1
|
Musachio EAS, Pires RG, Fernandes EJ, Andrade S, Meichtry LB, Janner DE, Meira GM, Ribeiro EE, Barbisan F, da Cruz IBM, Prigol M. The Amazonian Camu-Camu Fruit Modulates the Development of Drosophila melanogaster and the Neural Function of Adult Flies under Oxidative Stress Conditions. Antioxidants (Basel) 2024; 13:102. [PMID: 38247526 PMCID: PMC11154359 DOI: 10.3390/antiox13010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Camu-camu (Myrciaria dubia) is known for its antioxidant properties, although little is known about its developmental safety effects, particularly on adult neural function under basal redox and oxidative stress conditions. Therefore, this study sought to address this gap by conducting three complementary protocols using Drosophila melanogaster to investigate these effects. The initial assays revealed that second-stage larvae consumed diets supplemented with various concentrations of camu-camu uniformly, establishing a 50% lethal concentration at 4.799 mg/mL. Hence, non-lethal (0.1, 0.5, and 1 mg/mL) and sub-lethal (5 and 10 mg/mL) concentrations were then chosen to evaluate the effects of camu-camu on preimaginal development and adult neural function. Our observations showed that camu-camu impacts the expression of antioxidant enzymes, reactive species, and lipoperoxidation. Notably, sub-lethal concentrations decreased preimaginal viability and locomotor activity, negatively influenced geotaxis and acetylcholinesterase activity, and increased reactive species, catalase, and glutathione S-transferase activity in flies. Additionally, the protective effects of camu-camu against oxidative stress induced by iron (20 mM) were assessed. Flies supplemented with 0.5 mg/mL of camu-camu during the larval period showed improved neural viability and function, and this supplementation was found to protect against oxidative stress. These findings are instrumental in evaluating the safety and efficacy of commercial supplements based on camu-camu, offering significant insights for future research and application.
Collapse
Affiliation(s)
- Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (E.A.S.M.); (R.G.P.); (E.J.F.); (S.A.); (L.B.M.); (D.E.J.); (M.P.)
| | - Rafaela Garay Pires
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (E.A.S.M.); (R.G.P.); (E.J.F.); (S.A.); (L.B.M.); (D.E.J.); (M.P.)
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (E.A.S.M.); (R.G.P.); (E.J.F.); (S.A.); (L.B.M.); (D.E.J.); (M.P.)
| | - Stefani Andrade
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (E.A.S.M.); (R.G.P.); (E.J.F.); (S.A.); (L.B.M.); (D.E.J.); (M.P.)
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (E.A.S.M.); (R.G.P.); (E.J.F.); (S.A.); (L.B.M.); (D.E.J.); (M.P.)
| | - Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (E.A.S.M.); (R.G.P.); (E.J.F.); (S.A.); (L.B.M.); (D.E.J.); (M.P.)
| | - Graziela Moro Meira
- Laboratory of Biogenomics, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (G.M.M.); (F.B.)
| | - Euler Esteves Ribeiro
- Center for Research, Teaching and Technological Development-GERONTEC, Open University Foundation for the Elderly, Manaus 69029-040, AM, Brazil;
| | - Fernanda Barbisan
- Laboratory of Biogenomics, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (G.M.M.); (F.B.)
- Graduate Program in Gerontology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Laboratory of Biogenomics, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (G.M.M.); (F.B.)
- Graduate Program in Gerontology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules (LaftamBio), Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (E.A.S.M.); (R.G.P.); (E.J.F.); (S.A.); (L.B.M.); (D.E.J.); (M.P.)
| |
Collapse
|
2
|
Pedroso AL, Schonwald MK, Dalla Corte CL, Soares FAA, Sperança A, Godoi B, de Carvalho NR. Effects of Rosmarinus officinalis L. ( Laminaceae) essential oil on adult and larvae of Drosophila melanogaster. Toxicol Res (Camb) 2023; 12:913-921. [PMID: 37915481 PMCID: PMC10615809 DOI: 10.1093/toxres/tfad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/31/2023] [Indexed: 11/03/2023] Open
Abstract
Rosmarinus officinalis (Lamiaceae family), also known as "alecrim," is a perennial herb, typical of the Mediterranean region and widely distributed in Brazilian territory. Despite having demonstrated several properties of human interest, insecticide/larvicidal effect of essential oil from R. officinalis on insects remains unclear. In this study, we tested the effects of R. officinalis essential oil on biomarkers of oxidative damage in Drosophila melanogaster. Exposure to R. officinalis essential oil increased adult mortality and decreased geotaxis behavior in adult fruit flies. In addition, essential oil increased of larval mortality and impaired the developmental success in D. melanogaster. R. officinalis essential oil showed a significant repellent effect, with duration time of about 6 h. To understand the mechanism underlying the toxicity of essential oil both pro-oxidant effects and biomarkers of oxidative damage were evaluated in exposed flies. Exposure to essential oil caused a significant redox imbalance with impairment of both enzymatic and non-enzymatic antioxidant system and increased the lipid peroxidation levels. These results suggest that R. officinalis essential oil can be used as a bioinsecticide and/or larvicide as well as an alternative insect repellent.
Collapse
Affiliation(s)
- Aline Lucca Pedroso
- Instituto Federal Farroupilha, Campus IFFar, Santo Ângelo, RS 98806-700, Brazil
| | | | - Cristiane Lenz Dalla Corte
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus UFSM, Santa Maria, RS 97105-900, Brazil
| | - Felix Alexandre Antunes Soares
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus UFSM, Santa Maria, RS 97105-900, Brazil
| | - Adriane Sperança
- Instituto Federal Farroupilha, Campus IFFar, Santo Ângelo, RS 98806-700, Brazil
| | - Benhur Godoi
- Núcleo de Síntese, Aplicação, e Análise de Compostos Orgânicos e Inorgânicos, Universidade Federal Fronteira Sul, Campus UFFS, Cerro Largo, RS 97900-000, Brazil
| | | |
Collapse
|
3
|
Bianchini MC, Soares LFW, Sousa JMFM, Ramborger BP, Gayer MC, Bridi JC, Roehrs R, Pinton S, Aschner M, Ávila DS, Puntel RL. MeHg exposure impairs both the catecholaminergic and cholinergic systems resulting in motor and non-motor behavioral changes in Drosophila melanogaster. Chem Biol Interact 2022; 365:110121. [PMID: 35995257 DOI: 10.1016/j.cbi.2022.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
Abstract
Human exposure to the natural environmental contaminant methylmercury (MeHg) has been associated to adverse health effects. Importantly, the mechanisms by which this organomercurial exerts its neurotoxicity have yet to be fully clarified. Therefore, the aim of this study was to evaluate whether exposure to MeHg alters dopamine (DA) and octopamine (OA) levels, acetylcholinesterase (AChE) activity and impacts both motor and non-motor behaviours. We studied the effect of MeHg by feeding 1-2 d old flies (male and females) with 25 and 50 μM MeHg for 4 d and determined effects on survival, motor and non-motor behaviours, oxidative stress, AChE and tyrosine hydroxylase (TH) activities, as well as DA and OA levels. We found that Drosophila melanogaster (D. melanogaster) exposed to MeHg showed a reduction in survival rate, associated with the inhibition of AChE and TH activities in head of flies and decreased DA and OA levels. These changes were accompanied by behavioural alterations, such as locomotor deficit and increased grooming behaviour, in addition to an increase in oxidative stress markers both in head and in body of flies, and an increase in glutathione-S-transferase (GST) activity in head of flies. Collectively, our data support the hypothesis that MeHg neurotoxicity is associated with altered OA and DA levels, AChE inhibition, which may serve, at least in part, as the underpinnings of both motor and non-motor behavioural changes.
Collapse
Affiliation(s)
- Matheus C Bianchini
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), Uruguaiana, RS, Brazil
| | - Luiz F W Soares
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), Uruguaiana, RS, Brazil
| | - João M F M Sousa
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), Uruguaiana, RS, Brazil
| | - Bruna P Ramborger
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), Uruguaiana, RS, Brazil
| | - Mateus C Gayer
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), Uruguaiana, RS, Brazil
| | - Jessika C Bridi
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Rafael Roehrs
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), Uruguaiana, RS, Brazil
| | - Simone Pinton
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), Uruguaiana, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, 10461, NY, United States
| | - Daiana S Ávila
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), Uruguaiana, RS, Brazil
| | - Robson L Puntel
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), Uruguaiana, RS, Brazil.
| |
Collapse
|
4
|
Abrão LDC, Costa-Silva DG, Santos MGD, Cerqueira MBR, Badiale-Furlong E, Muccillo-Baisch AL, Hort MA. Toxicity evaluation of traditional and organic yerba mate ( Ilex paraguariensis A. St.-Hil.) extracts. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:461-479. [PMID: 35189780 DOI: 10.1080/15287394.2022.2035873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Yerba mate (Ilex paraguariensis A. St.-Hil.) is an important source of biologically active compounds with pharmacological potential. The aim of this study was to examine the toxicity of different extracts obtained from either traditional or organic cultivated yerba mate in vitro and in vivo. Aqueous, ethanolic and methanolic extracts were obtained from commercial samples of yerba mate and total phenolic content was determined employing Folin-Ciocalteau reagent. The aqueous extracts presented higher content of total phenols, compared to ethanolic and methanolic extracts, and also demonstrated lower cytotoxicity, which is the basis for testing were carried out only using aqueous extracts. The main phenolic acids found in traditional aqueous (TA) extract were chlorogenic, gallic and protocatechuic acids. Gallic and hydroxybenzoic acids were detected in aqueous cultivated organic (OA) extract. Pretreatment with OA extract (100 µg/ml, 1 hr) was cytoprotective against rotenone-induced toxicity (1 µM). For in vivo toxicity assay, zebrafish embryos were exposed to OA or TA extracts (10-160 µg/ml) at 4 hr post fertilization. TA extract decreased embryos survival in a concentration-dependent manner, reduced the hatching rate at 40 µg/ml, increased edema frequency at 80 µg/ml and altered body curvature at 120 µg/ml. Further, TA extract produced locomotor disorders at concentrations equal to or greater than 10 µg/ml. In contrast, OA extract exhibited no apparent toxic effect on organogenesis and behavior up to 100 µg/ml. In summary, the OA cultivated extract showed the lowest cytotoxicity in vitro, enhanced reduction in rotenone-induced toxicity, and produced less toxicity in zebrafish embryos compared to the TA extract.
Collapse
Affiliation(s)
- Lian da Costa Abrão
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Dennis Guilherme Costa-Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Michele Goulart Dos Santos
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | | | - Eliana Badiale-Furlong
- Programa de Pós-graduação em Engenharia e Ciência de Alimentos, Escola de Química e Alimentos, Universidade Federal do Rio Grande, Brazil
| | - Ana Luiza Muccillo-Baisch
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| |
Collapse
|
5
|
Ogunsuyi OB, Olagoke OC, Afolabi BA, Oboh G, Ijomone OM, Barbosa NV, da Rocha JBT. Dietary inclusions of Solanum vegetables mitigate aluminum-induced redox and inflammation-related neurotoxicity in Drosophila melanogaster model. Nutr Neurosci 2021; 25:2077-2091. [PMID: 34057051 DOI: 10.1080/1028415x.2021.1933331] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND This study investigated the modulatory capacity of two Solanum green leafy vegetables; S. macrocarpon L. (African eggplant AE) and S. nigrum L. (Black nightshade BN) on dysregulation of some antioxidant, pro-apoptotic, pro-inflammatory-like, acetylcholinesterase gene expression and redox status in the Drosophila melanogaster model of aluminum-induced neurotoxicity. METHODS Flies were exposed to AlCl3 (6.7 mM) alone or in combination with the leaves (0.1 and 1.0%) from both samples in their diet for seven days. Thereafter, the fly heads were rapidly separated, homogenized, and used to assay for reactive oxygen species (ROS), total thiol content, catalase, glutathione-S-transferase (GST), acetylcholinesterase (AChE) activities, and the expression of antioxidant-mediators (Hsp70, catalase, cnc/Nrf2, Jafrac1 and FOXO), acetylcholinesterase (Ace1), pro-apoptotic caspase-like (Dronc) and its regulator (reaper), as well as inflammation-related (NF-kB/Relish) genes. RESULTS Results showed that AlCl3-exposed flies had significantly reduced survival rate which were ameliorated by AlCl3 also elevated ROS, GST and reduced AChE activities in fly heads while dietary inclusions of AE and BN ameliorated survial rate and oxidative stress in AlCl3-exposed flies. In addition, Hsp70, Jafrac1, reaper and NF-kҝB/Relish were significantly upregulated in AlCl3-exposed fly heads, while cnc/Nrf2 and FOXO were significantly downregulated, but catalase, Dronc and Ace were, not significantly modulated. Nevertheless, these impairments in gene expression levels were ameliorated by dietary inclusions of AE and BN during AlCl3 exposure. CONCLUSION These findings showed that dietary inclusions of AE and BN leaves offer protection against Al-induced neurotoxicity in D. melanogaster and thus, could serve as functional foods with neuroprotective properties.
Collapse
Affiliation(s)
- Opeyemi B Ogunsuyi
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Brazil.,Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Olawande C Olagoke
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Blessing A Afolabi
- Department of Biochemistry, Bowen University Iwo, Iwo, Osun State, Nigeria
| | - Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Omamuyovwi M Ijomone
- Neuroscience Laboratory, Human Anatomy Department, Federal University of Technology, Akure, Nigeria
| | - Nilda V Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - João B T da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
6
|
Silva NC, Poetini MR, Bianchini MC, Almeida FP, Dahle MMM, Araujo SM, Bortolotto VC, Musachio EAS, Ramborger BP, Novo DLR, Roehrs R, Mesko MF, Prigol M, Puntel RL. Protective effect of gamma-oryzanol against manganese-induced toxicity in Drosophila melanogaster. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17519-17531. [PMID: 33403631 DOI: 10.1007/s11356-020-11848-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Manganese (Mn) is an essential element that, in excess, seems to be involved in the development of different neurodegenerative conditions. Gamma-oryzanol (Ory) was previously reported to possess antioxidant and neuroprotective properties. Thus, we conducted this study to test the hypothesis that Ory can also protect flies in an Mn intoxication model. Adult wild-type flies were fed over 10 days with Mn (5 mM) and/or Ory (25 μM). Flies treated with Mn had a decrease in locomotor activity and a higher mortality rate compared to those in controls. Mn-treated flies also had a significant increase in acetylcholinesterase (AChE) activity, in Mn accumulation and in oxidative stress markers. Moreover, flies treated with Mn exhibited a significant decrease in dopamine levels and in tyrosine hydroxylase activity, as well as in mitochondrial and cellular viability. Particularly important, Ory protected against mortality and avoided locomotor and biochemical changes associated with Mn exposure. However, Ory did not prevent the accumulation of Mn. The present results support the notion that Ory effectively attenuates detrimental changes associated with Mn exposure in Drosophila melanogaster, reinforcing its neuroprotective action/potential.
Collapse
Affiliation(s)
- Neicí Cáceres Silva
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Márcia Rósula Poetini
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Matheus Chimelo Bianchini
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Francielli Polet Almeida
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Mustafá Munir Mustafa Dahle
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Stífani Machado Araujo
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Vandreza Cardoso Bortolotto
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Elize Aparecida Santos Musachio
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Bruna Piaia Ramborger
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Diogo La Rosa Novo
- Universidade Federal de Pelotas, Campus Universitário, S/N - Prédio/Bloco: 30 e 32, Capão do Leão, RS, CEP 96160-000, Brazil
| | - Rafael Roehrs
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Marcia Foster Mesko
- Universidade Federal de Pelotas, Campus Universitário, S/N - Prédio/Bloco: 30 e 32, Capão do Leão, RS, CEP 96160-000, Brazil
| | - Marina Prigol
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil.
| | - Robson Luiz Puntel
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil.
| |
Collapse
|
7
|
Portela JL, Bianchini MC, Roos DH, de Ávila DS, Puntel RL. Caffeic acid and caffeine attenuate toxicity associated with malonic or methylmalonic acid exposure in Drosophila melanogaster. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:227-240. [DOI: 10.1007/s00210-020-01974-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
|