1
|
Shi Y, Wu Y, Wang L, Bai B, He X, Wang H, Zhang C, Wu J, Jia D, Zhu Y, Zheng C. Gooderoside A from Anoectochilus elatus attenuates acute and chronic pains by inhibiting NO/cGMP and IRAK4/IRAK1/TAK1 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117767. [PMID: 38224795 DOI: 10.1016/j.jep.2024.117767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anoectochilus elatus Lindl. was traditionally used for pain treatment and Gooderoside A (GA) was regarded as its principal constituent. AIM OF THE STUDY To investigate whether GA can be responsible for the antinociceptive activity of A. elatus and explore its underlying mechanism. MATERIALS AND METHODS Acetic acid-induced abdominal writhing and tail flick tests were employed to evaluate the antinociceptive activity of ethanolic extract of A. elatus (EEA) and GA. Formalin test was used to ascertain the antinociceptive pattern of GA. Entobarbital sodium induced sleep test was adopted to exclude its hypnotic effect, while open-field test was performed to rule out its motor impairment effect. Chronic constriction injury (CCI)-induced neuropathic pain in rats was developed to evaluate its efficacy on neuropathic pain, and BV-2 cells were used to explore the underlying mechanism. RESULTS EEA and GA, significantly inhibited chemical and thermal nociception. GA suppressed nociception in formalin test in both phase I and II, whereas methylene blue and L-NAME partially reversed its efficacy. GA located inner and slightly blocked sodium channel current, and did not show any hypnotic effect or motor impairment effect. Crucially, GA markedly attenuated chronic neuropathic pain in rats, inhibited the phosphorylation of IRAK4, IRAK1 and TAK1, and suppressed MAPKs pathway in BV-2 cells. CONCLUSION GA relieved acute and chronic pains in vivo. The mechanism of action involves the blocking of NO/cGMP and IRAK4/IRAK1/TAK1 pathways. These results suggested GA may be a promising candidate for antinociceptive drug development.
Collapse
Affiliation(s)
- Yi Shi
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yanbin Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China
| | - Liangzhe Wang
- Department of Dermatology, Naval Medical Center, Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China
| | - Bingke Bai
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chengzhong Zhang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Jinzhong Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou 350122, China
| | - Dan Jia
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - Yuanjie Zhu
- Department of Dermatology, Naval Medical Center, Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China.
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
| |
Collapse
|
2
|
Fang XX, Zhai MN, Zhu M, He C, Wang H, Wang J, Zhang ZJ. Inflammation in pathogenesis of chronic pain: Foe and friend. Mol Pain 2023; 19:17448069231178176. [PMID: 37220667 DOI: 10.1177/17448069231178176] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Chronic pain is a refractory health disease worldwide causing an enormous economic burden on individuals and society. Accumulating evidence suggests that inflammation in the peripheral nervous system (PNS) and central nervous system (CNS) is the major factor in the pathogenesis of chronic pain. The inflammation in the early- and late phase may have distinctive effects on the initiation and resolution of pain, which can be viewed as friend or foe. On the one hand, painful injuries lead to the activation of glial cells and immune cells in the PNS, releasing pro-inflammatory mediators, which contribute to the sensitization of nociceptors, leading to chronic pain; neuroinflammation in the CNS drives central sensitization and promotes the development of chronic pain. On the other hand, macrophages and glial cells of PNS and CNS promote pain resolution via anti-inflammatory mediators and specialized pro-resolving mediators (SPMs). In this review, we provide an overview of the current understanding of inflammation in the deterioration and resolution of pain. Further, we summarize a number of novel strategies that can be used to prevent and treat chronic pain by controlling inflammation. This comprehensive view of the relationship between inflammation and chronic pain and its specific mechanism will provide novel targets for the treatment of chronic pain.
Collapse
Affiliation(s)
- Xiao-Xia Fang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Meng-Nan Zhai
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Meixuan Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Cheng He
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Heng Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Juan Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Zhi-Jun Zhang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
3
|
Molecular Changes in the Dorsal Root Ganglion during the Late Phase of Peripheral Nerve Injury-induced Pain in Rodents: A Systematic Review. Anesthesiology 2021; 136:362-388. [PMID: 34965284 DOI: 10.1097/aln.0000000000004092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The dorsal root ganglion is widely recognized as a potential target to treat chronic pain. A fundamental understanding of quantitative molecular and genomic changes during the late phase of pain is therefore indispensable. The authors performed a systematic literature review on injury-induced pain in rodent dorsal root ganglions at minimally 3 weeks after injury. So far, slightly more than 300 molecules were quantified on the protein or messenger RNA level, of which about 60 were in more than one study. Only nine individual sequencing studies were performed in which the most up- or downregulated genes varied due to heterogeneity in study design. Neuropeptide Y and galanin were found to be consistently upregulated on both the gene and protein levels. The current knowledge regarding molecular changes in the dorsal root ganglion during the late phase of pain is limited. General conclusions are difficult to draw, making it hard to select specific molecules as a focus for treatment.
Collapse
|
4
|
Effect of Interleukin-1β on Gene Expression Signatures in Schwann Cells Associated with Neuropathic Pain. Neurochem Res 2021; 46:2958-2968. [PMID: 34264480 DOI: 10.1007/s11064-021-03400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 05/25/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Interleukin-1β (IL-1β) plays a critical role in the development of neuropathic pain through activation of Schwann cells (SCs) after nerve injury. Here, we applied an RNA sequencing (RNA-seq) approach to identify the effect of IL-1β on gene signatures of a rat SC line (RSC96) and the potential molecular mechanisms underlying the development of neuropathic pain. RNA-seq data demonstrated a total of 57 significantly differentially expressed genes (DEGs) with 35 up-regulated and 22 down-regulated between SCs treated with IL-1β, and control SCs without treatment. Bioinformatics analysis showed that key upregulated DEGs included those associated with immune and inflammation-related processes, neurotrophin production and SC proliferation. Five proteins encoded by key upregulated DEGs (Ceacam1, Hap1, Irs3, Lgi4 and Mif) were further verified by Western blot. Consistent with the RNA-Seq results, the expression of key genes was confirmed in SCs by immunofluorescence of the chronic constriction injury (CCI) sciatic nerve in rats. Furthermore, we demonstrated that treatment with IL-1β resulted in an increase in p38/ERK phosphorylation, and activators of p38/ERK enhanced the effect of IL-1β on the expression some of the key genes, whereas p38/ERK inhibitors reversed these effects. In conclusion, the present study highlights key genes involved in the development of neuropathic pain through activation of SCs after nerve injury. Identification of these genes and subsequent evidence of their mediation by IL-1β treatment promote our understanding of molecular mechanisms of nerve injury induced neuropathic pain, and highlight potential molecular targets for the treatment of neuropathic pain.
Collapse
|
5
|
Ma C, Zhang M, Liu L, Zhang P, Liu D, Zheng X, Zhong X, Wang G. Low-dose cannabinoid receptor 2 agonist induces microglial activation in a cancer pain-morphine tolerance rat model. Life Sci 2021; 264:118635. [PMID: 33131746 DOI: 10.1016/j.lfs.2020.118635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/11/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022]
Abstract
AIMS Cancer pain seriously affects the life quality of patients. Morphine is commonly used for cancer pain, but tolerance development limits its clinical administration. Central immune signaling is important in the development of cancer pain and morphine tolerance. Cannabinoid receptor 2 (CB2) inhibits cancer pain and morphine tolerance by regulating central immune signaling. In the present study, we investigated the mechanisms of central immune signaling involved in morphine tolerance inhibition by the CB2 agonist AM1241 in cancer pain treatment. MAIN METHODS Rats were implanted with tumor cells and divided into 4 groups: Vehicle (PBS), 0.07 μg AM1241, 0.03 μg AM1241, and AM630 (10 μg) + AM1241 (0.07 μg). All groups received morphine (20 μg/day, i.t.) for 8 days. AM630 (CB2 antagonist) was intrathecally injected 30 min before AM1241, and AM1241 was intrathecally injected 30 min before morphine. The spinal cord (SC) and dorsal root ganglion (DRG) were collected to determine the expression of Toll-like receptor 4 (TLR4), the p38 mitogen-activated protein kinase (MAPK), microglial markers, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α. KEY FINDINGS The expression of TLR4, p38 MAPK, microglial markers, IL-1β, and TNF-α was significantly higher in AM1241-pretreated groups than in the vehicle group (P < 0.05). No difference in microglial markers, IL-1β, and TNF-α expression was detected in the AM630 + AM1241 group compared with the vehicle group. SIGNIFICANCE Our results suggest that in a cancer pain-morphine tolerance model, an i.t. non-analgesic dose of AM1241 induces microglial activation and IL-1β TNF-α upregulation in SC and DRG via the CB2 receptor pathway.
Collapse
Affiliation(s)
- Chao Ma
- Department of Anesthesiology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Mingyue Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Pinyi Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dandan Liu
- Department of Anesthesiology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyu Zheng
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xuelai Zhong
- Department of Anesthesiology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Guonian Wang
- Department of Anesthesiology, The Fourth Hospital of Harbin Medical University, Harbin, China; Pain Research Institute of Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
6
|
Central IRAK-4 kinase inhibition for the treatment of pain following nerve injury in rats. Brain Behav Immun 2020; 88:781-790. [PMID: 32439472 DOI: 10.1016/j.bbi.2020.05.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 11/20/2022] Open
Abstract
There is ample evidence for the role of the immune system in developing chronic pain following peripheral nerve injury. Especially Toll-like receptors (TLRs) and their associated signaling components and pro-inflammatory cytokines such as IL-1β, induced after injury, are involved in nociceptive processes and believed to contribute to the manifestation of chronic neuropathic pain states. Whereas the inhibition of the kinase function of IRAK-4, a central kinase downstream of TLRs and IL-1 receptors (IL-1Rs), seems efficacious in various chronic inflammatory and autoimmune models, it's role in regulating chronic neuropathic pain remained elusive to date. Here, we examined whether pharmacological inhibition of IRAK-4 kinase activity using PF-06650833 and BMS-986147, two clinical-stage kinase inhibitors, is effective for controlling persistent pain following nerve injury. Both inhibitors potently inhibited TLR-triggered cytokine release in human peripheral blood mononuclear cell (PBMC) as well as human and rat whole blood cultures. BMS-986147 showing favorable pharmacokinetic (PK) properties, significantly inhibited R848-triggered plasma TNF levels in a rat in vivo cytokine release model after single oral dosing. However, BMS-986147 dose dependently reversed cold allodynia in a rat chronic constriction injury (CCI) model following intrathecal administration only, supporting the notion that central neuro-immune modulation is beneficial for treating chronic neuropathic pain. Although both inhibitors were efficacious in inhibiting IL-1β- or TLR-triggered cytokine release in rat dorsal root ganglion cultures, only partial efficacy was reached in IL-1β-stimulated human glial cultures indicating that inhibiting IRAK-4́'s kinase function might be partially dispensable for human IL-1β driven neuroinflammation. Overall, our data demonstrate that IRAK-4 inhibitors could provide therapeutic benefit in chronic pain following nerve injury, and the central driver for efficacy in the neuropathic pain model as well as potential side effects of centrally available IRAK-4 inhibitors warrant further investigation to develop effective analgesia for patients in high unmet medical need.
Collapse
|