and activities of daily living. Menopause did not alter resting cerebral blood flow on the cortical surface (assessed by laser speckle contrast imaging). In the white matter, menopause decreased myelin basic protein gene expression in the corpus callosum but did not lead to overt white matter damage (assessed by Luxol fast blue). Menopause did not significantly alter estrogen receptor expression (ERα, ERβ, or GPER1) in the cortex or hippocampus. CONCLUSIONS Overall, we have found that the accelerated ovarian failure model of menopause caused metabolic impairment and cognitive deficits in a mouse model of VCID. Further studies are needed to identify the underlying mechanism. Importantly, the post-menopausal brain still expressed estrogen receptors at normal (pre-menopausal) levels. This is encouraging for any future studies attempting to reverse the effects of estrogen loss by activating brain estrogen receptors.
Collapse
Affiliation(s)
- Olivia J Gannon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Janvie S Naik
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - David Riccio
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Febronia M Mansour
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Charly Abi-Ghanem
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Abigail E Salinero
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Richard D Kelly
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA
| | - Heddwen L Brooks
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
| |
Collapse
|
5
|
Tian Y, Zheng Y, Wang Q, Yan F, Tao Z, Zhao F, Wang Y, Huang Y, Li F, Du Y, Wang N, Luo Y. Berberine Ameliorates Cognitive Impairment by Regulating Microglial Polarization and Increasing Expression of Anti-inflammatory Factors following Permanent Bilateral Common Carotid Artery Occlusion in Rats. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:869-879. [PMID: 35142272 DOI: 10.2174/1871527321666220124140323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/02/2021] [Accepted: 10/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chronic cerebral hypoperfusion is associated with vascular cognitive impairment, and there are no specific therapeutic agents for use in clinical practice. Berberine has demonstrated good neuroprotective effects in models of acute cerebral ischemia; however, whether it can alleviate cognitive impairment caused by chronic cerebral hypoperfusion has rarely been investigated. OBJECTIVE The present study aimed to explore the mechanism by which berberine alleviates cognitive impairment resulting from chronic cerebral hypoperfusion. METHODS Forty-two male Sprague-Dawley rats were randomly divided into three groups: sham, model, and berberine. The models of chronic cerebral hypoperfusion were established via permanent bilateral common carotid artery occlusion (BCCAO). Cognitive function was evaluated using the Morris water maze, while neuronal damage and microglial activation and polarization were evaluated using western blotting and immunofluorescence, respectively. Enzyme-linked immunosorbent assays were used to detect the expression of anti-inflammatory factors including interleukin- 4 (IL-4) and interleukin-10 (IL-10). RESULTS Rats exhibited cognitive dysfunction after BCCAO, which was significantly attenuated following the berberine intervention. Levels of synaptophysin and NeuN were decreased in states of chronic cerebral hypoperfusion, during which microglial activation and a transition from the M2 to M1 phenotype were observed. Berberine treatment also significantly reversed these features. Moreover, levels of IL-4 and IL-10 expression increased significantly after berberine treatment. CONCLUSION Berberine may mitigate vascular cognitive dysfunction by promoting neuronal plasticity, inhibiting microglial activation, promoting transformation from an M1 to an M2 phenotype, and increasing levels of IL-4 and IL-10 expression.
Collapse
Affiliation(s)
- Yue Tian
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yangmin Zheng
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Feng Yan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Fangfang Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yuqing Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yuyou Huang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Fengjuan Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yitong Du
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ningqun Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
A3 adenosine receptor agonist IB-MECA reverses chronic cerebral ischemia-induced inhibitory avoidance memory deficit. Eur J Pharmacol 2022; 921:174874. [DOI: 10.1016/j.ejphar.2022.174874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
|
7
|
Wang W, Sun P, Han F, Wang C, Wang Y, Wang X, Cong L, Qu C. Transcriptome Sequencing Identifies Potential Biomarker for White Matter Lesions Diagnosis in the Hypertension Population. Neurochem Res 2021; 46:2079-2088. [PMID: 34037902 DOI: 10.1007/s11064-021-03346-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/21/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Hypertension is confirmed to be one of the major risk factors of leukoaraiosis (LA). However, the pathogenesis of LA is not completely understood and there is no reliable indicator for the early diagnosis of LA in the hypertensive population. This study was designed to explore the potential biomarker for LA diagnosis in patients with hypertension. And it serves as the basis for the further study of LA mechanism. In this study, This study included 110 subjects, including 50 in the LA group and 60 in the control group. First, we performed transcriptome sequencing and quantitative PCR (qPCR) in four samples from the LA group, and three from the control group (seven people) to identify relevant long non-coding RNAs (long ncRNAs or lncRNA). The 103 samples were used for qPCR validation of relevant lncRNAs and the results were consistent with the sequencing. In-depth bioinformatics analysis were performed on differentially expressed (DE) lncRNAs and mRNAs. Go-functional enrichment analysis was performed on DE mRNAs. Some DE mRNA were enriched to biological processes associated with LA, And some lncRNAs related to DE mRNAs were traceable through cis/trans analysis, suggesting that they might be regulated in some way. Additionally, potential biomarkers for LA diagnosis in the hypertension population were identified via RT-qPCR and receive operating characteristic curve (ROC) analysis of lncRNA. One lncRNA, AC020928.1, has been demonstrated to be potential biomarkers for LA diagnosis in the hypertension population. The results of the present study indicated that the lncRNA may have an important role in the pathogenesis of LA and may be a novel target for further research. As the relationship between lncRNAs and LA is just beginning to be unraveled, their specific mechanisms require further investigation.
Collapse
Affiliation(s)
- Wendi Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Pei Sun
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Fengyue Han
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Chunjuan Wang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Xiang Wang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Chuanqiang Qu
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| |
Collapse
|
8
|
Dumbuya JS, Chen L, Wu JY, Wang B. The role of G-CSF neuroprotective effects in neonatal hypoxic-ischemic encephalopathy (HIE): current status. J Neuroinflammation 2021; 18:55. [PMID: 33612099 PMCID: PMC7897393 DOI: 10.1186/s12974-021-02084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is an important cause of permanent damage to central nervous system (CNS) that may result in neonatal death or manifest later as mental retardation, epilepsy, cerebral palsy, or developmental delay. The primary cause of this condition is systemic hypoxemia and/or reduced cerebral blood flow with long-lasting neurological disabilities and neurodevelopmental impairment in neonates. About 20 to 25% of infants with HIE die in the neonatal period, and 25-30% of survivors are left with permanent neurodevelopmental abnormalities. The mechanisms of hypoxia-ischemia (HI) include activation and/or stimulation of myriad of cascades such as increased excitotoxicity, oxidative stress, N-methyl-D-aspartic acid (NMDA) receptor hyperexcitability, mitochondrial collapse, inflammation, cell swelling, impaired maturation, and loss of trophic support. Different therapeutic modalities have been implicated in managing neonatal HIE, though translation of most of these regimens into clinical practices is still limited. Therapeutic hypothermia, for instance, is the most widely used standard treatment in neonates with HIE as studies have shown that it can inhibit many steps in the excito-oxidative cascade including secondary energy failure, increases in brain lactic acid, glutamate, and nitric oxide concentration. Granulocyte-colony stimulating factor (G-CSF) is a glycoprotein that has been implicated in stimulation of cell survival, proliferation, and function of neutrophil precursors and mature neutrophils. Extensive studies both in vivo and ex vivo have shown the neuroprotective effect of G-CSF in neurodegenerative diseases and neonatal brain damage via inhibition of apoptosis and inflammation. Yet, there are still few experimentation models of neonatal HIE and G-CSF's effectiveness, and extrapolation of adult stroke models is challenging because of the evolving brain. Here, we review current studies and/or researches of G-CSF's crucial role in regulating these cytokines and apoptotic mediators triggered following neonatal brain injury, as well as driving neurogenesis and angiogenesis post-HI insults.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lu Chen
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Jang-Yen Wu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
9
|
Dumbuya JS, Chen L, Shu SY, Ma L, Luo W, Li F, Wu JY, Wang B. G-CSF attenuates neuroinflammation and neuronal apoptosis via the mTOR/p70SK6 signaling pathway in neonatal Hypoxia-Ischemia rat model. Brain Res 2020; 1739:146817. [PMID: 32246916 DOI: 10.1016/j.brainres.2020.146817] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/19/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is an important cause of permanent damage to the central nervous system, associated with long-lasting neurological disabilities and neurodevelopmental impairment in neonates. Granulocyte-colony stimulating factor (G-CSF) has been shown to have neuroprotective activity in a variety of experimental brain injury models and G-CSF is a standard treatment in chemotherapeutic-induced neutropenia. The underlying mechanisms are still unclear. The mTOR (mammalian target of rapamycin) signaling pathway is a master regulator of cell growth and proliferation in the nervous system. However, the effects of G-CSF treatment on the mTOR signaling pathway have not been elucidated in neonates with hypoxic-ischemic (HI) brain injury. Our study investigated the neuroprotective effect of G-CSF on neonates with hypoxic-ischemic (HI) brain injury and the possible mechanism involving the mTOR/p70S6K pathway. METHODS Sprague-Dawley rat pups at postnatal day 7 (P7) were subjected to right unilateral carotid artery ligation followed by hypoxic (8% oxygen and balanced nitrogen) exposure for 2.5 h or sham surgery. Pups received normal saline, G-CSF, G-CSF combined with rapamycin or ethanol (vehicle for rapamycin) intraperitoneally. On postnatal day 9 (P9), TTC staining for infarct volume, and Nissl and TUNEL staining for neuronal cell injury were conducted. Activation of mTOR/p70S6K pathway, cleaved caspase-3 (CC3), Bax and Bcl-2 and cytokine expression levels were determined by western blotting. RESULTS The G-CSF treated group was associated with significantly reduced infarction volume and decreased TUNEL positive neuronal cells compared to the HI group treated with saline. The expression levels of TNF-α and IL-1ß were significantly decreased in the G-CSF treated group, while IL-10 expression level was increased. The relative immunoreactivity of p-mTOR and p-p70S6K was significantly reduced in the HI group compared to sham. The HI group treated with G-CSF showed significant upregulated protein expression for p-mTOR and p-p70S6K levels compared to the HI group treated with saline. Furthermore, G-CSF treatment increased Bcl-2 expression levels and decreased CC3 and Bax expression levels in the ipsilateral hemispheres of the HI brain. The effects induced by G-CSF were all reversed by rapamycin. CONCLUSION Treatment with G-CSF decreases inflammatory mediators and apoptotic factors, attenuating neuroinflammation and neuronal apoptosis via the mTOR/p70S6K signalling pathway, which represents a potential target for treating HI induced brain damage in neonatal HIE.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 PR China
| | - Lu Chen
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 PR China
| | - Si Yun Shu
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 PR China
| | - Lin Ma
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing 100853 PR China
| | - Wei Luo
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 PR China
| | - Fei Li
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 PR China
| | - Jang-Yen Wu
- Department of Biochemical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States.
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 PR China.
| |
Collapse
|
10
|
Maiese K. The Mechanistic Target of Rapamycin (mTOR): Novel Considerations as an Antiviral Treatment. Curr Neurovasc Res 2020; 17:332-337. [PMID: 32334502 PMCID: PMC7541431 DOI: 10.2174/1567202617666200425205122] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Multiple viral pathogens can pose a significant health risk to individuals. As a recent example, the β-coronavirus family virion, SARS-CoV-2, has quickly evolved as a pandemic leading to coronavirus disease 2019 (COVID-19) and has been declared by the World Health Organization as a Public Health Emergency of International Concern. To date, no definitive treatment or vaccine application exists for COVID-19. Although new investigations seek to repurpose existing antiviral treatments for COVID-19, innovative treatment strategies not normally considered to have antiviral capabilities may be critical to address this global concern. One such avenue that may prove to be exceedingly fruitful and offer exciting potential as new antiviral therapy involves the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), and AMP activated protein kinase (AMPK). Recent work has shown that mTOR pathways in conjunction with AMPK may offer valuable targets to control cell injury, oxidative stress, mitochondrial dysfunction, and the onset of hyperinflammation, a significant disability associated with COVID-19. Furthermore, pathways that can activate mTOR may be necessary for anti-hepatitis C activity, reduction of influenza A virus replication, and vital for type-1 interferon responses with influenza vaccination. Yet, important considerations for the development of safe and effective antiviral therapy with mTOR pathways exist. Under some conditions, mTOR can act as a double edge sword and participate in virion replication and virion release from cells. Future work with mTOR as a potential antiviral target is highly warranted and with a greater understanding of this novel pathway, new treatments against several viral pathogens may successfully emerge.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY10022, USA
| |
Collapse
|
11
|
Wang QG, Xue X, Yang Y, Gong PY, Jiang T, Zhang YD. Angiotensin IV suppresses inflammation in the brains of rats with chronic cerebral hypoperfusion. J Renin Angiotensin Aldosterone Syst 2019; 19:1470320318799587. [PMID: 30223703 PMCID: PMC6144503 DOI: 10.1177/1470320318799587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION This study aimed to evaluate the influence of central angiotensin IV (Ang IV) infusion on chronic cerebral hypoperfusion (CCH)-related neuropathological changes including amyloid-β (Aβ), hyperphosphorylated tau (p-tau) and the inflammatory response. MATERIALS AND METHODS Rats with CCH received central infusion of Ang IV, its receptor AT4R antagonist divalinal-Ang IV or artificial cerebrospinal fluid for six weeks. During this procedure, the systolic blood pressure (SBP) was monitored, and the levels of Aβ42, p-tau and pro-inflammatory cytokines in the brain were detected. RESULTS Rats with CCH exhibited higher levels of Aβ42, p-tau and pro-inflammatory cytokines in the brain when compared with controls. Infusion of Ang IV significantly reduced the expression of pro-inflammatory cytokines in the brains of rats with CCH. Meanwhile, the reduction of pro-inflammatory cytokines levels caused by Ang IV was reversed by divalinal-Ang IV. During the treatment, the SBP in rats was not significantly altered. CONCLUSION This study demonstrates for the first time that Ang IV dose-dependently suppresses inflammation through AT4R in the brains of rats with CCH, which is independent from SBP. These findings suggest that Ang IV/AT4R may represent a potential therapeutic target for CCH-related neurological diseases.
Collapse
Affiliation(s)
- Qing-Guang Wang
- 1 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, People's Republic of China.,2 Department of Neurology, Jiangyin People's Hospital, Nanjing Medical University, People's Republic of China
| | - Xiao Xue
- 1 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, People's Republic of China
| | - Yang Yang
- 1 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, People's Republic of China
| | - Peng-Yu Gong
- 1 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, People's Republic of China
| | - Teng Jiang
- 1 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, People's Republic of China
| | - Ying-Dong Zhang
- 1 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, People's Republic of China
| |
Collapse
|
12
|
Ni Y, Liang D, Tian Y, Kron IL, French BA, Yang Z. Infarct-Sparing Effect of Adenosine A2B Receptor Agonist Is Primarily Due to Its Action on Splenic Leukocytes Via a PI3K/Akt/IL-10 Pathway. J Surg Res 2018; 232:442-449. [PMID: 30463755 DOI: 10.1016/j.jss.2018.06.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/18/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Adenosine A2B receptor (A2BAR) agonist reduces myocardial reperfusion injury by acting on inflammatory cells. Recently, a cardiosplenic axis was shown to mediate the myocardial postischemic reperfusion injury. This study aimed to explore whether the infarct-squaring effect of A2BAR agonist was primarily due to its action on splenic leukocytes. METHODS C57BL6 (wild type [WT]) mice underwent 40 min of left coronary artery occlusion followed by 60 min of reperfusion. A2BAR knockout (KO) and interleukin (IL)-10KO mice served as donors for splenic leukocytes. Acute splenectomy was performed 30 min before ischemia. The acute splenic leukocyte adoptive transfer was performed by injecting 5 × 106 live splenic leukocytes into splenectomized mice. BAY 60-6583, an A2BAR agonist, was injected by i.v. 15 min before ischemia. The infarct size (IS) was determined using 2,3,5-triphenyltetrazolium chloride and Phthalo blue staining. The expression of p-Akt and IL-10 was estimated by Western blotting. Immunofluorescence staining assessed the localization of IL-10 expression. RESULTS BAY 60-6583 reduced the myocardial IS in intact mice but failed to reduce the same in splenectomized mice, which had a smaller IS than intact mice. BAY 60-6583 reduced the IS in splenectomized mice with the acute transfer of WT splenic leukocytes; however, it did not protect the heart of splenectomized mice with the acute transfer of A2BRKO splenic leukocytes. Furthermore, BAY 60-6583 increased the levels of p-Akt and IL-10 in the WT spleen. Moreover, it did not exert any protective effect in IL-10KO mice. CONCLUSIONS A2BAR activation before ischemia stimulated the IL-10 production in splenic leukocytes via a PI3K/Akt pathway, thereby exerting anti-inflammatory effects that limited the myocardial reperfusion injury.
Collapse
Affiliation(s)
- Yingying Ni
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. of China
| | - Degang Liang
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. of China
| | - Yikui Tian
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. of China.
| | - Irving L Kron
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Brent A French
- Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia
| | - Zequan Yang
- Department of Surgery, University of Virginia Health System, Charlottesville, Virginia.
| |
Collapse
|
13
|
Li X, Ren C, Li S, Han R, Gao J, Huang Q, Jin K, Luo Y, Ji X. Limb Remote Ischemic Conditioning Promotes Myelination by Upregulating PTEN/Akt/mTOR Signaling Activities after Chronic Cerebral Hypoperfusion. Aging Dis 2017; 8:392-401. [PMID: 28840054 PMCID: PMC5524802 DOI: 10.14336/ad.2016.1227] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022] Open
Abstract
Limb Remote ischemic conditioning (LRIC) has been proved to be a promising neuroprotective method in white matter lesions after ischemia; however, its mechanism underlying protection after chronic cerebral hypoperfusion remains largely unknown. Here, we investigated whether LRIC promoted myelin growth by activating PI3K/Akt/mTOR signal pathway in a rat chronic hypoperfusion model. Thirty adult male Sprague Dawley underwent permanent double carotid artery (2VO), and limb remote ischemic conditioning was applied for 3 days after the 2VO surgery. Cognitive function, oligodendrocyte counts, myelin density, apoptosis and proliferation activity, as well as PTEN/Akt/mTOR signaling activity were determined 4 weeks after treatment. We found that LRIC significantly inhibited oligodendrocytes apoptosis (p<0.05), promoted myelination (p<0.01) in the corpus callosum and improved spatial learning impairment (p<0.05) at 4 weeks after chronic cerebral hypoperfusion. Oligodendrocytes proliferation, along with demyelination, in corpus callosum were not obviously affected by LRIC (p>0.05). Western blot analysis indicated that LRIC upregulated PTEN/Akt/mTOR signaling activities in corpus callosum (p<0.05). Our results suggest that LRIC exerts neuroprotective effect on white matter injuries through activating PTEN/Akt/mTOR signaling pathway after chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Xiaohua Li
- 1Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing 100053, China
| | - Changhong Ren
- 1Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing 100053, China.,6Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| | - Sijie Li
- 5Emergency department, Xuanwu hospital, Capital Medical University, Beijing 100053, China
| | - Rongrong Han
- 1Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing 100053, China
| | - Jinhuan Gao
- 1Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing 100053, China
| | - Qingjian Huang
- 1Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing 100053, China
| | - Kunlin Jin
- 4Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Texas 76107, USA
| | - Yinghao Luo
- 2Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xunming Ji
- 1Institute of Hypoxia Medicine, Xuanwu hospital, Capital Medical University, Beijing 100053, China.,3Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China.,6Beijing Key Laboratory of Hypoxia Translational Medicine, Beijing 100053, China
| |
Collapse
|
14
|
Glutamatergic system and mTOR-signaling pathway participate in the antidepressant-like effect of inosine in the tail suspension test. J Neural Transm (Vienna) 2017; 124:1227-1237. [DOI: 10.1007/s00702-017-1753-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/01/2017] [Indexed: 12/20/2022]
|