1
|
Yang J, Li Y, Bhalla A, Maienschein-Cline M, Fukuchi KI. A novel co-culture model for investigation of the effects of LPS-induced macrophage-derived cytokines on brain endothelial cells. PLoS One 2023; 18:e0288497. [PMID: 37440496 PMCID: PMC10343049 DOI: 10.1371/journal.pone.0288497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
In order to study effects of macrophage-derived inflammatory mediators associated with systemic inflammation on brain endothelial cells, we have established a co-culture system consisting of bEnd.3 cells and LPS-activated Raw 264.7 cells and performed its cytokine profiling. The cytokine profile of the co-culture model was compared to that of mice treated with intraperitoneal LPS injection. We found that, among cytokines profiled, eight cytokines/chemokines were similarly upregulated in both in vivo mouse and in vitro co-culture model. In contrast to the co-culture model, the cytokine profile of a common mono-culture system consisting of only LPS-activated bEnd.3 cells had little similarity to that of the in vivo mouse model. These results indicate that the co-culture of bEnd.3 cells with LPS-activated Raw 264.7 cells is a better model than the common mono-culture of LPS-activated bEnd.3 cells to investigate the molecular mechanism in endothelial cells, by which systemic inflammation induces neuroinflammation. Moreover, fibrinogen adherence both to bEnd.3 cells in the co-culture and to brain blood vessels in a LPS-treated animal model of Alzheimer's disease increased. To the best of our knowledge, this is the first to utilize bEnd.3 cells co-cultured with LPS-activated Raw 264.7 cells as an in vitro model to investigate the consequence of macrophage-derived inflammatory mediators on brain endothelial cells.
Collapse
Affiliation(s)
- Junling Yang
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, United states of America
| | - Yinchuan Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Ambuj Bhalla
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, United states of America
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Ken-ichiro Fukuchi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois, United states of America
| |
Collapse
|
2
|
Kuter KZ, Śmiałowska M, Ossowska K. The influence of preconditioning with low dose of LPS on paraquat-induced neurotoxicity, microglia activation and expression of α-synuclein and synphilin-1 in the dopaminergic system. Pharmacol Rep 2021; 74:67-83. [PMID: 34762280 PMCID: PMC8786770 DOI: 10.1007/s43440-021-00340-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Background Prolonged inflammation, oxidative stress, and protein aggregation are important factors contributing to Parkinson’s disease (PD) pathology. A known ROS generator, pesticide paraquat (PQ), was indicated as an environmental substance potentially increasing the incidence of PD and is used to model this disease. We investigated if a combination of inflammation and oxidative stress in subthreshold doses would exacerbate the modelled neuropathology. Methods We examined the late effects of acute or repeated peripheral inflammation induced by low dose of LPS (10 μg/kg, ip) on PQ toxicity in the rat nigrostriatal dopaminergic pathway, microglial activation markers and expression of major Lewy bodies proteins, α-synuclein and synphilin-1. Results We observed that LPS increased, while PQ decreased body temperature and microglia CD11b expression in the SN. Single LPS pretreatment, 3 h before repeated weekly PQ injections (4×) slightly aggravated neuronal degeneration in the SN. Moreover, degeneration of dopaminergic neurons after weekly repeated inflammation itself (4×) was observed. Interestingly, repeated LPS administration combined with each PQ dose counteracted such effect. The expression of α-synuclein decreased after repeated LPS injections, while only combined, repeated LPS and PQ treatment lowered the levels of synphilin-1. Therefore, α-synuclein and synphilin-1 expression change was influenced by different mechanisms. Concomitantly, decreased levels of the two proteins correlated with decreased degeneration of dopaminergic neurons and with a normalized microglia activation marker. Conclusions Our results indicate that both oxidative insult triggered by PQ and inflammation caused by peripheral LPS injection can individually induce neurotoxicity. Those factors act through different mechanisms that are not additive and not selective towards dopaminergic neurons, probably implying microglia. Repeated, but small insults from oxidative stress and inflammation when administered in significant time intervals can counteract each other and even act protective as a preconditioning effect. The timing of such repetitive insults is also of essence. Supplementary Information The online version contains supplementary material available at 10.1007/s43440-021-00340-1.
Collapse
Affiliation(s)
- Katarzyna Z Kuter
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343, Kraków, Poland.
| | - Maria Śmiałowska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Krystyna Ossowska
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343, Kraków, Poland
| |
Collapse
|
3
|
Prasad EM, Hung SY. Behavioral Tests in Neurotoxin-Induced Animal Models of Parkinson's Disease. Antioxidants (Basel) 2020; 9:E1007. [PMID: 33081318 PMCID: PMC7602991 DOI: 10.3390/antiox9101007] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Currently, neurodegenerative diseases are a major cause of disability around the world. Parkinson's disease (PD) is the second-leading cause of neurodegenerative disorder after Alzheimer's disease. In PD, continuous loss of dopaminergic neurons in the substantia nigra causes dopamine depletion in the striatum, promotes the primary motor symptoms of resting tremor, bradykinesia, muscle rigidity, and postural instability. The risk factors of PD comprise environmental toxins, drugs, pesticides, brain microtrauma, focal cerebrovascular injury, aging, and hereditary defects. The pathologic features of PD include impaired protein homeostasis, mitochondrial dysfunction, nitric oxide, and neuroinflammation, but the interaction of these factors contributing to PD is not fully understood. In neurotoxin-induced PD models, neurotoxins, for instance, 6-hydroxydopamine (6-OHDA), 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-Methyl-4-phenylpyridinium (MPP+), paraquat, rotenone, and permethrin mainly impair the mitochondrial respiratory chain, activate microglia, and generate reactive oxygen species to induce autooxidation and dopaminergic neuronal apoptosis. Since no current treatment can cure PD, using a suitable PD animal model to evaluate PD motor symptoms' treatment efficacy and identify therapeutic targets and drugs are still needed. Hence, the present review focuses on the latest scientific developments in different neurotoxin-induced PD animal models with their mechanisms of pathogenesis and evaluation methods of PD motor symptoms.
Collapse
Affiliation(s)
- E. Maruthi Prasad
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Shih-Ya Hung
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan;
- Department of Medical Research, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan
| |
Collapse
|
4
|
Ajayi AM, Chidebe EO, Ben-Azu B, Umukoro S. Chrysophyllum albidum (African star apple) fruit-supplemented diet enhances cognitive functions and attenuates lipopolysaccharide-induced memory impairment, oxidative stress, and release of proinflammatory cytokines. NUTRIRE : REVISTA DE SOCIEDADE BRASILEIRA DE ALIMENTACAO E NUTRICAO = JOURNAL OF THE BRAZILIAN SOCIETY OF FOOD AND NUTRITION 2020; 45:20. [PMID: 38624427 PMCID: PMC7448960 DOI: 10.1186/s41110-020-00123-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/16/2020] [Indexed: 12/19/2022]
Abstract
Purpose Fruit-based supplement has an important role in protecting the brain against oxido-inflammatory stress. Chrysophyllum albidum fruit contained several phytonutrients that possess antioxidants and anti-inflammatory properties. Hence, this study investigated the effect of C. albidum fruit supplemented diet (CAFD) on cognitive functions and lipopolysaccharide (LPS)-induced memory impairment and oxido-inflammatory response in mice. Methods Mice were randomized into two experiments. Experiment 1 with naïve mice contained four groups (n = 6) while experiment 2 with LPS contains five groups (n = 6). Mice in experiments 1 and 2 were fed on CAFD (5%, 10%, and 20%) in naïve (6 weeks) and LPS (250 μg/kg, i.p.) in the 7th week, respectively. Cognitive performance was tested using Y-maze test (YMT) and novel object recognition test (NORT) in the naïve and LPS mice. Brain samples were obtained for determination of oxido-inflammatory parameters and acetylcholinesterase activity. Results The CAFD significantly enhanced cognitive performance in the YMT and NORT in naïve and LPS mice, as evidenced by increased % alternation and discrimination index, respectively. CAFD supplementation significantly reduced acetylcholinesterase enzyme activity while it attenuated depletion of reduced glutathione and catalase activities in brains of naive and LPS-treated animals. The CAFD significantly reduced LPS-induced increased malondialdehyde levels in mice brains. CAFD supplementation significantly attenuated LPS-induced pro-inflammatory cytokines (IL-6, TNF-α) in mice brains. Conclusion Chrysophyllum albidum fruit supplementation in diet enhances memory function and prevents cognitive deficits induced by LPS via mechanisms associated with inhibition of oxidative stress-related processes, acetylcholinesterase activity, and pro-inflammatory mediators.
Collapse
Affiliation(s)
- Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Emmanuel Oyinyechukwu Chidebe
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State Nigeria
- Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, Rivers State Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State Nigeria
| |
Collapse
|
5
|
Zhang L, Wang Y, Shen H, Zhao M. Combined signaling of NF-kappaB and IL-17 contributes to Mesenchymal stem cells-mediated protection for Paraquat-induced acute lung injury. BMC Pulm Med 2020; 20:195. [PMID: 32680482 PMCID: PMC7367411 DOI: 10.1186/s12890-020-01232-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Paraquat (PQ) is an herbicide widely used in the world. PQ can cause pulmonary toxicity and even acute lung injury. Treatment for PQ poisoning in a timely manner is still a challenge for clinicians. Mesenchymal stem cell (MSC) transplantation has hold potentials for the treatment of several lung diseases including PQ poisoning. The aim of this study is to examine the mechanisms mediated by MSC transplantation to protect PQ-induced lung injury. METHODS Here we performed the whole genome sequencing and compared the genes and pathways in the lung that were altered by PQ or PQ together with MSC treatment. RESULTS The comparison in transcriptome identified a combined mitigation in NF-kappaB signaling and IL-17 signaling in MSC transplanted samples. CONCLUSION This study not only reiterates the important role of NF-kappaB signaling and IL-17 signaling in the pathogenesis of PQ-induced toxicity, but also provides insight into a molecular basis of MSC administration for the treatment of PQ-induced toxicity.
Collapse
Affiliation(s)
- Lichun Zhang
- Department of Emergency, Shengjing Affiliated Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yu Wang
- Department of Emergency, Shengjing Affiliated Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Haitao Shen
- Department of Emergency, Shengjing Affiliated Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Min Zhao
- Department of Emergency, Shengjing Affiliated Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
6
|
Deng I, Corrigan F, Zhai G, Zhou XF, Bobrovskaya L. Lipopolysaccharide animal models of Parkinson's disease: Recent progress and relevance to clinical disease. Brain Behav Immun Health 2020; 4:100060. [PMID: 34589845 PMCID: PMC8474547 DOI: 10.1016/j.bbih.2020.100060] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative movement disorders which is characterised neuropathologically by progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the presence of Lewy bodies (made predominately of α-synuclein) in the surviving neurons. Animal models of PD have improved our understanding of the disease and have played a critical role in the development of neuroprotective agents. Neuroinflammation has been strongly implicated in the pathogenesis of PD, and recent studies have used lipopolysaccharide (LPS), a component of gram-negative bacteria and a potent activator of microglia cells, to mimic the inflammatory events in clinical PD. Modulating the inflammatory response could ameliorate PD associated complications and thus, it is essential to understand the extent to which LPS models reflect human PD. This review will outline the routes of administration of LPS such as stereotaxic, systemic and intranasal, their ability to recapitulate neuropathological markers of PD, and mechanisms of LPS induced toxicity. We will also discuss the ability of the models to replicate motor symptoms and non-motor symptoms of PD such as gastrointestinal dysfunction, olfactory dysfunction, anxiety, depression and cognitive dysfunction.
Collapse
Affiliation(s)
- Isaac Deng
- School of Pharmacy and Medical Sciences, Division of Health Sciences, Health and Biomedical Innovation Research Concentration, University of South Australia, Adelaide, South Australia, Australia
| | - Frances Corrigan
- School of Health Sciences, Division of Health Sciences, Health and Biomedical Innovation Research Concentration, University of South Australia, Adelaide, South Australia, Australia
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan, 250012, China
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Division of Health Sciences, Health and Biomedical Innovation Research Concentration, University of South Australia, Adelaide, South Australia, Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, Division of Health Sciences, Health and Biomedical Innovation Research Concentration, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Emokpae O, Ben-Azu B, Ajayi AM, Umukoro S. D-Ribose-L-cysteine attenuates lipopolysaccharide-induced memory deficits through inhibition of oxidative stress, release of proinflammatory cytokines, and nuclear factor-kappa B expression in mice. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:909-925. [PMID: 31907583 DOI: 10.1007/s00210-019-01805-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022]
Abstract
D-Ribose-L-cysteine (DRLC), an analog of cysteine that boosts glutathione (GSH) content, has been reported to mitigate oxidative stress-mediated diseases. This study seeks to evaluate the effects of DRLC on memory deficits and the biochemical and histo-morphological changes induced by lipopolysaccharide (LPS) in mice. Male Swiss mice (n = 10) were pre-treated orally with three doses of DRLC (25 mg/kg, 50 mg/kg, and 100 mg/kg), donepezil (1 mg/kg), or vehicle (saline) for 30 min prior to the intraperitoneal injection of LPS (0.25 mg/kg) daily for 7 days. Memory functions were evaluated using the Y-maze, object recognition, and social recognition tests. The specific brain regions (prefrontal cortex and hippocampus) were evaluated to determine oxidative stress biomarkers (malondialdehyde, GSH, and catalase), acetyl-cholinesterase activity, proinflammatory cytokines (tumor necrosis factor-α and interleukin-6), expression of nuclear factor-kappa B (NF-κB), and neuronal cell morphology. DRLC (25-100 mg/kg) reversed the memory deficits in the LPS-treated mice (p < 0.05). The increased oxidative stress and proinflammatory cytokines in the brain regions of the LPS-treated mice were significantly (p < 0.05) reduced by DRLC. DRLC (50 mg/kg and 100 mg/kg) also reduced acetyl-cholinesterase activity and decreased NF-κB expression in the brains of LPS-treated mice. Finally, it attenuated the cytoarchitectural distortions and loss of neuronal cells of the prefrontal cortex and hippocampus that were induced by LPS in mice. The results of this study suggest that DRLC attenuates memory deficit induced by LPS in mice through mechanisms related to the inhibition of oxidative stress, release of proinflammatory cytokines, and expression of NF-κB in mice.
Collapse
Affiliation(s)
- Osagie Emokpae
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, River States, Port Harcourt, Nigeria
| | - Abayomi M Ajayi
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon Umukoro
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|