1
|
Watanabe M, Shrivastava RK, Balchandani P. Advanced neuroimaging of the trigeminal nerve and the whole brain in trigeminal neuralgia: a systematic review. Pain 2025; 166:282-310. [PMID: 39132931 DOI: 10.1097/j.pain.0000000000003365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024]
Abstract
ABSTRACT For trigeminal neuralgia (TN), a major role of imaging is to identify the causes, but recent studies demonstrated structural and microstructural changes in the affected nerve. Moreover, an increasing number of studies have reported central nervous system involvement in TN. In this systematic review, recent quantitative magnetic resonance imaging (MRI) studies of the trigeminal nerve and the brain in patients with TN were compiled, organized, and discussed, particularly emphasizing the possible background mechanisms and the interpretation of the results. A systematic search of quantitative MRI studies of the trigeminal nerve and the brain in patients with TN was conducted using PubMed. We included the studies of the primary TN published during 2013 to 2023, conducted for the assessment of the structural and microstructural analysis of the trigeminal nerve, and the structural, diffusion, and functional MRI analysis of the brain. Quantitative MRI studies of the affected trigeminal nerves and the trigeminal pathway demonstrated structural/microstructural alterations and treatment-related changes, which differentiated responders from nonresponders. Quantitative analysis of the brain revealed changes in the brain areas associated with pain processing/modulation and emotional networks. Studies of the affected nerve demonstrated evidence of demyelination and axonal damage, compatible with pathological findings, and have shown its potential value as a tool to assess treatment outcomes. Quantitative MRI has also revealed the possibility of dynamic microstructural, structural, and functional neuronal plasticity of the brain. Further studies are needed to understand these complex mechanisms of neuronal plasticity and to achieve a consensus on the clinical use of quantitative MRI in TN.
Collapse
Affiliation(s)
- Memi Watanabe
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Raj K Shrivastava
- Department of Neurosurgery, Mount Sinai Medical Center, New York, NY, United States
| | - Priti Balchandani
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Szmyd B, Wiśniewski K, Jaskólski DJ. Pathogenesis and Therapy of Neurovascular Compression Syndromes: An Editorial. Biomedicines 2024; 12:1486. [PMID: 39062059 PMCID: PMC11275226 DOI: 10.3390/biomedicines12071486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Neurovascular compression syndromes (NVC) remains a challenging disorders resulting from the compression of cranial nerves at the transition zone [...].
Collapse
Affiliation(s)
- Bartosz Szmyd
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153 Lodz, Poland (D.J.J.)
| | | | | |
Collapse
|
3
|
Sadighparvar S, Al-Hamed FS, Sharif-Naeini R, Meloto CB. Preclinical orofacial pain assays and measures and chronic primary orofacial pain research: where we are and where we need to go. FRONTIERS IN PAIN RESEARCH 2023; 4:1150749. [PMID: 37293433 PMCID: PMC10244561 DOI: 10.3389/fpain.2023.1150749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 06/10/2023] Open
Abstract
Chronic primary orofacial pain (OFP) conditions such as painful temporomandibular disorders (pTMDs; i.e., myofascial pain and arthralgia), idiopathic trigeminal neuralgia (TN), and burning mouth syndrome (BMS) are seemingly idiopathic, but evidence support complex and multifactorial etiology and pathophysiology. Important fragments of this complex array of factors have been identified over the years largely with the help of preclinical studies. However, findings have yet to translate into better pain care for chronic OFP patients. The need to develop preclinical assays that better simulate the etiology, pathophysiology, and clinical symptoms of OFP patients and to assess OFP measures consistent with their clinical symptoms is a challenge that needs to be overcome to support this translation process. In this review, we describe rodent assays and OFP pain measures that can be used in support of chronic primary OFP research, in specific pTMDs, TN, and BMS. We discuss their suitability and limitations considering the current knowledge of the etiology and pathophysiology of these conditions and suggest possible future directions. Our goal is to foster the development of innovative animal models with greater translatability and potential to lead to better care for patients living with chronic primary OFP.
Collapse
Affiliation(s)
- Shirin Sadighparvar
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | | | - Reza Sharif-Naeini
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Physiology and Cell Information Systems, McGill University, Montreal, QC, Canada
| | - Carolina Beraldo Meloto
- The Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Zhou LX, Lin SW, Qiu RH, Lin L, Guo YF, Luo DS, Li YQ, Wang F. Blood-nerve barrier disruption and coagulation system activation induced by mechanical compression injury participate in the peripheral sensitization of trigeminal neuralgia. Front Mol Neurosci 2022; 15:1059980. [PMID: 36618827 PMCID: PMC9810503 DOI: 10.3389/fnmol.2022.1059980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction The aim of this study was to investigate the effect and possible mechanisms of the blood-nerve barrier (BNB) and the coagulation-anticoagulation system in modulating the mechanical allodynia in a trigeminal neuralgia (TN) rat model induced by chronic compression of the trigeminal root entry zone (TREZ). Methods Von Frey filaments were applied to determine the orofacial mechanical allodynia threshold. The BNB permeability was evaluated by Evans blue extravasation test. Immunohistochemical staining and laser confocal microscopy were used to measure the length of the depletion zones of the nodes of Ranvier in the TREZ, the diameter of nerve fibers and the length of the nodal gap. The transcriptional levels of prothrombin and endogenous thrombin inhibitor protease nexin-1 (PN-1) in the TREZ of TN rats were assessed by RT-qPCR. A Western blotting assay was performed to detect the expression of paranodal proteins neurofascin-155 (NF155) and neurofascin-125 (NF125) in the TREZ. The spatiotemporal expression pattern of thrombin activated receptor (i.e. protease activated receptor 1, PAR1) in TREZ were defined by immunostaining and immunoblotting assays. PAR1 receptor inhibitors SCH79797 were administrated to TN rats to analyze the effect of thrombin-PAR1 on orofacial hyperalgesia. Results A compression injury of a rat's TREZ successfully induced TN-like behavior and was accompanied by the destruction of the permeability of the BNB and the promotion of prothrombin and thrombin inhibitor protease nexin-1 (PN-1) expression. The expression of the paranodal proteins neurofascin-155 (NF155) and neurofascin-125 (NF125) was increased, while the nodal gap length of the nodes of Ranvier was widened and the length of node-depleted zones was shortened. Moreover, the expression of PAR1 within the TREZ was upregulated at an early stage of TN, and administration of the PAR1 antagonist SCH79797 effectively ameliorated orofacial mechanical allodynia. Conclusion A compression injury of the TREZ increased the permeability of the BNB and induced disturbances in the local coagulation-anticoagulation system, concomitant with the structural changes in the nodes of Ranvier, thrombin-PAR1 may play a critical role in modulating orofacial mechanical hyperalgesia in a TN rat model.
Collapse
Affiliation(s)
- Lu-Xi Zhou
- Laboratory of Clinical Applied Anatomy, Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Shao-Wei Lin
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Rong-Hui Qiu
- Laboratory of Clinical Applied Anatomy, Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ling Lin
- Laboratory of Clinical Applied Anatomy, Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China,Public Technology Service Center, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yue-Feng Guo
- Laboratory of Clinical Applied Anatomy, Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Dao-Shu Luo
- Laboratory of Clinical Applied Anatomy, Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China,Dao-Shu Luo,
| | - Yun-Qing Li
- Laboratory of Clinical Applied Anatomy, Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China,Public Technology Service Center, Fujian Medical University, Fuzhou, Fujian Province, China,Yun-Qing Li,
| | - Feng Wang
- Laboratory of Clinical Applied Anatomy, Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China,*Correspondence: Feng Wang,
| |
Collapse
|
5
|
Szmyd B, Sołek J, Błaszczyk M, Jankowski J, Liberski PP, Jaskólski DJ, Wysiadecki G, Karuga FF, Gabryelska A, Sochal M, Tubbs RS, Radek M. The Underlying Pathogenesis of Neurovascular Compression Syndromes: A Systematic Review. Front Mol Neurosci 2022; 15:923089. [PMID: 35860499 PMCID: PMC9289473 DOI: 10.3389/fnmol.2022.923089] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Neurovascular compression syndromes (NVC) are challenging disorders resulting from the compression of cranial nerves at the root entry/exit zone. Clinically, we can distinguish the following NVC conditions: trigeminal neuralgia, hemifacial spasm, and glossopharyngeal neuralgia. Also, rare cases of geniculate neuralgia and superior laryngeal neuralgia are reported. Other syndromes, e.g., disabling positional vertigo, arterial hypertension in the course of NVC at the CN IX-X REZ and torticollis, have insufficient clinical evidence for microvascular decompression. The exact pathomechanism leading to characteristic NVC-related symptoms remains unclear. Proposed etiologies have limited explanatory scope. Therefore, we have examined the underlying pathomechanisms stated in the medical literature. To achieve our goal, we systematically reviewed original English language papers available in Pubmed and Web of Science databases before 2 October 2021. We obtained 1694 papers after eliminating duplicates. Only 357 original papers potentially pertaining to the pathogenesis of NVC were enrolled in full-text assessment for eligibility. Of these, 63 were included in the final analysis. The systematic review suggests that the anatomical and/or hemodynamical changes described are insufficient to account for NVC-related symptoms by themselves. They must coexist with additional changes such as factors associated with the affected nerve (e.g., demyelination, REZ modeling, vasculature pathology), nucleus hyperexcitability, white and/or gray matter changes in the brain, or disturbances in ion channels. Moreover, the effects of inflammatory background, altered proteome, and biochemical parameters on symptomatic NVC cannot be ignored. Further studies are needed to gain better insight into NVC pathophysiology.
Collapse
Affiliation(s)
- Bartosz Szmyd
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
| | - Julia Sołek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| | - Maciej Błaszczyk
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
| | - Jakub Jankowski
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
| | - Paweł P. Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Dariusz J. Jaskólski
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Lodz, Poland
| | - Grzegorz Wysiadecki
- Department of Normal and Clinical Anatomy, Medical University of Lodz, Lodz, Poland
| | - Filip F. Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - R. Shane Tubbs
- Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, LA, United States
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Anatomical Sciences, St. George's University, St. George's, Grenada
- University of Queensland, Brisbane, QLD, Australia
| | - Maciej Radek
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
- *Correspondence: Maciej Radek
| |
Collapse
|
6
|
Expression of Human Immunodeficiency Virus Transactivator of Transcription (HIV-Tat 1-86) Protein Alters Nociceptive Processing that is Sensitive to Anti-Oxidant and Anti-Inflammatory Interventions. J Neuroimmune Pharmacol 2022; 17:152-164. [PMID: 33619645 PMCID: PMC8380260 DOI: 10.1007/s11481-021-09985-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/24/2021] [Indexed: 12/29/2022]
Abstract
Despite the success of combined antiretroviral therapy (cART) in reducing viral load, a substantial portion of Human Immunodeficiency Virus (HIV)+ patients report chronic pain. The exact mechanism underlying this co-morbidity even with undetectable viral load remains unknown, but the transactivator of transcription (HIV-Tat) protein is of particular interest. Functional HIV-Tat protein is observed even in cerebrospinal fluid of patients who have an undetectable viral load. It is hypothesized that Tat protein exposure is sufficient to induce neuropathic pain-like manifestations via both activation of microglia and generation of oxidative stress. iTat mice conditionally expressed Tat(1-86) protein in the central nervous system upon daily administration of doxycycline (100 mg/kg/d, i.p., up to 14 days). The effect of HIV-Tat protein exposure on the well-being of the animal was assessed using sucrose-evoked grooming and acute nesting behavior for pain-depressed behaviors, and the development of hyperalgesia assessed with warm-water tail-withdrawal and von Frey assays for thermal hyperalgesia and mechanical allodynia, respectively. Tissue harvested at select time points was used to assess ex vivo alterations in oxidative stress, astrocytosis and microgliosis, and blood-brain barrier integrity with assays utilizing fluorescence-based indicators. Tat protein induced mild thermal hyperalgesia but robust mechanical allodynia starting after 4 days of exposure, reaching a nadir after 7 days. Changes in nociceptive processing were associated with reduced sucrose-evoked grooming behavior without altering acute nesting behavior, and in spinal cord dysregulated free radical generation as measured by DCF fluorescence intensity, altered immunohistochemical expression of the gliotic markers, Iba-1 and GFAP, and increased permeability of the blood-brain barrier to the small molecule fluorescent tracer, sodium fluorescein, in a time-dependent manner. Pretreatment with the anti-inflammatory, indomethacin (1 mg/kg/d, i.p.), the antioxidant, methylsulfonylmethane (100 mg/kg/d i.p.), or the immunomodulatory agent, dimethylfumarate (100 mg/kg/d p.o.) thirty minutes prior to daily injections of doxycycline (100 mg/kg/d i.p.) over 7 days significantly attenuated the development of Tat-induced mechanical allodynia. Collectively, the data suggests that even acute exposure to HIV-1 Tat protein at pathologically relevant levels is sufficient to produce select neurophysiological and behavioral manifestations of chronic pain consistent with that reported by HIV-positive patients.
Collapse
|
7
|
Lin J, Zhou L, Luo Z, Adam MI, Zhao L, Wang F, Luo D. Flow cytometry analysis of immune and glial cells in a trigeminal neuralgia rat model. Sci Rep 2021; 11:23569. [PMID: 34876649 PMCID: PMC8651642 DOI: 10.1038/s41598-021-02911-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022] Open
Abstract
Microvascular compression of the trigeminal root entry zone (TREZ) is the main cause of most primary trigeminal neuralgia (TN), change of glial plasticity was previously studied in the TREZ of TN rat model induced by chronic compression. To better understand the role of astrocytes and immune cells in the TREZ, different cell markers including glial fibrillary acidic protein (GFAP), complement C3, S100A10, CD45, CD11b, glutamate-aspartate transporter (GLAST), Iba-1 and TMEM119 were used in the TN rat model by immunohistochemistry and flow cytometry. On the post operation day 28, GFAP/C3-positive A1 astrocytes and GFAP/S100A10-positive A2 astrocytes were activated in the TREZ after compression injury, there were no statistical differences in the ratios of A1/A2 astrocytes between the sham and TN groups. There was no significant difference in Iba-1-positive cells between the two groups. The ratios of infiltrating lymphocytes (CD45+CD11b−) (p = 0.0075) and infiltrating macrophages (CD45highCD11b+) (p = 0.0388) were significantly higher than those of the sham group. In conclusion, different subtypes A1/A2 astrocytes in the TREZ were activated after compression injury, infiltrating macrophages and lymphocytes increased, these neuroimmune cells in the TREZ may participate in the pathogenesis of TN rat model.
Collapse
Affiliation(s)
- Junjin Lin
- Public Technology Service Center of Fujian Medical University; Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, P.R. China
| | - Luxi Zhou
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou, 350122, P.R. China.,Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, University Town, Fuzhou, 350122, P.R. China
| | - Zhaoke Luo
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou, 350122, P.R. China.,Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, University Town, Fuzhou, 350122, P.R. China
| | - Madeha Ishag Adam
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou, 350122, P.R. China.,Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, University Town, Fuzhou, 350122, P.R. China
| | - Li Zhao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou, 350122, P.R. China.,Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, University Town, Fuzhou, 350122, P.R. China
| | - Feng Wang
- Public Technology Service Center of Fujian Medical University; Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, P.R. China. .,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou, 350122, P.R. China. .,Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, University Town, Fuzhou, 350122, P.R. China.
| | - Daoshu Luo
- Public Technology Service Center of Fujian Medical University; Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, P.R. China. .,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou, 350122, P.R. China. .,Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, University Town, Fuzhou, 350122, P.R. China.
| |
Collapse
|
8
|
Luo Z, Liao X, Luo L, Fan Q, Zhang X, Guo Y, Wang F, Ye Z, Luo D. Extracellular ATP and cAMP signaling promote Piezo2-dependent mechanical allodynia after trigeminal nerve compression injury. J Neurochem 2021; 160:376-391. [PMID: 34757653 DOI: 10.1111/jnc.15537] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022]
Abstract
Trigeminal neuralgia (TN) is a type of severe paroxysmal neuropathic pain commonly triggered by mild mechanical stimulation in the orofacial area. Piezo2, a mechanically gated ion channel that mediates tactile allodynia in neuropathic pain, can be potentiated by a cyclic adenosine monophosphate (cAMP)-dependent signaling pathway that involves the exchange protein directly activated by cAMP 1 (Epac1). To study whether Piezo2-mediated mechanotransduction contributes to peripheral sensitization in a rat model of TN after trigeminal nerve compression injury, the expression of Piezo2 and activation of cAMP signal-related molecules in the trigeminal ganglion (TG) were detected. Changes in purinergic P2 receptors in the TG were also studied by RNA-seq. The expression of Piezo2, cAMP, and Epac1 in the TG of the TN animals increased after chronic compression of the trigeminal nerve root (CCT) for 21 days, but Piezo2 knockdown by shRNA in the TG attenuated orofacial mechanical allodynia. Purinergic P2 receptors P2X4, P2X7, P2Y1, and P2Y2 were significantly up-regulated after CCT injury. In vitro, Piezo2 expression in TG neurons was significantly increased by exogenous adenosine 5'-triphosphate (ATP) and Ca2+ ionophore ionomycin. ATP pre-treated TG neurons displayed elevated [Ca2+ ]i and faster increase in responding to blockage of Na+ /Ca2+ exchanger by KB-R7943. Furthermore, mechanical stimulation of cultured TG neurons led to sustained elevation in [Ca2+ ]i in ATP pre-treated TG neurons, which is much less in naïve TG neurons, or is significantly reduced by Piezo2 inhibitor GsMTx4. These results indicated a pivotal role of Piezo2 in peripheral mechanical allodynia in the rat CCT model. Extracellular ATP, Ca2+ influx, and the cAMP-to-Epac1 signaling pathway synergistically contribute to the pathogenesis and the persistence of mechanical allodynia.
Collapse
Affiliation(s)
- Zhaoke Luo
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xinyue Liao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lili Luo
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qitong Fan
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaofen Zhang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yuefeng Guo
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Feng Wang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zucheng Ye
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Daoshu Luo
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Laboratory of Clinical Applied Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Human Anatomy, the School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Affiliation(s)
- Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per T Hansson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Division of Emergencies and Critical Care, Department of Pain Management and Research & Norwegian National Advisory Unit on Neuropathic Pain, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Nagakura Y, Nagaoka S, Kurose T. Potential Molecular Targets for Treating Neuropathic Orofacial Pain Based on Current Findings in Animal Models. Int J Mol Sci 2021; 22:ijms22126406. [PMID: 34203854 PMCID: PMC8232571 DOI: 10.3390/ijms22126406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/25/2023] Open
Abstract
This review highlights potential molecular targets for treating neuropathic orofacial pain based on current findings in animal models. Preclinical research is currently elucidating the pathophysiology of the disease and identifying the molecular targets for better therapies using animal models that mimic this category of orofacial pain, especially post-traumatic trigeminal neuropathic pain (PTNP) and primary trigeminal neuralgia (PTN). Animal models of PTNP and PTN simulate their etiologies, that is, trauma to the trigeminal nerve branch and compression of the trigeminal root entry zone, respectively. Investigations in these animal models have suggested that biological processes, including inflammation, enhanced neuropeptide-mediated pain signal transmission, axonal ectopic discharges, and enhancement of interactions between neurons and glial cells in the trigeminal pathway, are underlying orofacial pain phenotypes. The molecules associated with biological processes, whose expressions are substantially altered following trigeminal nerve damage or compression of the trigeminal nerve root, are potentially involved in the generation and/or exacerbation of neuropathic orofacial pain and can be potential molecular targets for the discovery of better therapies. Application of therapeutic candidates, which act on the molecular targets and modulate biological processes, attenuates pain-associated behaviors in animal models. Such therapeutic candidates including calcitonin gene-related peptide receptor antagonists that have a reasonable mechanism for ameliorating neuropathic orofacial pain and meet the requirements for safe administration to humans seem worth to be evaluated in clinical trials. Such prospective translation of the efficacy of therapeutic candidates from animal models to human patients would help develop better therapies for neuropathic orofacial pain.
Collapse
Affiliation(s)
- Yukinori Nagakura
- School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa-city, Fukuoka 831-8501, Japan
- Correspondence:
| | - Shogo Nagaoka
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan; (S.N.); (T.K.)
| | - Takahiro Kurose
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan; (S.N.); (T.K.)
| |
Collapse
|
11
|
Somaza S, Montilla EM. Novel theory about radiosurgery's action mechanisms on trigeminal ganglion for idiopathic trigeminal neuralgia: Role of the satellite glial cells. Surg Neurol Int 2020; 11:412. [PMID: 33365175 PMCID: PMC7749945 DOI: 10.25259/sni_484_2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND There are many theories about the cause of trigeminal neuralgia (TN). None of them satisfactorily explains how demyelination alone through the ephaptic mechanism can contribute to the development of the TN crisis. The main characteristic of TN pain is its dynamic nature, which is difficult to explain based only on anatomical findings. With these antecedents, the exact mechanism by which radiosurgery produces pain relief in TN is unknown. METHODS It is based on the trigeminal ganglion (TG) cytoarchitecture and the pathophysiological findings observed after an injury to a trigeminal branch. TG seems to have a predominant role given its cellular structure. The neuronal component in sensory ganglia is generally surrounded by a single layer of satellite glial cells (SGC), which forms a sheath around each body cell. There is increasing evidence that SGCs play a key role in nociception. This depends on their ability to influence the neuronal excitability that occurs in conditions of neuropathic and inflammatory pain; contributing to both the generation and maintenance of pain. RESULTS We have already published the beneficial effects of radiosurgery on the TG for the treatment of idiopathic TN and secondary to vertebrobasilar ectasia. Now, we are investigating the functioning of the TG and how radiosurgery could act on the SGC, deactivating them, and contributing to the decrease or disappearance of the painful condition. CONCLUSION We are postulating a theory on how radiosurgery in TG produces changes in the SGC, with implications in the pathological mechanisms initiated by the alteration caused in the neuron after a nerve injury.
Collapse
Affiliation(s)
- Salvador Somaza
- Department of Neurosurgery, Centro Diagnostico Docente Las Mercedes, Hospital de Clinicas Caracas
| | - Eglee M. Montilla
- Department of Radiation Oncologist Radiation Oncology, Centro Diagnostico Docente Las Mercedes, Caracas, Miranda, Venezuela
| |
Collapse
|
12
|
Are glia targets for neuropathic orofacial pain therapy? J Am Dent Assoc 2020; 152:774-779. [PMID: 32921390 DOI: 10.1016/j.adaj.2020.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/06/2023]
|
13
|
Li J, Zhang Y, Yang Z, Zhang J, Lin R, Luo D. Salidroside promotes sciatic nerve regeneration following combined application epimysium conduit and Schwann cells in rats. Exp Biol Med (Maywood) 2020; 245:522-531. [PMID: 32053008 DOI: 10.1177/1535370220906541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jiaqi Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Yongguang Zhang
- Department of Orthopaedics, 900 Hospital of the Joint Logistics Support Force/Xiamen University Dongfang Hospital, and Fuzong Clinical Medicine College of Fujian Medical University, Fuzhou 350025, China
| | - Zhimin Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Jingxian Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Ren Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Daoshu Luo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| |
Collapse
|
14
|
Luo D, Luo L, Lin R, Lin L, Lin Q. Brain-derived neurotrophic factor and Glial cell line-derived neurotrophic factor expressions in the trigeminal root entry zone and trigeminal ganglion neurons of a trigeminal neuralgia rat model. Anat Rec (Hoboken) 2020; 303:3014-3023. [PMID: 31922368 DOI: 10.1002/ar.24364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
Abstract
Microvascular compression on the trigeminal root entry zone (TREZ) is the main etiology of trigeminal neuralgia (TN) patients. To investigate brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) in the trigeminal ganglion (TG) and TREZ, immunofluorescence staining and Western blot were used in a rat TN model. Both BDNF and GDNF were observed in the TG neurons and TREZ. The expression of the BDNF dimer in the TG was increased in the TN group, while GDNF expression was decreased after compression injury. The BDNF dimer/pro-BDNF ratio in the TREZ of the TN group was higher than that in the sham group, but the GDNF expression in the TREZ was significantly lower than that in the sham group. These results suggested that compression injury in the TREZ of rats induced dynamic changes in BDNF and GDNF in both the TG and TREZ, and these changes are involved in the nociceptive transmission of the TN animal model.
Collapse
Affiliation(s)
- Daoshu Luo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou, China
| | - Lili Luo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ren Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou, China
| | - Ling Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qing Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou, China
| |
Collapse
|