1
|
Liu J, Pang SY, Zhou SY, He QY, Zhao RY, Qu Y, Yang Y, Guo ZN. Lipocalin-2 aggravates blood-brain barrier dysfunction after intravenous thrombolysis by promoting endothelial cell ferroptosis via regulating the HMGB1/Nrf2/HO-1 pathway. Redox Biol 2024; 76:103342. [PMID: 39265498 PMCID: PMC11415874 DOI: 10.1016/j.redox.2024.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Disruption of the blood-brain barrier (BBB) is a major contributor to hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) following intravenous thrombolysis (IVT). However, the clinical therapies aimed at BBB protection after IVT remain limited. METHODS One hundred patients with AIS who underwent IVT were enrolled (42 with HT and 58 without HT 24 h after IVT). Based on the cytokine chip, the serum levels of several AIS-related proteins, including LCN2, ferritin, matrix metalloproteinase-3, vascular endothelial-derived growth factor, and X-linked inhibitor of apoptosis, were detected upon admission, and their associations with HT were analyzed. After finding that LCN2 was related to HT in patients with IVT, we clarified whether the modulation of LCN2 influenced BBB dysfunction and HT after thrombolysis and investigated the potential mechanism. RESULTS In patients with AIS following IVT, logistic regression analysis showed that baseline serum LCN2 (p = 0.023) and ferritin (p = 0.046) levels were independently associated with HT. A positive correlation between serum LCN2 and ferritin levels was identified in patients with HT. In experimental studies, recombinant LCN2 (rLCN2) significantly aggravated BBB dysfunction and HT in the thromboembolic stroke rats after thrombolysis, whereas LCN2 inhibition by ZINC006440089 exerted opposite effects. Further mechanistic studies showed that, LCN2 promoted endothelial cell ferroptosis, accompanied by the induction of high mobility group box 1 (HMGB1) and the inhibition of nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins. Ferroptosis inhibitor ferrostatin-1 (fer-1) significantly restricted the LCN2-mediated BBB disruption. Transfection of LCN2 and HMGB1 siRNA inhibited the endothelial cell ferroptosis, and this effects was reversed by Nrf2 siRNA. CONCLUSION LCN2 aggravated BBB disruption after thrombolysis by promoting endothelial cell ferroptosis via regulating the HMGB1/Nrf2/HO-1 pathway, this may provide a promising therapeutic target for the prevention of HT after IVT.
Collapse
Affiliation(s)
- Jie Liu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Shu-Yan Pang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Ruo-Yu Zhao
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China; Neuroscience Research Center, Department of Neurology, First Hospital of Jilin University, Chang Chun, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China; Neuroscience Research Center, Department of Neurology, First Hospital of Jilin University, Chang Chun, China.
| |
Collapse
|
2
|
Torkamaneh M, Torfeh M, Jouriani FH, Sepehr A, Ashrafian F, Aghamohammad S, Rohani M. Investigating the crucial role of selected Bifidobacterium probiotic strains in preventing or reducing inflammation by affecting the autophagy pathway. Lett Appl Microbiol 2023; 76:ovad135. [PMID: 38081214 DOI: 10.1093/lambio/ovad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/14/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
Several studies have shown that probiotics can prevent and reduce inflammation in inflammation-related diseases. However, few studies have focused on the interaction between host and probiotics in modulating the immune system through autophagy. Therefore, we aimed to investigate the preventive and/or therapeutic effects of native potential probiotic breast milk-isolated Bifidobacterium spp. (i.e. B. bifidum, B. longum, and B. infantis) on the inflammatory cascade by affecting autophagy gene expression 24 and 48 h after treatment. Autophagy genes involved in different stages of the autophagy process were selected by quantitative polymerase chain reaction (qPCR). Gene expression investigation was accomplished by exposing the human colorectal adenocarcinoma cell line (HT-29) to sonicated pathogens (1.5 × 108 bacterial CFU ml-1) and adding Bifidobacterium spp. (MOI10) before, after, and simultaneously with induction of inflammation. An equal volume of RPMI medium was used as a control. Generally, our native potential probiotic Bifidobacterium spp. can increase the autophagy gene expression in comparison with pathogen. Moreover, an increase in gene expression was observed with our probiotic strains' consumption in all stages of autophagy. Totally, our selected Bifidobacterium spp. can increase autophagy gene expression before, simultaneously, and after the inflammation induction, so they can prevent and reduce inflammation in an in vitro model of inflammation.
Collapse
Affiliation(s)
- Mahdi Torkamaneh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mahnaz Torfeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | | - Amin Sepehr
- Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Ashrafian
- Clinical Research Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Shadi Aghamohammad
- Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
3
|
Lopez-Pedrera C, Oteros R, Ibáñez-Costa A, Luque-Tévar M, Muñoz-Barrera L, Barbarroja N, Chicano-Gálvez E, Marta-Enguita J, Orbe J, Velasco F, Perez-Sanchez C. The thrombus proteome in stroke reveals a key role of the innate immune system and new insights associated with its etiology, severity, and prognosis. J Thromb Haemost 2023; 21:2894-2907. [PMID: 37100394 DOI: 10.1016/j.jtha.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Nowadays little is known about the molecular profile of the occluding thrombus of patients with ischemic stroke. OBJECTIVES To analyze the proteomic profile of thrombi in patients who experienced an ischemic stroke in order to gain insights into disease pathogenesis. METHODS Thrombi from an exploratory cohort of patients who experienced a stroke were obtained by thrombectomy and analyzed by sequential window acquisition of all theoretical spectra-mass spectrometry. Unsupervised k-means clustering analysis was performed to stratify patients who experienced a stroke. The proteomic profile was associated with both the neurological function (National Institute of Health Stroke Scale [NIHSS]) and the cerebral involvement (Alberta Stroke Program Early CT Score [ASPECTS]) prior to thrombectomy and the clinical status of patients at 3 months using the modified Rankin Scale. In an independent cohort of 210 patients who experienced a stroke, the potential role of neutrophils in stroke severity was interrogated. RESULTS Proteomic analysis identified 580 proteins in thrombi, which were stratified into 4 groups: hemostasis, proteasome and neurological diseases, structural proteins, and innate immune system and neutrophils. The thrombus proteome identified 3 clusters of patients with distinctive severity, prognosis, and etiology of the stroke. A protein signature clearly distinguished atherothrombotic and cardioembolic strokes. Several proteins were significantly correlated with the severity of the stroke (NIHSS and ASPECTS). Functional proteomic analysis highlighted the prominent role of neutrophils in stroke severity. This was in line with the association of neutrophil activation markers and count with NIHSS, ASPECTS, and the modified Rankin Scale score 90 days after the event. CONCLUSION The use of sequential window acquisition of all theoretical spectra-mass spectrometry in thrombi from patients who experienced an ischemic stroke has provided new insights into pathways and players involved in its etiology, severity, and prognosis. The prominent role of the innate immune system identified might pave the way for the development of new biomarkers and therapeutic approaches in this disease.
Collapse
Affiliation(s)
- Chary Lopez-Pedrera
- Rheumatology Service, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain.
| | - Rafael Oteros
- Diagnostic and Therapeutic Neuroradiology Unit, Reina Sofia Hospital, Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Rheumatology Service, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain; Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, Córdoba, Spain
| | - María Luque-Tévar
- Rheumatology Service, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Laura Muñoz-Barrera
- Rheumatology Service, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Nuria Barbarroja
- Rheumatology Service, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain; Cobiomic Bioscience SL, EBT University of Córdoba/IMIBIC, Córdoba, Spain
| | - Eduardo Chicano-Gálvez
- IMIBIC Mass Spectrometry and Molecular Imaging Unit, Maimonides Biomedical Research Institute of Córdoba, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Juan Marta-Enguita
- Atherothrombosis-Laboratory, Cardiovascular Diseases Program, CIMA-Universidad Navarra, IdiSNA, Pamplona, Spain; Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; RICORS-ICTUS, Instituto Salud Carlos III, Madrid, Spain
| | - Josune Orbe
- Atherothrombosis-Laboratory, Cardiovascular Diseases Program, CIMA-Universidad Navarra, IdiSNA, Pamplona, Spain; RICORS-ICTUS, Instituto Salud Carlos III, Madrid, Spain
| | - Francisco Velasco
- Department of Medicine, University of Córdoba, Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
| | - Carlos Perez-Sanchez
- Rheumatology Service, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain; Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, Córdoba, Spain; Cobiomic Bioscience SL, EBT University of Córdoba/IMIBIC, Córdoba, Spain. https://twitter.com/carlosps85
| |
Collapse
|
4
|
Yang Y, Zhang M, Li Z, He S, Ren X, Wang L, Wang Z, Shu S. Identification and cross-validation of autophagy-related genes in cardioembolic stroke. Front Neurol 2023; 14:1097623. [PMID: 37305740 PMCID: PMC10248509 DOI: 10.3389/fneur.2023.1097623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Objective Cardioembolic stroke (CE stroke, also known as cardiogenic cerebral embolism, CCE) has the highest recurrence rate and fatality rate among all subtypes of ischemic stroke, the pathogenesis of which was unclear. Autophagy plays an essential role in the development of CE stroke. We aim to identify the potential autophagy-related molecular markers of CE stroke and uncover the potential therapeutic targets through bioinformatics analysis. Methods The mRNA expression profile dataset GSE58294 was obtained from the GEO database. The potential autophagy-related differentially expressed (DE) genes of CE stroke were screened by R software. Protein-protein interactions (PPIs), correlation analysis, and gene ontology (GO) enrichment analysis were applied to the autophagy-related DE genes. GSE66724, GSE41177, and GSE22255 were introduced for the verification of the autophagy-related DE genes in CE stroke, and the differences in values were re-calculated by Student's t-test. Results A total of 41 autophagy-related DE genes (37 upregulated genes and four downregulated genes) were identified between 23 cardioembolic stroke patients (≤3 h, prior to treatment) and 23 healthy controls. The KEGG and GO enrichment analysis of autophagy-related DE genes indicated several enriched terms related to autophagy, apoptosis, and ER stress. The PPI results demonstrated the interactions between these autophagy-related genes. Moreover, several hub genes, especially for CE stroke, were identified and re-calculated by Student's t-test. Conclusion We identified 41 potential autophagy-related genes associated with CE stroke through bioinformatics analysis. SERPINA1, WDFY3, ERN1, RHEB, and BCL2L1 were identified as the most significant DE genes that may affect the development of CE stroke by regulating autophagy. CXCR4 was identified as a hub gene of all types of strokes. ARNT, MAPK1, ATG12, ATG16L2, ATG2B, and BECN1 were identified as particular hub genes for CE stroke. These results may provide insight into the role of autophagy in CE stroke and contribute to the discovery of potential therapeutic targets for CE stroke treatment.
Collapse
Affiliation(s)
- Yufang Yang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziqing Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shen He
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqi Ren
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linmei Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifei Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi Shu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Zhang Y, Weng J, Huan L, Sheng S, Xu F. Mitophagy in atherosclerosis: from mechanism to therapy. Front Immunol 2023; 14:1165507. [PMID: 37261351 PMCID: PMC10228545 DOI: 10.3389/fimmu.2023.1165507] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 06/02/2023] Open
Abstract
Mitophagy is a type of autophagy that can selectively eliminate damaged and depolarized mitochondria to maintain mitochondrial activity and cellular homeostasis. Several pathways have been found to participate in different steps of mitophagy. Mitophagy plays a significant role in the homeostasis and physiological function of vascular endothelial cells, vascular smooth muscle cells, and macrophages, and is involved in the development of atherosclerosis (AS). At present, many medications and natural chemicals have been shown to alter mitophagy and slow the progression of AS. This review serves as an introduction to the field of mitophagy for researchers interested in targeting this pathway as part of a potential AS management strategy.
Collapse
Affiliation(s)
- Yanhong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiajun Weng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Luyao Huan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Song Sheng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
6
|
Salemkour Y, Lenoir O. Endothelial Autophagy Dysregulation in Diabetes. Cells 2023; 12:947. [PMID: 36980288 PMCID: PMC10047205 DOI: 10.3390/cells12060947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetes mellitus is a major public health issue that affected 537 million people worldwide in 2021, a number that is only expected to increase in the upcoming decade. Diabetes is a systemic metabolic disease with devastating macro- and microvascular complications. Endothelial dysfunction is a key determinant in the pathogenesis of diabetes. Dysfunctional endothelium leads to vasoconstriction by decreased nitric oxide bioavailability and increased expression of vasoconstrictor factors, vascular inflammation through the production of pro-inflammatory cytokines, a loss of microvascular density leading to low organ perfusion, procoagulopathy, and/or arterial stiffening. Autophagy, a lysosomal recycling process, appears to play an important role in endothelial cells, ensuring endothelial homeostasis and functions. Previous reports have provided evidence of autophagic flux impairment in patients with type I or type II diabetes. In this review, we report evidence of endothelial autophagy dysfunction during diabetes. We discuss the mechanisms driving endothelial autophagic flux impairment and summarize therapeutic strategies targeting autophagy in diabetes.
Collapse
Affiliation(s)
| | - Olivia Lenoir
- PARCC, Inserm, Université Paris Cité, 75015 Paris, France
| |
Collapse
|
7
|
He C, Xu Y, Sun J, Li L, Zhang JH, Wang Y. Autophagy and Apoptosis in Acute Brain Injuries: From Mechanism to Treatment. Antioxid Redox Signal 2023; 38:234-257. [PMID: 35579958 DOI: 10.1089/ars.2021.0094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Significance: Autophagy and apoptosis are two important cellular mechanisms behind brain injuries, which are severe clinical situations with increasing incidences worldwide. To search for more and better treatments for brain injuries, it is essential to deepen the understanding of autophagy, apoptosis, and their interactions in brain injuries. This article first analyzes how autophagy and apoptosis participate in the pathogenetic processes of brain injuries respectively and mutually, then summarizes some promising treatments targeting autophagy and apoptosis to show the potential clinical applications in personalized medicine and precision medicine in the future. Recent Advances: Most current studies suggest that apoptosis is detrimental to brain recovery. Several studies indicate that autophagy can cause unnecessary death of neurons after brain injuries, while others show that autophagy is beneficial for acute brain injuries (ABIs) by facilitating the removal of damaged proteins and organelles. Whether autophagy is beneficial or detrimental in ABIs depends on many factors, and the results from different research groups are diverse or even controversial, making this topic more appealing to be explored further. Critical Issues: Neuronal autophagy and apoptosis are two primary pathological processes in ABIs. How they interact with each other and how their regulations affect the outcome and prognosis of brain injuries remain uncertain, making these answers more critical. Future Directions: Insights into the interplay between autophagy and apoptosis and the accurate regulations of their balance in ABIs may promote personalized and precise treatments in the field of brain injuries. Antioxid. Redox Signal. 38, 234-257.
Collapse
Affiliation(s)
- Chuyu He
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Yanjun Xu
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Jing Sun
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Layla Li
- Faculty of Medicine, International School, Jinan University, Guangzhou, China
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, California, USA.,Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Yuechun Wang
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Cao S, Chen S, Qiao X, Guo Y, Liu F, Ding Z, Jin B. Protocatechualdehyde Rescues Oxygen-Glucose Deprivation/Reoxygenation-Induced Endothelial Cells Injury by Inducing Autophagy and Inhibiting Apoptosis via Regulation of SIRT1. Front Pharmacol 2022; 13:846513. [PMID: 35431914 PMCID: PMC9008765 DOI: 10.3389/fphar.2022.846513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/14/2022] [Indexed: 01/30/2023] Open
Abstract
Background: Oxidative stress-induced endothelial cell death, such as apoptosis and autophagy, plays a critical role in ischemia-reperfusion injury. Protocatechualdehyde (PCA) is a major bioactive component of the traditional Chinese medicine Salvia miltiorrhiza Bunge (Lamiaceae), and it has been proved to be effective in the prevention and treatment of ischemic cardiovascular and cerebrovascular diseases. However, its role in oxidative stress-induced endothelial cell death and its underlying mechanisms remains unclear. This study aims to investigate the effects and mechanisms of PCA on endothelial cell apoptosis and autophagy induced by oxygen-glucose deprivation/reoxygenation (OGD/R) injury. Methods: After OGD/R induction, human umbilical vein endothelial cells (HUVECs) were treated with different concentrations of PCA. Cell viability, apoptosis, and autophagy were detected by Cell Counting Kit-8 assay, flow cytometry, and monodansylcadaverine assay, respectively. Western blot was applied to explore the effects of PCA on the expression levels of relevant protein factors. Results: The results show that PCA significantly promoted cell survival rate and cell proliferation and enhanced the antioxidant activity in OGD/R-induced HUVECs. PCA inhibited HUVECs apoptosis, as evidenced by decreased expression of cleaved-caspase-3, Bcl2-associated X (BAX), and increased expression of Bcl-2. PCA induced autophagy by reducing the expression of P62 while increasing the expression of Beclin-1 and LC3 II/I. Meanwhile, PCA enhanced the expression of Sirtuin 1 (SIRT1) and suppressed the expression of P53. When SIRT1 was inhibited by selisistat or SIRT1 small-interfering RNA, the anti-apoptotic and pro-autophagy abilities of PCA were attenuated. Conclusion: These results demonstrated that PCA rescued HUVECs from OGD/R-induced injury by promoting autophagy and inhibiting apoptosis through SIRT1 and could be developed as a potential therapeutic agent against ischemic diseases.
Collapse
Affiliation(s)
- Shidong Cao
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Senmiao Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xilin Qiao
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Guo
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fang Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Jin
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|