1
|
Zhang Y, Zhang C, Yi X, Wang Q, Zhang T, Li Y. Gabapentinoids for the treatment of stroke. Neural Regen Res 2024; 19:1509-1516. [PMID: 38051893 PMCID: PMC10883501 DOI: 10.4103/1673-5374.387968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/04/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Gabapentinoid drugs (pregabalin and gabapentin) have been successfully used in the treatment of neuropathic pain and in focal seizure prevention. Recent research has demonstrated their potent activities in modulating neurotransmitter release in neuronal tissue, oxidative stress, and inflammation, which matches the mechanism of action via voltage-gated calcium channels. In this review, we briefly elaborate on the medicinal history and ligand-binding sites of gabapentinoids. We systematically summarize the preclinical and clinical research on gabapentinoids in stroke, including ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, seizures after stroke, cortical spreading depolarization after stroke, pain after stroke, and nerve regeneration after stroke. This review also discusses the potential targets of gabapentinoids in stroke; however, the existing results are still uncertain regarding the effect of gabapentinoids on stroke and related diseases. Further preclinical and clinical trials are needed to test the therapeutic potential of gabapentinoids in stroke. Therefore, gabapentinoids have both opportunities and challenges in the treatment of stroke.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoli Yi
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qi Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Li Q, Shi M, Ang Y, Yu P, Wan B, Lin B, Chen W, Yue Z, Shi Y, Liu F, Wang H, Duan M, Long Y, Bao H. Hydrogen ameliorates endotoxin-induced acute lung injury through AMPK-mediated bidirectional regulation of Caspase3. Mol Immunol 2024; 168:64-74. [PMID: 38428216 DOI: 10.1016/j.molimm.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
Septic lung injury is characterized by uncontrollable inflammatory infiltrations and acute onset bilateral hypoxemia. Evidence has emerged of the beneficial effect of hydrogen in acute lung injury (ALI), but the underlying mechanism is unclear. In this research, the recovery action of hydrogen on lipopolysaccharide (LPS)-induced ALI in mice and A549 cells was investigated. The 7-day survival rate and body weight of mice were measured after intraperitoneal injection of LPS. Lung function was determined by a whole body plethysmography (WBP) system using the indicators respiratory rate and enhanced pause. Hematoxylin and eosin (HE) staining confirmed the signs of pulmonary edema and inflammatory ooze. Reverse transcription-polymerase chain reaction (RT-PCR) quantification was used to detect the expression of inflammatory factors. Western blotting analysis evaluated the expression levels of involved proteins in the AMP-activated protein kinase (AMPK) pathway. The experimental results confirmed that hydrogen provided an essential solution to the dissipative effects of LPS on survival rate, weight loss and lung function. The LPS-stimulated inflammatory factors, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were also suppressed by hydrogen in A549 cells. Western blot analysis showed that hydrogen significantly upregulated the levels of phosphorylated AMPK (p-AMPK) and lowered the LPS-induced increased expression of dynamin-related protein 1 (Drp1) and Caspase3. These findings prove that hydrogen attenuated LPS-treated ALI by activating the AMPK pathway, supporting the feasibility of hydrogen treatment for sepsis.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu 210000, China; Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Min Shi
- Department of Anesthesiology, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Yang Ang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Pan Yu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Bing Wan
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Bin Lin
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Wei Chen
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Zichuan Yue
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China
| | - Yadan Shi
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Faqi Liu
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Hao Wang
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China
| | - Manlin Duan
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu 210093, China; Department of Anesthesiology, BenQ Medical Center, the Affiliated BenQ Hospital of Nanjing Medical University, Jiangsu 210019, China.
| | - Yun Long
- Department of Anesthesiology, Jiangning Hospital Affiliated to Nanjing Medical University, Jiangsu 211100, China.
| | - Hongguang Bao
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu 210000, China.
| |
Collapse
|
3
|
Nwachukwu KN, Mohammed HE, Mebane DR, Barber AW, Swartzwelder HS, Marshall SA. Acute and Chronic Ethanol Effects during Adolescence on Neuroimmune Responses: Consequences and Potential Pharmacologic Interventions. Cells 2023; 12:1423. [PMID: 37408257 PMCID: PMC10217092 DOI: 10.3390/cells12101423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 07/07/2023] Open
Abstract
Heavy ethanol consumption during adolescence has been linked to neuroimmune response dysregulation and cognitive deficits in the developing adolescent brain. During adolescence, the brain is particularly susceptible to the pharmacological effects of ethanol that are induced by acute and chronic bouts of exposure. Numerous preclinical rodent model studies have used different ethanol administration techniques, such as intragastric gavage, self-administration, vapor, intraperitoneal, and free access, and while most models indicated proinflammatory neuroimmune responses in the adolescent brain, there are various factors that appear to influence this observation. This review synthesizes the most recent findings of the effects of adolescent alcohol use on toll-like receptors, cytokines, and chemokines, as well as the activation of astrocytes and microglia with an emphasis on differences associated with the duration of ethanol exposure (acute vs. chronic), the amount of exposure (e.g., dose or blood ethanol concentrations), sex differences, and the timing of the neuroimmune observation (immediate vs. persistent). Finally, this review discusses new therapeutics and interventions that may ameliorate the dysregulation of neuroimmune maladaptations after ethanol exposure.
Collapse
Affiliation(s)
- Kala N. Nwachukwu
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
- Integrated Biosciences PhD Program, North Carolina Central University, Durham, NC 27707, USA
| | - Hassan E. Mohammed
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - DaQuan R. Mebane
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Andrew W. Barber
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - H. Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27708, USA
| | - S. Alex Marshall
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
4
|
Shnayder NA, Ashkhotov AV, Trefilova VV, Nurgaliev ZA, Novitsky MA, Petrova MM, Narodova EA, Al-Zamil M, Chumakova GA, Garganeeva NP, Nasyrova RF. Molecular Basic of Pharmacotherapy of Cytokine Imbalance as a Component of Intervertebral Disc Degeneration Treatment. Int J Mol Sci 2023; 24:ijms24097692. [PMID: 37175399 PMCID: PMC10178334 DOI: 10.3390/ijms24097692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Intervertebral disc degeneration (IDD) and associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. With age, IDD progresses, leading to spondylosis, spondylarthrosis, herniated disc, spinal canal stenosis. One of the leading mechanisms in the development of IDD and chronic back pain is an imbalance between pro-inflammatory and anti-inflammatory cytokines. However, classical therapeutic strategies for correcting cytokine imbalance in IDD do not give the expected response in more than half of the cases. The purpose of this review is to update knowledge about new and promising therapeutic strategies based on the correction of the molecular mechanisms of cytokine imbalance in patients with IDD. This review demonstrates that knowledge of the molecular mechanisms of the imbalance between pro-inflammatory and anti-inflammatory cytokines may be a new key to finding more effective drugs for the treatment of IDD in the setting of acute and chronic inflammation.
Collapse
Affiliation(s)
- Natalia A Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azamat V Ashkhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Vera V Trefilova
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Zaitun A Nurgaliev
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Maxim A Novitsky
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Marina M Petrova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Ekaterina A Narodova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Galina A Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia
| | - Natalia P Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Regina F Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
5
|
Wu B, Cao Y, Meng M, Jiang Y, Tao H, Zhang Y, Huang C, Li R. Gabapentin alleviates myocardial ischemia-reperfusion injury by increasing the protein expression of GABA ARδ. Eur J Pharmacol 2023; 944:175585. [PMID: 36791842 DOI: 10.1016/j.ejphar.2023.175585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Gabapentin is a commonly used analgesic in the clinic to reduce opioid consumption. It is well known that gabapentin can reduce cerebral ischemia-reperfusion injury (IRI). However, it remains unclear whether gabapentin can reduce myocardial IRI. Before the performance of myocardial ischemia and reperfusion (I/R), rats received gabapentin without or with an intravenous injection of PI3K inhibitor (LY294002), or an intraspinal injection of lentivirus-mediated GABAARδ-shRNA. The myocardial IRI were evaluated by calculating the infarction area, arrhythmia score and myocardial apoptosis. The activity of PI3K/Akt and the expression of GABAARδ were quantified by western blotting. The effect of gabapentin on myocardial I/R was further demonstrated in vitro by establishing oxygen-glucose deprivation and reoxygenation in cardiomyocytes. After I/R in vivo, there were significant increases in infarction area, arrhythmia and Bax protein expression in the myocardium, as well as a decrease of GABAARδ in the spinal cord. Meanwhile, I/R also decreased the protein expression of PI3K/Akt and Bcl-2. Gabapentin pretreatment successfully attenuated IRI including reducing the myocardial infarction area and apoptosis. This effect was abolished by both the systemic inhibition of PI3K/Akt and the intraspinal suppression of GABAARδ. However, gabapentin pretreatment failed to prevent cellular injury induced by OGD/R in cardiomyocytes. Therefore, the myocardial protective effect of gabapentin may be attributed to activating PI3K/Akt in the myocardium and upregulating GABAARδ in the spinal cord. Gabapentin achieved a potent protective effect on the myocardium during the course of routine clinical treatment.
Collapse
Affiliation(s)
- Bin Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Yahong Cao
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - MingZhu Meng
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Yanwan Jiang
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Chunxia Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China.
| | - Rui Li
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, China; Scientific Research and Experiment Center of the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei City, Anhui Province, China.
| |
Collapse
|