1
|
Vienot A, Vernerey D, Bouard A, Klajer E, Kim S, Tournigand C, Louvet C, André T, Rousseau B, Wespiser M, Spehner L, Wang YA, Weispfenning A, Dochy E, Borg C. Stanniocalcin 1 in Patients with Refractory Colorectal Cancer Treated with Regorafenib: A Post Hoc Biomarker Analysis of the TEXCAN and CORRECT Trials. CANCER RESEARCH COMMUNICATIONS 2025; 5:287-294. [PMID: 39807836 PMCID: PMC11811826 DOI: 10.1158/2767-9764.crc-24-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/27/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
SIGNIFICANCE STC1 is a protein secreted by intratumor endothelial cells in which plasma concentrations increase in patients with chemorefractory mCRC. Based on analyses of patients with refractory mCRC in the TEXCAN and CORRECT trials, we found that STC1 plasma levels had a prognostic role for OS, with high levels associated with poor outcome. A predictive role for baseline STC1 levels was pointed out for regorafenib efficacy.
Collapse
Affiliation(s)
- Angélique Vienot
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Dewi Vernerey
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Adeline Bouard
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Elodie Klajer
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Stefano Kim
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | | | | | - Thierry André
- Sorbonne Université and Hôpital Saint-Antoine, Paris, France
| | | | - Mylène Wespiser
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Laurie Spehner
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Ying A. Wang
- Bayer HealthCare Pharmaceuticals, Cambridge, Massachusetts
| | | | | | - Christophe Borg
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| |
Collapse
|
2
|
Mookerjee S, Whitley G, Banerjee D. Stanniocalcin-1: A Novel Mediator in Diabetic Kidney Disease and Cardiovascular Disease. Kidney Int Rep 2025; 10:321-327. [PMID: 39990897 PMCID: PMC11843109 DOI: 10.1016/j.ekir.2024.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 02/25/2025] Open
Abstract
Diabetes mellitus represents a group of metabolic diseases characterized by hyperglycemia from defects in insulin secretion, action, or both. The prevalence of type 2 diabetes mellitus, characterized by insulin resistance, has increased over time in the UK, and is the most prevalent cause of chronic kidney disease (CKD). Cardiovascular complications are a major cause of mortality for these patients. Stanniocalcin (STC), originally identified in bony fish as a hormone regulating calcium levels, has since been found in mammals, including humans. In fish, STC functions as an antihypercalcemic factor. Mammals possess 2 STC orthologues, STC-1 and STC-2, with STC-1 demonstrating significant sequence and functional conservation across species. Unlike fish, STC-1 is not normally present in the blood of healthy humans. However, it can be detected in certain conditions such as pregnancy, cancer, and CKD. In humans, STC-1 has diverse roles, including modulation of calcium and phosphate homeostasis, and it is implicated in kidney and cardiovascular protection. It has been reported that STC-1 has antioxidant, anti-inflammatory, and antiapoptotic activities, playing a role in renoprotection in diabetic nephropathy. This review explores the molecular biology of STC-1, its physiological functions, and its emerging role in GKDs, particularly diabetic and cardiovascular diseases. We highlight its potential protective mechanisms against hypercalcemia, its antioxidant and anti-inflammatory properties, and its cardioprotective properties in ischemia-reperfusion. Further research into STC-1 could provide new insights into therapeutic strategies for managing diseases characterized by calcium imbalance and lead to new treatments for the cardiovascular morbidity associated with diabetic kidney disease.
Collapse
Affiliation(s)
- Souradip Mookerjee
- Renal and Transplantation Unit, St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Guy Whitley
- Neurosciences and Cell Biology, Cardiovascular and Genomics Research Institutes, St George's University of London, London, UK
| | - Debasish Banerjee
- Renal and Transplantation Unit, St George’s University Hospitals NHS Foundation Trust, London, UK
- Neurosciences and Cell Biology, Cardiovascular and Genomics Research Institutes, St George's University of London, London, UK
| |
Collapse
|
3
|
Wang K, Liu Y, Li S, Zhao N, Qin F, Tao Y, Song Z. Unveiling the therapeutic potential and mechanisms of stanniocalcin-1 in retinal degeneration. Surv Ophthalmol 2025; 70:106-120. [PMID: 39270826 DOI: 10.1016/j.survophthal.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
Retinal degeneration (RD) is a group of ocular diseases characterized by progressive photoreceptor apoptosis and visual impairment. Mitochondrial malfunction, excessive oxidative stress, and chronic activation of neuroglia collectively contribute to the development of RD. Currently, there is a lack of efficacious therapeutic interventions for RD. Stanniocalcin-1 (STC-1) is a promising candidate molecule to decelerate photoreceptor cell death. STC-1 is a secreted calcium/phosphorus regulatory protein that exerts diverse protective effects. Accumulating evidence suggests that STC-1 protects retinal cells from ischemic injury, oxidative stress, and excessive apoptosis through enhancing the expression of uncoupling protein-2 (UCP-2). Furthermore, STC-1 exerts its antiinflammatory effects by inhibiting the activation of microglia and macrophages, as well as the synthesis and secretion of proinflammatory cytokines, such as TNF-α, IL-1, and IL-6. By employing these mechanisms, STC-1 effectively shields the retinal photoreceptors and optic nerve, thereby slowing down the progression of RD. We summarize the STC-1-mediated therapeutic effects on the degenerating retina, with a particular focus on its underlying mechanisms. These findings highlight that STC-1 may act as a versatile molecule to treat degenerative retinopathy. Further research on STC-1 is imperative to establish optimal protocols for its clinical use.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Yashuang Liu
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Na Zhao
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Fangyuan Qin
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Ye Tao
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China.
| | - Zongming Song
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China.
| |
Collapse
|
4
|
Geng Y, Jiang C, Yang H, Xia Q, Xu X, Yang K, Yuan X, Chen J, Chen Y, Chen X, Zhang L, Hu C, Guo A. Construction of an IFNAR1 knockout MDBK cell line using CRISPR/Cas9 and its effect on bovine virus replication. Front Immunol 2024; 15:1404649. [PMID: 39100665 PMCID: PMC11294105 DOI: 10.3389/fimmu.2024.1404649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
The type I interferon (IFN) pathway is important for eukaryotic cells to resist viral infection, as well as an impediment to efficient virus replication. Therefore, this study aims to create an IFNAR1 knockout (KO) Madin-Darby bovine kidney (MDBK) cell line using CRISPR/Cas9 and investigate its application and potential mechanism in increasing viral replication of bovines. The IFNAR1 KO cells showed increased titers of bovine viral diarrhea virus (BVDV) (1.5 log10), with bovine enterovirus and bovine parainfluenza virus type 3 (0.5-0.8 log10). RNA-seq revealed reduced expression of the genes related IFN-I pathways including IFNAR1, STAT3, IRF9, and SOCS3 in IFNAR1 KO cells compared with WT cells. In WT cells, 306 differentially expressed genes (DEGs) were identified between BVDV-infected and -uninfected cells. Of these, 128 up- and 178 down-regulated genes were mainly associated with growth cycle and biosynthesis, respectively. In IFNAR1 KO cells, 286 DEGs were identified, with 82 up-regulated genes were associated with signaling pathways, and 204 down-regulated genes. Further, 92 DEGs were overlapped between WT and IFNAR1 KO cells including ESM1, IL13RA2, and SLC25A34. Unique DEGs in WT cells were related to inflammation and immune regulation, whereas those unique in IFNAR1 KO cells involved in cell cycle regulation through pathways such as MAPK. Knocking down SLC25A34 and IL13RA2 in IFNAR1 KO cells increased BVDV replication by 0.3 log10 and 0.4 log10, respectively. Additionally, we constructed an IFNAR1/IFNAR2 double-knockout MDBK cell line, which further increased BVDV viral titers compared with IFNAR1 KO cells (0.6 log10). Overall, the IFNAR1 KO MDBK cell line can support better replication of bovine viruses and therefore provides a valuable tool for bovine virus research on viral pathogenesis and host innate immune response.
Collapse
Affiliation(s)
- Yuanchen Geng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan, China
| | - Chuanwen Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan, China
| | - Hao Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan, China
| | - Qing Xia
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaowen Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan, China
| | - Kaihui Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan, China
| | - Xinwei Yuan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan, China
| | - Jianguo Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan, China
| | - Lei Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan, China
| | - Changmin Hu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affair, Wuhan, China
| |
Collapse
|
5
|
Xia L, Chen J, Huang J, Lin X, Jiang J, Liu T, Huang N, Luo Y. The role of AMPKα subunit in Alzheimer's disease: In-depth analysis and future prospects. Heliyon 2024; 10:e34254. [PMID: 39071620 PMCID: PMC11279802 DOI: 10.1016/j.heliyon.2024.e34254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
The AMP-activated protein kinase α (AMPKα) subunit is the catalytic subunit in the AMPK complex, playing a crucial role in AMPK activation. It has two isoforms: AMPKα1 and AMPKα2. Emerging evidence suggests that the AMPKα subunit exhibits subtype-specific effects in Alzheimer's disease (AD). This review discusses the role of the AMPKα subunit in the pathogenesis of AD, including its impact on β-amyloid (Aβ) pathology, Tau pathology, metabolic disorders, inflammation, mitochondrial dysfunction, inflammasome and pyroptosis. Additionally, it reviews the distinct roles of its isoforms, AMPKα1 and AMPKα2, in AD, which may provide more precise targets for future drug development in AD.
Collapse
Affiliation(s)
- Lingqiong Xia
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Jianhua Chen
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Juan Huang
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Xianmei Lin
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jingyu Jiang
- Department of Gastroenterology, Guizhou Aerospace Hospital, Zunyi, Guizhou, China
| | - Tingting Liu
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Yong Luo
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| |
Collapse
|
6
|
Jin C, Huang X, Hu Y, Xu B, Ma J. A Prospective Longitudinal Cohort Study of Serum Stanniocalcin-1 as a Potential Prognostic Biomarker of Severe Traumatic Brain Injury. Ther Clin Risk Manag 2024; 20:341-361. [PMID: 38884106 PMCID: PMC11179674 DOI: 10.2147/tcrm.s463955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
Background Stanniocalcin-1 (STC1) may harbor anti-inflammatory and anti-oxidative properties, thereby exerting neuroprotective effects. This study was done with the intent to determine the role of serum STC1 in severity assessment and prognosis prediction of severe traumatic brain injury (sTBI). Methods In this prospective longitudinal cohort study of 104 sTBI patients and 104 healthy individuals (controls), serum STC1 levels were quantified. Severity indicators were Glasgow Coma Scale (GCS) and Rotterdam computed tomography classification. Follow-up time was 180 days and extended Glasgow outcome scale (GOSE) score 1-4 was deemed as poor prognosis. Multivariate analyses were applied to assess severity correlations and prognosis associations. Discriminative efficiencies were estimated in terms of area under receiver operating characteristic curve (AUC). Results Patients exhibited significantly higher serum STC1 levels than controls. Serum STC1 levels were substantially elevated in order of GCS scores from 8 to 3, Rotterdam scores from 3 to 6 and 180-day GOSE scores from 8 to 1. Also, serum STC1 levels were independently correlated with GCS scores, Rotterdam scores and 180-day GOSE scores. Serum STC1 levels were independently associated with 180-day death, overall survival and poor prognosis, as well as were efficiently predictive of death and poor prognosis. Prediction model containing GCS scores, Rotterdam scores and serum STC1 levels, as opposed to any of them, showed higher discriminative ability for the risks of death and poor prognosis. Alternatively, serum STC1 levels were linearly correlated with risk of death, overall survival and poor prognosis under restricted cubic spline. Subgroup analysis showed that serum STC1 levels non-statistically significantly interacted with age, gender, hypertension, diabetes mellitus, etc. Conclusion A significant elevation of serum STC1 levels is highly related to severity and clinical outcome, suggesting that serum STC1 may be a potential prognostic biomarker of sTBI.
Collapse
Affiliation(s)
- Chunhua Jin
- Emergency Department, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, People's Republic of China
| | - Xiuqin Huang
- Department of Plastic and Cosmetic Surgery, The 72nd Group Military Hospital of the People's Liberation Army of China, Huzhou, Zhejiang Province, People's Republic of China
| | - Yanping Hu
- Emergency Department, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, People's Republic of China
| | - Bing Xu
- Emergency Department, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, People's Republic of China
| | - Jiasen Ma
- Emergency Department, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, People's Republic of China
| |
Collapse
|
7
|
Yang X, Ma J, Mo L, Xiong Y, Xiong X, Lan D, Fu W, Yin S. Molecular cloning and characterization of STC1 gene and its functional analyses in yak (Bos grunniens) cumulus granulosa cells. Theriogenology 2023; 208:185-193. [PMID: 37354862 DOI: 10.1016/j.theriogenology.2023.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
Cumulus granulosa cells (CGCs), an important type of ovarian somatic cells, carries out various functions related to oogenesis, follicular development, and steroidogenesis. Studying the biological mechanisms involved in the development and function of CGCs makes a great contribution to understanding the reproductive regulation in female animals. Stanniocalcin-1 (STC1) is an important Ca2+-regulated glycoprotein hormone that exhibits high expression levels in ovaries. In this study, we cloned the coding sequence of the yak STC1, predicted the structure of STC1 protein, detected the expression and localization of STC1 in yak ovaries, and analyzed the functions of STC1 in yak CGCs. The CDS (coding sequence) region of yak STC1 gene was found to be 744 bp and encoded 247 amino acids. Homology comparison revealed that STC1 protein was highly conserved among mammals. The STC1 mRNA displayed dynamic expression profiles in different stages of yak ovaries, and the highest expression was found in the follicular phase. Regarding localization, STC1 protein was widely distributed in various kinds of yak ovarian cells, including oocytes, mural granulosa cells, CGCs, and thecal cells. Repressing the expression of STC1 resulted in defective proliferation and survival of yak CGCs. In addition, knockdown the expression of STC1 repressed the secretion of progesterone and promoted the secretion of estrogen. Overexpression of STC1 partially rescued the proliferation of CGCs and resulted in opposite effects on the secretion of progesterone and estrogen. Several apoptosis and steroidogenesis-related genes, including BAX, BCL2, HSD3B1, HSD17B1, CYP11A1 and CYP17A1 showed altered expressions after repressing or increasing the expression of STC1 in yak CGCs. To the best of our knowledge, this study is the first to focus on the role of STC1 in yak CGCs, and the outcomes offer fresh insights into the mechanism governing yak reproduction.
Collapse
Affiliation(s)
- Xue Yang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Jun Ma
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Luoyu Mo
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Yan Xiong
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Xianrong Xiong
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Daoliang Lan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Wei Fu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Shi Yin
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China; Key Laboratory of Modem Technology (Southwest Minzu University), State Ethnic Affairs Commission, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
8
|
Gao CF, Zhang GH, Ye ZH, Xu YY, Li Z. Usability of Serum Stanniocalcin-1 as a Prognostic Biochemical Marker of Acute Supratentorial Intracerebral Hemorrhage: A Prospective Cohort Study. Int J Gen Med 2023; 16:2791-2803. [PMID: 37426521 PMCID: PMC10328107 DOI: 10.2147/ijgm.s420245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023] Open
Abstract
Objective Stanniocalcin-1 (STC1) may be neuroprotective. This study aimed to evaluate the prognostic role of serum STC1 levels in intracerebral hemorrhage (ICH). Methods This prospective observational study was assigned in two parts. In the first part, blood samples of 48 patients with ICH were acquired on admission and on days 1, 2, 3, 5, and 7 after ICH, and those of 48 controls were collected at their entry into the study. In the second part, blood samples of 141 patients with ICH were obtained upon admission. Serum STC1 levels were measured, and the National Institutes of Health Stroke Scale (NIHSS), hematoma volume, and poststroke 6-month modified Rankin Scale (mRS) scores were recorded. Dynamic changes in serum STC levels and their correlation with disease severity and prognosis were investigated. Results Serum STC1 levels were elevated after ICH, peaked on day 1, plateaued on day 2, declined gradually afterwards, and were significantly higher than those in controls. Serum STC1 levels were independently correlated with NIHSS scores, hematoma volume, and the 6-month post-injury mRS scores. Serum STC1 levels, NIHSS scores, and hematoma volume independently predicted a poor prognosis (mRS scores of 3-6). The model integrating serum STC1 levels, NIHSS scores, and hematoma volume was visually displayed using a nomogram and was relatively stable using the Hosmer-Lemeshow test and calibration curve analysis. Under the receiver operating characteristic curve, serum STC1 levels efficiently predicted a poor prognosis and showed similar prognostic ability to NIHSS scores and hematoma volume. The preceding model had significantly higher prognostic capability than NIHSS scores and hematoma volume alone and their combination. Conclusion Substantial enhancement of serum STC1 levels after ICH, which is strongly correlated with severity, independently distinguished the risk of poor prognosis, assuming that serum STC1, as a prognostic parameter, may be clinically valuable in ICH.
Collapse
Affiliation(s)
- Chun-Fang Gao
- Department of Neurosurgery, The Shengzhou Hospital of Traditional Chinese Medicine, Shengzhou, Zhejiang Province, People’s Republic of China
| | - Guo-Hai Zhang
- Department of Neurosurgery, The Shengzhou Hospital of Traditional Chinese Medicine, Shengzhou, Zhejiang Province, People’s Republic of China
| | - Zhe-Hao Ye
- Department of Neurosurgery, The Shengzhou Hospital of Traditional Chinese Medicine, Shengzhou, Zhejiang Province, People’s Republic of China
| | - Yu-Yu Xu
- Department of Neurology, The Shengzhou Hospital of Traditional Chinese Medicine, Shengzhou, Zhejiang Province, People’s Republic of China
| | - Zhao Li
- Department of Neurosurgery, The Shengzhou Hospital of Traditional Chinese Medicine, Shengzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
9
|
E G, Sun B, Liu B, Xu G, He S, Wang Y, Feng L, Wei H, Zhang J, Chen J, Gao Y, Zhang E. Enhanced BPGM/2,3-DPG pathway activity suppresses glycolysis in hypoxic astrocytes via FIH-1 and TET2. Brain Res Bull 2023; 192:36-46. [PMID: 36334804 DOI: 10.1016/j.brainresbull.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Bisphosphoglycerate mutase (BPGM) is expressed in human erythrocytes and responsible for the production of 2,3-bisphosphoglycerate (2,3-DPG). However, the expression and role of BPGM in other cells have not been reported. In this work, we found that BPGM was significantly upregulated in astrocytes upon acute hypoxia, and the role of this phenomenon will be clarified in the following report. METHODS The mRNA and protein expression levels of BPGM and the content of 2,3-DPG with hypoxia treatment were determined in vitro and in vivo. Furthermore, glycolysis was evaluated upon in hypoxic astrocytes with BPGM knockdown and in normoxic astrocytes with BPGM overexpression or 2,3-DPG treatment. To investigate the mechanism by which BPGM/2,3-DPG regulated glycolysis in hypoxic astrocytes, we detected the expression of HIF-1α, FIH-1 and TET2 with silencing or overexpression of BPGM and 2,3-DPG treatment. RESULTS The expression of glycolytic genes and the capacity of lactate markedly increased with 6 h, 12 h, 24 h, 36 h and 48 h 1 % O2 hypoxic treatment in astrocytes. The expression of BPGM was upregulated, and the production of 2,3-DPG was accelerated upon hypoxia. Moreover, when BPGM expression was knocked down, glycolysis was promoted in HEB cells. However, overexpression of BPGM and addition of 2,3-DPG to the cellular medium in normoxic cells could downregulate glycolytic genes. Furthermore, HIF-1α and TET2 exhibited higher expression levels and FIH-1 showed a lower expression level upon BPGM silencing, while these changes were reversed under BPGM overexpression and 2,3-DPG treatment. CONCLUSIONS Our study revealed that the BPGM/2,3-DPG pathway presented a suppressive effect on glycolysis in hypoxic astrocytes by negatively regulating HIF-1α and TET2.
Collapse
Affiliation(s)
- Guoji E
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Binda Sun
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Bao Liu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Shu He
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Yu Wang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Lan Feng
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Hannan Wei
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Jianyang Zhang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Jian Chen
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Yuqi Gao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| | - Erlong Zhang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| |
Collapse
|
10
|
Lee MY, Ojeda-Britez S, Ehrbar D, Samwer A, Begley TJ, Melendez JA. Selenoproteins and the senescence-associated epitranscriptome. Exp Biol Med (Maywood) 2022; 247:2090-2102. [PMID: 36036467 PMCID: PMC9837304 DOI: 10.1177/15353702221116592] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Selenium is a naturally found trace element, which provides multiple benefits including antioxidant, anticancer, and antiaging, as well as boosting immunity. One unique feature of selenium is its incorporation as selenocysteine, a rare 21st amino acid, into selenoproteins. Twenty-five human selenoproteins have been discovered, and a majority of these serve as crucial antioxidant enzymes for redox homeostasis. Unlike other amino acids, incorporation of selenocysteine requires a distinctive UGA stop codon recoding mechanism. Although many studies correlating selenium, selenoproteins, aging, and senescence have been performed, it has not yet been explored if the upstream events regulating selenoprotein synthesis play a role in senescence-associated pathologies. The epitranscriptomic writer alkylation repair homolog 8 (ALKBH8) is critical for selenoprotein production, and its deficiency can significantly decrease levels of selenoproteins that are essential for reactive oxygen species (ROS) detoxification, and increase oxidative stress, one of the major drivers of cellular senescence. Here, we review the potential role of epitranscriptomic marks that govern selenocysteine utilization in regulating the senescence program.
Collapse
Affiliation(s)
- May Y Lee
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
- The RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Stephen Ojeda-Britez
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Dylan Ehrbar
- The RNA Institute, University at Albany, Albany, NY 12222, USA
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY 12222, USA
| | | | - Thomas J Begley
- The RNA Institute, University at Albany, Albany, NY 12222, USA
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY 12222, USA
| | - J Andres Melendez
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
- The RNA Institute, University at Albany, Albany, NY 12222, USA
| |
Collapse
|
11
|
Mechanisms of Vitamin C Regulating Immune and Inflammation Associated with Neonatal Hypoxic-Ischemic Encephalopathy Based on Network Pharmacology and Molecular Simulation Technology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4904325. [PMID: 35198034 PMCID: PMC8860524 DOI: 10.1155/2022/4904325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
Background There are still controversies about the curative effect of vitamin C in treating HIE, and its mechanism of action is not entirely clear. This study is designed to explore the potential molecular mechanism of vitamin C in treating neonatal hypoxic ischemic encephalopathy (HIE). Methods The effect targets of vitamin C and the pathogenic targets of neonatal HIE were obtained via retrieval of public databases to screen out the molecular targets of vitamin C acting on neonatal HIE. Gene Ontology (GO) functional annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on the main targets. Vitamin C and the optimum target structural components are subjected to molecular docking and molecular dynamics simulation analysis via computer software so as to verify their binding activity and stability. Result Based on 16 overlapping targets of vitamin C and HIE, seven main targets were identified in this study. According to GO and KEGG analysis, molecular functions (top 25 items) and signal pathways (21 items) related to inflammatory reaction, immune response, and cell transcriptional control may be potential pathways for vitamin C to treat neonatal HIE. Molecular docking and molecular dynamics simulation were adopted to definitively determine the 4 optimum core target spots. Conclusion The efficacy of vitamin C on HIE is involved in the immunoregulation and inflammation-related functional processes and signal pathways. These molecular mechanisms, including core targets, will contribute to the clinical practice of neonatal HIE in the future.
Collapse
|