1
|
Kim JH, Kang HY, Lee J, Kim JH, Geum D, Park DH. Efficacy of Human-Induced Pluripotent Stem Cell-Derived Neural Progenitor Cell Replacement Therapy in a Vascular Dementia Animal Model. Tissue Eng Regen Med 2025; 22:339-349. [PMID: 39953271 PMCID: PMC11926306 DOI: 10.1007/s13770-025-00706-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Cell replacement therapy is the only treatment that restores or repairs the function of impaired tissues in neurodegenerative diseases, including vascular dementia (VaD); however, current VaD treatments focus on slowing or mitigating the underlying small vessel disease progression. We aimed to verify the improvement in neurocognition after administering human-induced pluripotent stem cell (hiPSC)-derived neural progenitor cells (NPCs) from in a VaD animal model. METHODS After anesthesia, 10-12-week-old male C5BL/6 mice underwent sham or bilateral carotid artery stenosis (BCAS) surgeries. For BCAS, 0.18-mm micro-coils were wound around the bilateral common carotid arteries to induce chronic vascular insufficiency in the global brain. One day after surgery, the mice were administered phosphate buffer solution or NPC from hiPSCs via the tail vein for 15 d, and divided into sham (n = 6), VEH (n = 6), and NPC (n = 7) groups. Three months after the surgery, neurobehavioral tests including the Y-maze test (YMT), passive avoidance test (PAT), and novel object recognition test (NORT) were performed. Finally, mice brains were sectioned for evaluating microglia (Iba-1), astrocyte (GFAP) activation, and myelin (MBP) degeneration through immunohistochemistry (IHC). RESULTS PAT latency (p = 0.01) and discrimination index in the NORT (p = 0.043) increased considerably in the NPC group than in the VEH group. However, alterations in YMT were not considerably higher in the NPC group than in the VEH group (p = 0.65). IHC tests revealed that the GFAP- and IBA-1-positive cell number was remarkably lower in the NPC group than in the VEH group (p < 0.05). Moreover, MBP density was higher in the NPC group. CONCLUSION hiPSC-derived NPCs have therapeutic potential in cerebral hypoperfusion VaD mice; it improves the working memory of VaD animals by diminishing inflammatory reactions and protecting them from demyelination.
Collapse
Affiliation(s)
- Jang Hun Kim
- Department of Neurosurgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Center of Innovative Cell Therapy and Research, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ho-Young Kang
- Department of Neurosurgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Center of Innovative Cell Therapy and Research, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jihun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Dongho Geum
- Department of Medical Science, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Dong-Hyuk Park
- Department of Neurosurgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
- Center of Innovative Cell Therapy and Research, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Altenburg IS, Smets NG, Strijkers GJ, Bakker ENTP. Medin, a link between vascular pathology and dementia? J Cereb Blood Flow Metab 2024; 44:1403-1408. [PMID: 39370976 PMCID: PMC11563558 DOI: 10.1177/0271678x241289772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/23/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Medin is a protein fragment derived from milk fat globule epidermal growth factor VIII (MFG-E8). Medin aggregates are present in the vessel wall of most subjects over 50 years of age. In this narrative review, we focus on the consequences of medin aggregation in relation to the development of dementia. Recent literature revealed medin as biomarker for dementia in CSF, specifically of a vascular subtype. Preclinical work showed that medin is associated with aging-related cerebral vascular dysfunction, vascular stiffening, hypertension, and. vascular amyloid β deposition. These findings position medin as a potential mechanistic link between aging, vascular pathology and dementia.
Collapse
Affiliation(s)
- Ilse S Altenburg
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Nina G Smets
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands
- Amsterdam Neuroscience Research Institute, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands
| | - Erik NTP Bakker
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands
- Amsterdam Neuroscience Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Minamihata T, Takano-Kawabe K, Moriyama M. Inhibition of Sphingosine Kinase 1 Reduces Sphingosine-1-Phosphate and Exacerbates Amyloid-Beta-Induced Neuronal Cell Death in Mixed-Glial-Cell Culture. Neurol Int 2024; 16:709-730. [PMID: 39051215 PMCID: PMC11270188 DOI: 10.3390/neurolint16040054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
In Alzheimer's disease (AD) pathology, the accumulation of amyloid-beta (Aβ), a main component of senile plaques, activates glial cells and causes neuroinflammation. Excessive neuroinflammation results in neuronal dropouts and finally produces the symptoms of AD. Recent studies suggest that disorder in sphingosine-1-phosphate (S1P) metabolism, especially the decreased expression of sphingosine kinase (SK)1, followed by the reduction in the amount of S1P, can be a promotive factor in AD onset. Thus, we explored the possibility that dysregulated S1P metabolism affects AD through the altered function in glial cells. We evaluated the effect of PF-543, a pharmacological inhibitor of SK1, on the inflammatory responses by lipopolysaccharide (LPS)-activated glial cells, microglia, and astrocytes. The treatment with PF-543 decreased the intracellular S1P content in glial cells. The PF-543 treatment enhanced the nitric oxide (NO) production in the LPS-treated neuron/glia mixed culture. Furthermore, we found that the augmented production of NO and reactive oxygen species (ROS) in the PF-543-treated astrocytes affected the microglial inflammatory responses through humoral factors in the experiment using an astrocyte-conditioned medium. The PF-543 treatment also decreased the microglial Aβ uptake and increased the number of injured neurons in the Aβ-treated neuron/glia mixed culture. These results suggest that a decrease in the glial S1P content can exacerbate neuroinflammation and neurodegeneration through altered glial cell functions.
Collapse
Affiliation(s)
| | | | - Mitsuaki Moriyama
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Metropolitan University, Izumisano 598-8531, Osaka, Japan; (T.M.); (K.T.-K.)
| |
Collapse
|
4
|
Dong X, Zhang Z, Shu X, Zhuang Z, Liu P, Liu R, Xia S, Bao X, Xu Y, Chen Y. MFG-E8 Alleviates Cognitive Impairments Induced by Chronic Cerebral Hypoperfusion by Phagocytosing Myelin Debris and Promoting Remyelination. Neurosci Bull 2024; 40:483-499. [PMID: 37979054 PMCID: PMC11003935 DOI: 10.1007/s12264-023-01147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/22/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic cerebral hypoperfusion is one of the pathophysiological mechanisms contributing to cognitive decline by causing white matter injury. Microglia phagocytosing myelin debris in a timely manner can promote remyelination and contribute to the repair of white matter. However, milk fat globule-epidermal growth factor-factor 8 (MFG-E8), a microglial phagocytosis-related protein, has not been well studied in hypoperfusion-related cognitive dysfunction. We found that the expression of MFG-E8 was significantly decreased in the brain of mice after bilateral carotid artery stenosis (BCAS). MFG-E8 knockout mice demonstrated more severe BCAS-induced cognitive impairments in the behavioral tests. In addition, we discovered that the deletion of MFG-E8 aggravated white matter damage and the destruction of myelin microstructure through fluorescent staining and electron microscopy. Meanwhile, MFG-E8 overexpression by AAV improved white matter injury and increased the number of mature oligodendrocytes after BCAS. Moreover, in vitro and in vivo experiments showed that MFG-E8 could enhance the phagocytic function of microglia via the αVβ3/αVβ5/Rac1 pathway and IGF-1 production to promote the differentiation of oligodendrocyte progenitor cells into mature oligodendrocytes. Interestingly, we found that MFG-E8 was mainly derived from astrocytes, not microglia. Our findings suggest that MFG-E8 is a potential therapeutic target for cognitive impairments following cerebral hypoperfusion.
Collapse
Affiliation(s)
- Xiaohong Dong
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Xin Shu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Zi Zhuang
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Pinyi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China
| | - Renyuan Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China.
| | - Yan Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China.
| |
Collapse
|
5
|
Xu H, Jiang W, Li X, Jiang J, Afridi SK, Deng L, Li R, Luo E, Zhang Z, Huang YWA, Cui Y, So KF, Chen H, Qiu W, Tang C. hUC-MSCs-derived MFGE8 ameliorates locomotor dysfunction via inhibition of ITGB3/ NF-κB signaling in an NMO mouse model. NPJ Regen Med 2024; 9:4. [PMID: 38242900 PMCID: PMC10798960 DOI: 10.1038/s41536-024-00349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Neuromyelitis optica (NMO) is a severe autoimmune inflammatory disease of the central nervous system that affects motor function and causes relapsing disability. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have been used extensively in the treatment of various inflammatory diseases, due to their potent regulatory roles that can mitigate inflammation and repair damaged tissues. However, their use in NMO is currently limited, and the mechanism underlying the beneficial effects of hUC-MSCs on motor function in NMO remains unclear. In this study, we investigate the effects of hUC-MSCs on the recovery of motor function in an NMO systemic model. Our findings demonstrate that milk fat globule epidermal growth 8 (MFGE8), a key functional factor secreted by hUC-MSCs, plays a critical role in ameliorating motor impairments. We also elucidate that the MFGE8/Integrin αvβ3/NF-κB signaling pathway is partially responsible for structural and functional recovery, in addition to motor functional enhancements induced by hUC-MSC exposure. Taken together, these findings strongly support the involvement of MFGE8 in mediating hUC-MSCs-induced improvements in motor functional recovery in an NMO mouse model. In addition, this provides new insight on the therapeutic potential of hUC-MSCs and the mechanisms underlying their beneficial effects in NMO.
Collapse
Affiliation(s)
- Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Xuejia Li
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Jiaohua Jiang
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Shabbir Khan Afridi
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Longhui Deng
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Rui Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China
| | - Ermei Luo
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Zhaoqing Zhang
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship 15 Street, Providence, RI, 02903, USA
| | - Yaxiong Cui
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Kwok-Fai So
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Haijia Chen
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China.
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China.
| |
Collapse
|
6
|
Yao Z, Fan Y, Lin L, Kellems RE, Xia Y. Tissue transglutaminase: a multifunctional and multisite regulator in health and disease. Physiol Rev 2024; 104:281-325. [PMID: 37712623 DOI: 10.1152/physrev.00003.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.
Collapse
Affiliation(s)
- Zhouzhou Yao
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuhua Fan
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lizhen Lin
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, Texas, United States
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
7
|
Miao J, Ma H, Yang Y, Liao Y, Lin C, Zheng J, Yu M, Lan J. Microglia in Alzheimer's disease: pathogenesis, mechanisms, and therapeutic potentials. Front Aging Neurosci 2023; 15:1201982. [PMID: 37396657 PMCID: PMC10309009 DOI: 10.3389/fnagi.2023.1201982] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by protein aggregation in the brain. Recent studies have revealed the critical role of microglia in AD pathogenesis. This review provides a comprehensive summary of the current understanding of microglial involvement in AD, focusing on genetic determinants, phenotypic state, phagocytic capacity, neuroinflammatory response, and impact on synaptic plasticity and neuronal regulation. Furthermore, recent developments in drug discovery targeting microglia in AD are reviewed, highlighting potential avenues for therapeutic intervention. This review emphasizes the essential role of microglia in AD and provides insights into potential treatments.
Collapse
Affiliation(s)
- Jifei Miao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Haixia Ma
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yang Yang
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuanpin Liao
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Cui Lin
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Juanxia Zheng
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Muli Yu
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jiao Lan
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
8
|
Rodríguez-Giraldo M, González-Reyes RE, Ramírez-Guerrero S, Bonilla-Trilleras CE, Guardo-Maya S, Nava-Mesa MO. Astrocytes as a Therapeutic Target in Alzheimer's Disease-Comprehensive Review and Recent Developments. Int J Mol Sci 2022; 23:13630. [PMID: 36362415 PMCID: PMC9654484 DOI: 10.3390/ijms232113630] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/20/2023] Open
Abstract
Alzheimer's disease (AD) is a frequent and disabling neurodegenerative disorder, in which astrocytes participate in several pathophysiological processes including neuroinflammation, excitotoxicity, oxidative stress and lipid metabolism (along with a critical role in apolipoprotein E function). Current evidence shows that astrocytes have both neuroprotective and neurotoxic effects depending on the disease stage and microenvironmental factors. Furthermore, astrocytes appear to be affected by the presence of amyloid-beta (Aβ), with alterations in calcium levels, gliotransmission and proinflammatory activity via RAGE-NF-κB pathway. In addition, astrocytes play an important role in the metabolism of tau and clearance of Aβ through the glymphatic system. In this review, we will discuss novel pharmacological and non-pharmacological treatments focused on astrocytes as therapeutic targets for AD. These interventions include effects on anti-inflammatory/antioxidant systems, glutamate activity, lipid metabolism, neurovascular coupling and glymphatic system, calcium dysregulation, and in the release of peptides which affects glial and neuronal function. According to the AD stage, these therapies may be of benefit in either preventing or delaying the progression of the disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauricio O. Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia
| |
Collapse
|
9
|
Tatsukawa H, Hitomi K. Role of Transglutaminase 2 in Cell Death, Survival, and Fibrosis. Cells 2021; 10:cells10071842. [PMID: 34360011 PMCID: PMC8307792 DOI: 10.3390/cells10071842] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme catalyzing the crosslinking between Gln and Lys residues and involved in various pathophysiological events. Besides this crosslinking activity, TG2 functions as a deamidase, GTPase, isopeptidase, adapter/scaffold, protein disulfide isomerase, and kinase. It also plays a role in the regulation of hypusination and serotonylation. Through these activities, TG2 is involved in cell growth, differentiation, cell death, inflammation, tissue repair, and fibrosis. Depending on the cell type and stimulus, TG2 changes its subcellular localization and biological activity, leading to cell death or survival. In normal unstressed cells, intracellular TG2 exhibits a GTP-bound closed conformation, exerting prosurvival functions. However, upon cell stimulation with Ca2+ or other factors, TG2 adopts a Ca2+-bound open conformation, demonstrating a transamidase activity involved in cell death or survival. These functional discrepancies of TG2 open form might be caused by its multifunctional nature, the existence of splicing variants, the cell type and stimulus, and the genetic backgrounds and variations of the mouse models used. TG2 is also involved in the phagocytosis of dead cells by macrophages and in fibrosis during tissue repair. Here, we summarize and discuss the multifunctional and controversial roles of TG2, focusing on cell death/survival and fibrosis.
Collapse
|
10
|
Tajbakhsh A, Read M, Barreto GE, Ávila-Rodriguez M, Gheibi-Hayat SM, Sahebkar A. Apoptotic neurons and amyloid-beta clearance by phagocytosis in Alzheimer's disease: Pathological mechanisms and therapeutic outlooks. Eur J Pharmacol 2021; 895:173873. [PMID: 33460611 DOI: 10.1016/j.ejphar.2021.173873] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Neuronal survival and axonal renewal following central nervous system damage and in neurodegenerative illnesses, such as Alzheimer's disease (AD), can be enhanced by fast clearance of neuronal apoptotic debris, as well as the removal of amyloid beta (Aβ) by phagocytic cells through the process of efferocytosis. This process quickly inhibits the release of proinflammatory and antigenic autoimmune constituents, enhancing the formation of a microenvironment vital for neuronal survival and axonal regeneration. Therefore, the detrimental features associated with microglial phagocytosis uncoupling, such as the accumulation of apoptotic cells, inflammation and phagoptosis, could exacerbate the pathology in brain disease. Some mechanisms of efferocytosis could be targeted by several promising agents, such as curcumin, URMC-099 and Y-P30, which have emerged as potential treatments for AD. This review aims to investigate and update the current research regarding the signaling molecules and pathways involved in efferocytosis and how these could be targeted as a potential therapy in AD.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Department of Modern Sciences & Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morgayn Read
- Department of Pharmacology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | | | - Seyed Mohammad Gheibi-Hayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
11
|
Jeitner TM. Cofactors and Coenzymes | Cysteamine. ENCYCLOPEDIA OF BIOLOGICAL CHEMISTRY III 2021:346-355. [DOI: 10.1016/b978-0-12-819460-7.00141-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
12
|
Junkunlo K, Söderhäll K, Söderhäll I. A transcription factor glial cell missing (Gcm) in the freshwater crayfish Pacifastacus leniusculus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103782. [PMID: 32679114 DOI: 10.1016/j.dci.2020.103782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
The transcription factor glial cell missing, Gcm, is known to be an important protein in the determination of glial cell fate as well as embryonic plasmatocyte differentiation in Drosophila melanogaster. So far, no function for Gcm in crustaceans has been reported. In this study, we show the cDNA sequence of a Gcm homologue in the freshwater crayfish Pacifastacus leniusculus. The P. leniusculus Gcm transcript is expressed exclusively in brain and nervous tissue, and by in situ hybridization we show that the expression is restricted to a small number of large cells with morphology similar to neurosecretory cells. Furthermore, we show that the expression of Gcm coincides with the expression of a Repo homologue, that is induced in expression by Gcm in Drosophila. Moreover, the Gcm transcript is increased shortly and transiently after injection of cystamine, a substance that inhibits transglutaminase and also strongly affects the movement behavior of crayfish. This finding of Gcm transcripts in a subpopulation of brain cells in very low numbers may enable more detailed studies about Gcm in adult crustaceans.
Collapse
Affiliation(s)
- Kingkamon Junkunlo
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18 A, SE752 36, Uppsala, Sweden
| | - Kenneth Söderhäll
- Science for Life Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Irene Söderhäll
- Science for Life Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden.
| |
Collapse
|
13
|
Seif F, Sharifi L, Khoshmirsafa M, Mojibi Y, Mohsenzadegan M. A Review of Preclinical Experiments Toward Targeting M2 Macrophages in Prostate Cancer. Curr Drug Targets 2020; 20:789-798. [PMID: 30674255 DOI: 10.2174/1389450120666190123141553] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/20/2022]
Abstract
Prostate cancer is malignant cancer leading to high mortality in the male population. The existence of suppressive cells referred to as tumor-associated macrophages (TAM) is a major obstacle in prostate cancer immunotherapy. TAMs contribute to the immunosuppressive microenvironment that promotes tumor growth and metastasis. In fact, they are main regulators of the complicated interactions between tumor and surrounding microenvironment. M2 macrophages, as a type of TAMs, are involved in the growth and progression of prostate cancer. Recently, they have gained remarkable importance as therapeutic candidates for solid tumors. In this review, we will discuss the roles of M2 macrophages and worth of their potential targeting in prostate cancer treatment. In the following, we will introduce important factors resulting in M2 macrophage promotion and also experimental therapeutic agents that may cause the inhibition of prostate cancer tumor growth.
Collapse
Affiliation(s)
- Farhad Seif
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Laleh Sharifi
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yasaman Mojibi
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Cao S, Fisher DW, Yu T, Dong H. The link between chronic pain and Alzheimer's disease. J Neuroinflammation 2019; 16:204. [PMID: 31694670 PMCID: PMC6836339 DOI: 10.1186/s12974-019-1608-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic pain often occurs in the elderly, particularly in the patients with neurodegenerative disorders such as Alzheimer's disease (AD). Although studies indicate that chronic pain correlates with cognitive decline, it is unclear whether chronic pain accelerates AD pathogenesis. In this review, we provide evidence that supports a link between chronic pain and AD and discuss potential mechanisms underlying this connection based on currently available literature from human and animal studies. Specifically, we describe two intertwined processes, locus coeruleus noradrenergic system dysfunction and neuroinflammation resulting from microglial pro-inflammatory activation in brain areas mediating the affective component of pain and cognition that have been found to influence both chronic pain and AD. These represent a pathological overlap that likely leads chronic pain to accelerate AD pathogenesis. Further, we discuss potential therapeutic interventions targeting noradrenergic dysfunction and microglial activation that may improve patient outcomes for those with chronic pain and AD.
Collapse
Affiliation(s)
- Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 56300, Guizhou, China
- Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 56300, Guizhou, China
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Tain Yu
- Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 56300, Guizhou, China
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
15
|
Vidal M. Exosomes: Revisiting their role as "garbage bags". Traffic 2019; 20:815-828. [PMID: 31418976 DOI: 10.1111/tra.12687] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Abstract
In recent years, the term "extracellular vesicle" (EV) has been used to define different types of vesicles released by various cells. It includes plasma membrane-derived vesicles (ectosomes/microvesicles) and endosome-derived vesicles (exosomes). Although it remains difficult to evaluate the compartment of origin of the two kinds of vesicles once released, it is critical to discriminate these vesicles because their mode of biogenesis is probably directly related to their physiologic function and/or to the physio-pathologic state of the producing cell. The purpose of this review is to specifically consider exosome secretion and its consequences in terms of a material loss for producing cells, rather than on the effects of exosomes once they are taken up by recipient cells. I especially describe one putative basic function of exosomes, that is, to convey material out of cells for off-site degradation by recipient cells. As illustrated by some examples, these components could be evacuated from cells for various reasons, for example, to promote "differentiation" or enhance homeostatic responses. This basic function might explain why so many diseases have made use of the exosomal pathway during pathogenesis.
Collapse
Affiliation(s)
- Michel Vidal
- LPHI - Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
16
|
Woodard A, Barbery B, Wilkinson R, Strozyk J, Milner M, Doucette P, Doran J, Appleby K, Atwill H, Bell WE, Turner JE. The role of neuronal nitric oxide and its pathways in the protection and recovery from neurotoxin-induced de novo hypokinetic motor behaviors in the embryonic zebrafish ( Danio rerio). AIMS Neurosci 2019; 6:25-42. [PMID: 32341966 PMCID: PMC7179346 DOI: 10.3934/neuroscience.2019.1.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/13/2019] [Indexed: 11/18/2022] Open
Abstract
Neuronal nitric oxide (nNO) has been shown to affect motor function in the brain. Specifically, nNO acts in part through regulation of dopamine (DA) release, transporter function, and the elicitation of neuroprotection/neurodegeneration of neurons in conditions such as Parkinson's disease (PD). Recently, the zebrafish has been proposed to be a new model for the study of PD since neurotoxin damage to their nigrostriatal-like neurons exhibit PD-like motor dysfunctions similar to those of mammalian models and human patients. Results from this study demonstrate that treatment of 5 days post fertilization (dpf) fish with a nNO synthase inhibitor as a co-treatment with 6-OHDA facilitates long-term survival and accelerates the recovery from 6-OHDA-induced hypokinesia-like symptoms. These findings are unique in that under conditions of neurotoxin-induced stress, the inhibition of the NO-related S-nitrosylation indirect pathway dramatically facilitates recovery from 6-OHDA treatment but inhibition of the NO-sGC-cGMP direct pathway is essential for survival in 5 dpf treated fish. In conclusion, these results indicate that nNOS and the inhibition of the NO-linked S-nitrosylation pathway plays an important role in antagonizing the protection and recovery of fish from neurotoxin treatment. These data begin to help in the understanding of the role of NO as a neuroprotectant in dopaminergic pathways, particularly those that influence motor dysfunctions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - James E. Turner
- Department of Biology, Center for Molecular, Cellular, and Biological Chemistry, Virginia Military Institute, Lexington, VA 24450, USA
| |
Collapse
|
17
|
Sun H, Kaartinen MT. Transglutaminases in Monocytes and Macrophages. ACTA ACUST UNITED AC 2018; 6:medsci6040115. [PMID: 30545030 PMCID: PMC6313455 DOI: 10.3390/medsci6040115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022]
Abstract
Macrophages are key players in various inflammatory disorders and pathological conditions via phagocytosis and orchestrating immune responses. They are highly heterogeneous in terms of their phenotypes and functions by adaptation to different organs and tissue environments. Upon damage or infection, monocytes are rapidly recruited to tissues and differentiate into macrophages. Transglutaminases (TGs) are a family of structurally and functionally related enzymes with Ca2+-dependent transamidation and deamidation activity. Numerous studies have shown that TGs, particularly TG2 and Factor XIII-A, are extensively involved in monocyte- and macrophage-mediated physiological and pathological processes. In the present review, we outline the current knowledge of the role of TGs in the adhesion and extravasation of monocytes, the expression of TGs during macrophage differentiation, and the regulation of TG2 expression by various pro- and anti-inflammatory mediators in macrophages. Furthermore, we summarize the role of TGs in macrophage phagocytosis and the understanding of the mechanisms involved. Finally, we review the roles of TGs in tissue-specific macrophages, including monocytes/macrophages in vasculature, alveolar and interstitial macrophages in lung, microglia and infiltrated monocytes/macrophages in central nervous system, and osteoclasts in bone. Based on the studies in this review, we conclude that monocyte- and macrophage-derived TGs are involved in inflammatory processes in these organs. However, more in vivo studies and clinical studies during different stages of these processes are required to determine the accurate roles of TGs, their substrates, and the mechanisms-of-action.
Collapse
Affiliation(s)
- Huifang Sun
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada.
| | - Mari T Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, H3A 0C7, Canada.
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
18
|
Xu X, Zhang A, Zhu Y, He W, Di W, Fang Y, Shi X. MFG-E8 reverses microglial-induced neurotoxic astrocyte (A1) via NF-κB and PI3K-Akt pathways. J Cell Physiol 2018; 234:904-914. [PMID: 30076715 DOI: 10.1002/jcp.26918] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 06/13/2018] [Indexed: 12/28/2022]
Abstract
Recent evidence have suggested that neuroinflammation and ischemia induce the activation of two different types of reactive astrocytes, termed A1 and A2. Additionally, A1 astrocytes contribute to the death of neurons and oligodendrocytes in neurodegenerative diseases, such as Alzheimer's disease (AD). In the current study, we constructed an Aβ42-activated microglia-conditioned medium to induce A1 astrocytic activation via secretion of interleukin 1α, tumor necrosis factor, and complement component 1q in vitro, and indicated the regulatory role of milk fat globule epidermal growth factor 8 (MFG-E8) on A1/A2 astrocytic alteration through the downregulation of nuclear factor-κB and the upregulation of PI3K-Akt. This study showed that MFG-E8 suppressed A1 astrocytes and holds great potential for the treatment of AD.
Collapse
Affiliation(s)
- Xiaotian Xu
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Aiwu Zhang
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wen He
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Di
- Department of Neurology, Shanxi Provincial People's Hospital, Xi'an, China.,Department of Neurology, Third Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Yannan Fang
- Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaolei Shi
- Department of Neurology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, People's Republic of China.,Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Nishimura Y, Moriyama M, Kawabe K, Satoh H, Takano K, Azuma YT, Nakamura Y. Lauric Acid Alleviates Neuroinflammatory Responses by Activated Microglia: Involvement of the GPR40-Dependent Pathway. Neurochem Res 2018; 43:1723-1735. [PMID: 29947014 DOI: 10.1007/s11064-018-2587-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023]
Abstract
In several neurodegenerative diseases such as Alzheimer's disease (AD), microglia are hyperactivated and release nitric oxide (NO) and proinflammatory cytokines, resulting its neuropathology. Mounting evidence indicates that dietary supplementation with coconut oil (CNO) reduces the cognitive deficits associated with AD; however, the precise mechanism(s) underlying the beneficial effect of CNO are unknown. In the present study, we examined the effects of lauric acid (LA), a major constituent of CNO, on microglia activated experimentally by lipopolysaccharide (LPS), using primary cultured rat microglia and the mouse microglial cell line, BV-2. LA attenuated LPS-stimulated NO production and the expression of inducible NO synthase protein without affecting cell viability. In addition, LA suppressed LPS-induced reactive oxygen species and proinflammatory cytokine production, as well as phosphorylation of p38-mitogen activated protein kinase and c-Jun N-terminal kinase. LA-induced suppression of NO production was partially but significantly reversed in the presence of GW1100, an antagonist of G protein-coupled receptor (GPR) 40, which is an LA receptor on the plasma membrane. LA also decreased LPS-induced phagocytosis, which was completely reversed by co-treatment with GW1100. Moreover, LA alleviated amyloid-β-induced enhancement of phagocytosis. These results suggest that attenuation of microglial activation by LA may occur via the GPR40-dependent pathway. Such effects of LA may reduce glial activation and the subsequent neuronal damage in AD patients who consume CNO.
Collapse
Affiliation(s)
- Yasunori Nishimura
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Mitsuaki Moriyama
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan.
| | - Kenji Kawabe
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan.,Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hideyo Satoh
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Katsura Takano
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Yoichi Nakamura
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
20
|
Zhao X, Chen R, Liu M, Feng J, Chen J, Hu K. Remodeling the blood-brain barrier microenvironment by natural products for brain tumor therapy. Acta Pharm Sin B 2017; 7:541-553. [PMID: 28924548 PMCID: PMC5595291 DOI: 10.1016/j.apsb.2017.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/08/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022] Open
Abstract
Brain tumor incidence shows an upward trend in recent years; brain tumors account for 5% of adult tumors, while in children, this figure has increased to 70%. Moreover, 20%-30% of malignant tumors will eventually metastasize into the brain. Both benign and malignant tumors can cause an increase in intracranial pressure and brain tissue compression, leading to central nervous system (CNS) damage which endangers the patients' lives. Despite the many approaches to treating brain tumors and the progress that has been made, only modest gains in survival time of brain tumor patients have been achieved. At present, chemotherapy is the treatment of choice for many cancers, but the special structure of the blood-brain barrier (BBB) limits most chemotherapeutic agents from passing through the BBB and penetrating into tumors in the brain. The BBB microenvironment contains numerous cell types, including endothelial cells, astrocytes, peripheral cells and microglia, and extracellular matrix (ECM). Many chemical components of natural products are reported to regulate the BBB microenvironment near brain tumors and assist in their treatment. This review focuses on the composition and function of the BBB microenvironment under both physiological and pathological conditions, and the current research progress in regulating the BBB microenvironment by natural products to promote the treatment of brain tumors.
Collapse
Affiliation(s)
- Xiao Zhao
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rujing Chen
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mei Liu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfang Feng
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China
| | - Kaili Hu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|