1
|
Sati SC, Pant CK, Bhatt P, Pandey Y. Thymine Adsorption onto Cation Exchanged Montmorillonite Clay: Role of Biogenic Divalent Metal Cations in Prebiotic Processes of Chemical Evolution. ORIGINS LIFE EVOL B 2022; 52:233-247. [DOI: 10.1007/s11084-022-09633-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022]
|
2
|
Zaia DAM, de Carvalho PCG, Samulewski RB, de Carvalho Pereira R, Zaia CTBV. Unexpected Thiocyanate Adsorption onto Ferrihydrite Under Prebiotic Chemistry Conditions. ORIGINS LIFE EVOL B 2020; 50:57-76. [PMID: 32266585 DOI: 10.1007/s11084-020-09594-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/10/2020] [Indexed: 02/02/2023]
Abstract
The most crucial role played by minerals was in the preconcentration of biomolecules or precursors of biomolecules in prebiotic seas. If this step had not occurred, molecular evolution would not have occurred. Thiocyanate is an important molecule in the formation of biomolecules as well as a catalyst for prebiotic reactions. The adsorption of thiocyanate onto ferrihydrite was carried out under pH and ion composition conditions in seawater that resembled those of prebiotic Earth. The seawater used in this work had high Mg2+, Ca2+ and SO42- concentrations. The most important result of this work was that ferrihydrite adsorbed thiocyanateata pH value (7.2 ± 0.2) that usually does not adsorb thiocyanate. The high adsorptivity of Mg2+, Ca2+ and SO42-onto ferrihydrite showed that seawater ions can act as carriers of thiocyanate to the ferrihydrite surface, creating a huge outer-sphere complex. Kinetic adsorption and isotherm experiments showed the best fit for the pseudo-second-order model and an activation energy of 23.8 kJ mol-1forthe Langmuir-Freundlich model, respectively. Thermodynamic data showed positive ΔG values, which apparently contradict the adsorption isotherm data and kinetic data that was obtained. The adsorption of thiocyanate onto ferrihydrite could be explained by coupling with the exergonic SO42- adsorption onto ferrihydrite. The FTIR spectra showed no difference between the C≡N stretching peaks of adsorbed thiocyanate and free thiocyanate, corroborating the formation of an outer-sphere complex. All the results demonstrated the importance of the artificial seawater composition for the adsorption of thiocyanate and for understanding prebiotic chemistry.
Collapse
Affiliation(s)
- Dimas A M Zaia
- Departamento de Química, Laboratório de Química Prebiótica-LQP, Universidade Estadual de Londrina, Londrina, PR, CEP 86 057-970, Brazil.
| | - Paulo C G de Carvalho
- Departamento de Química, Laboratório de Química Prebiótica-LQP, Universidade Estadual de Londrina, Londrina, PR, CEP 86 057-970, Brazil
| | - Rafael B Samulewski
- Departamento de Química, Laboratório de Química Prebiótica-LQP, Universidade Estadual de Londrina, Londrina, PR, CEP 86 057-970, Brazil
| | - Rodrigo de Carvalho Pereira
- Departamento de Química, Laboratório de Química Prebiótica-LQP, Universidade Estadual de Londrina, Londrina, PR, CEP 86 057-970, Brazil
| | - Cássia Thaïs B V Zaia
- Departamento de Ciências Fisiológicas, Laboratório de Fisiologia Neuroendocrina--LaFiNen, Universidade Estadual de Londrina, Londrina, PR, CEP 86 057-970, Brazil
| |
Collapse
|
3
|
Villafañe-Barajas SA, Baú JPT, Colín-García M, Negrón-Mendoza A, Heredia-Barbero A, Pi-Puig T, Zaia DAM. Salinity Effects on the Adsorption of Nucleic Acid Compounds on Na-Montmorillonite: a Prebiotic Chemistry Experiment. ORIGINS LIFE EVOL B 2018; 48:181-200. [PMID: 29392543 DOI: 10.1007/s11084-018-9554-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
Any proposed model of Earth's primitive environments requires a combination of geochemical variables. Many experiments are prepared in aqueous solutions and in the presence of minerals. However, most sorption experiments are performed in distilled water, and just a few in seawater analogues, mostly inconsistent with a representative primitive ocean model. Therefore, it is necessary to perform experiments that consider the composition and concentration of dissolved salts in the early ocean to understand how these variables could have affected the absorption of organic molecules into minerals. In this work, the adsorption of adenine, adenosine, and 5'AMP onto Na+montmorillonite was studied using a primitive ocean analog (4.0 Ga) from experimental and computational approaches. The order of sorption of the molecules was: 5'AMP > adenine > adenosine. Infrared spectra showed that the interaction between these molecules and montmorillonite occurs through the NH2 group. In addition, electrostatic interaction between negatively charged montmorillonite and positively charge N1 of these molecules could occur. Results indicate that dissolved salts affect the sorption in all cases; the size and structure of each organic molecule influence the amount sorbed. Specifically, the X-ray diffraction patterns show that dissolved salts occupy the interlayer space in Na-montmorillonite and compete with organic molecules for available sites. The adsorption capacity is clearly affected by dissolved salts in thermodynamic terms as deduced by isotherm models. Indeed, molecular dynamic models suggest that salts are absorbed in the interlamellar space and can interact with oxygen atoms exposed in the edges of clay or in its surface, reducing the sorption of the organic molecules. This research shows that the sorption process could be affected by high concentration of salts, since ions and organic molecules may compete for available sites on inorganic surfaces. Salt concentration in primitive oceans may have strongly affected the sorption, and hence the concentration processes of organic molecules on minerals.
Collapse
Affiliation(s)
- Saúl A Villafañe-Barajas
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
| | - João Paulo T Baú
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | - María Colín-García
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México.
| | - Alicia Negrón-Mendoza
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
| | - Alejandro Heredia-Barbero
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
| | - Teresa Pi-Puig
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Cd. Mx., México
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil.
| |
Collapse
|
4
|
Carneiro CEA, Stabile AC, Gomes FP, da Costa ACS, Zaia CTBV, Zaia DAM. Interaction, at Ambient Temperature and 80 °C, between Minerals and Artificial Seawaters Resembling the Present Ocean Composition and that of 4.0 Billion Years Ago. ORIGINS LIFE EVOL B 2017; 47:323-343. [PMID: 27783188 DOI: 10.1007/s11084-016-9524-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 10/14/2016] [Indexed: 11/30/2022]
Abstract
Probably one of the most important roles played by minerals in the origin of life on Earth was to pre-concentrate biomolecules from the prebiotic seas. There are other ways to pre concentrate biomolecules such as wetting/drying cycles and freezing/sublimation. However, adsorption is most important. If the pre-concentration did not occur-because of degradation of the minerals-other roles played by them such as protection against degradation, formation of polymers, or even as primitive cell walls would be seriously compromised. We studied the interaction of two artificial seawaters with kaolinite, bentonite, montmorillonite, goethite, ferrihydrite and quartz. One seawater has a major cation and anion composition similar to that of the oceans of the Earth 4.0 billion years ago (ASW 4.0 Ga). In the other, the major cations and anions are an average of the compositions of the seawaters of today (ASWT). When ASWT, which is rich in Na+ and Cl-, interacted with bentonite and montmorrilonite structural collapse occurred on the 001 plane. However, ASW 4.0 Ga, which is rich in Mg2+ and SO42-, did not induce this behavior. When ASW 4.0 Ga was reacted with the minerals for 24 h at room temperature and 80 °C, the release of Si and Al to the fluid was below 1 % of the amount in the minerals-meaning that dissolution of the minerals did not occur. In general, minerals adsorbed Mg2+ and K+ from the ASW 4.0 Ga and these cations could be used for the formation of polymers. Also, when the minerals were mixed with ASW 4.0 Ga at 80 °C and ASWT at room temperature or 80 °C it caused the precipitation of CaSO4∙2H2O and halite, respectively. Finally, further experiments (adsorption, formation of polymers, protection of molecules against degradation, primitive cell wall formation) performed under the conditions described in this paper will probably be more representative of what happened on the prebiotic Earth.
Collapse
Affiliation(s)
- Cristine E A Carneiro
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | - Antonio C Stabile
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | - Frederico P Gomes
- Departamento de Agronomia-CCA, Universidade Estadual de Maringa, Maringá, PR, 87020-900, Brazil
| | - Antonio C S da Costa
- Departamento de Agronomia-CCA, Universidade Estadual de Maringa, Maringá, PR, 87020-900, Brazil
| | - Cássia T B V Zaia
- Departamento de Ciências Fisiológicas-CCB, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil.
| |
Collapse
|
5
|
Farias APSF, Carneiro CEA, de Batista Fonseca IC, Zaia CTBV, Zaia DAM. The adsorption of amino acids and cations onto goethite: a prebiotic chemistry experiment. Amino Acids 2016; 48:1401-12. [PMID: 26984319 DOI: 10.1007/s00726-016-2191-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 02/02/2016] [Indexed: 11/26/2022]
Abstract
Few prebiotic chemistry experiments have assessed the adsorption of biomolecules by iron oxide-hydroxides. The present work investigated the effects of cations in artificial seawaters on the adsorption of Gly, α-Ala and β-Ala onto goethite, and vice versa. Goethite served to concentrate K and Mg cations from solution; these effects could have played important roles in peptide nucleoside formation. Goethite showed low adsorption of Gly and α-Ala. On the other hand, β-Ala (a non-protein amino acid) was highly adsorbed by goethite. Because Gly and α-Ala are the most common amino acids in living beings, and iron oxide-hydroxides are widespread on Earth, additional iron oxides should be studied. Increased ionic strength in artificial seawaters decreased the adsorption of amino acids by goethite. Because Na was highly abundant in the artificial seawater, it showed the highest effect on amino acid adsorption. β-Ala increased the adsorption of K and Ca by goethite, this effect could have been important for peptide synthesis.
Collapse
Affiliation(s)
- Ana Paula S F Farias
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | - Cristine E A Carneiro
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | | | - Cássia T B V Zaia
- Departamento de Ciências Fisiológicas-CCB, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil.
| |
Collapse
|
6
|
Du N, Song R, Li H, Song S, Zhang R, Hou W. A Nonconventional Model of Protocell-like Vesicles: Anionic Clay Surface-Mediated Formation from a Single-Tailed Amphiphile. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12579-12586. [PMID: 26524569 DOI: 10.1021/acs.langmuir.5b03477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report a novel model system of precursor cellular membranes, self-assembled from micellar solution of a common anionic single-tailed amphiphile (STA), including sodium dodecyl sulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS). The self-assembly process was mediated with solid surfaces of Mg2Al-CO3 hydrotalcite-like compound (HTlc), an anionic clay, in the absence of cosurfactants or any additives. The resultant STA vesicles were characterized using negative-staining and cryogenic transmission electron microscopies, as well as dynamic light scattering and steady state fluorescence techniques. Interestingly, the obtained STA vesicles displayed good stability even after the removal of the anionic clay surface (ACS), and a self-reproduction phenomenon was observed for the "preformed" STA vesicles when mixing with corresponding STA micellar solutions. More importantly, the micelle-to-vesicle transition for SDS could be still arisen in high-salinity artificial seawater under the ACS mediation. Instead of conventional fatty acid scenario, our finding provides another novel possible model for protocell-like vesicles, which are easily formed under the plausible prebiotic conditions.
Collapse
Affiliation(s)
- Na Du
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University , Jinan 250100, P.R. China
| | - Ruiying Song
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University , Jinan 250100, P.R. China
| | - Haiping Li
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University , Jinan 250100, P.R. China
| | - Shue Song
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University , Jinan 250100, P.R. China
| | - Renjie Zhang
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University , Jinan 250100, P.R. China
| | - Wanguo Hou
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University , Jinan 250100, P.R. China
| |
Collapse
|
7
|
Canhisares-Filho JE, Carneiro CEA, de Santana H, Urbano A, da Costa ACS, Zaia CTBV, Zaia DAM. Characterization of the Adsorption of Nucleic Acid Bases onto Ferrihydrite via Fourier Transform Infrared and Surface-Enhanced Raman Spectroscopy and X-ray Diffractometry. ASTROBIOLOGY 2015; 15:728-738. [PMID: 26393397 DOI: 10.1089/ast.2015.1309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Minerals could have played an important role in concentration, protection, and polymerization of biomolecules. Although iron is the fourth most abundant element in Earth's crust, there are few works in the literature that describe the use of iron oxide-hydroxide in prebiotic chemistry experiments. In the present work, the interaction of adenine, thymine, and uracil with ferrihydrite was studied under conditions that resemble those of prebiotic Earth. At acidic pH, anions in artificial seawater decreased the pH at the point of zero charge (pHpzc) of ferrihydrite; and at basic pH, cations increased the pHpzc. The adsorption of nucleic acid bases onto ferrihydrite followed the order adenine >> uracil > thymine. Adenine adsorption peaked at neutral pH; however, for thymine and uracil, adsorption increased with increasing pH. Electrostatic interactions did not appear to play an important role on the adsorption of nucleic acid bases onto ferrihydrite. Adenine adsorption onto ferrihydrite was higher in distilled water compared to artificial seawater. After ferrihydrite was mixed with artificial seawaters or nucleic acid bases, X-ray diffractograms and Fourier transform infrared spectra did not show any change. Surface-enhanced Raman spectroscopy showed that the interaction of adenine with ferrihydrite was not pH-dependent. In contrast, the interactions of thymine and uracil with ferrihydrite were pH-dependent such that, at basic pH, thymine and uracil lay flat on the surface of ferrihydrite, and at acidic pH, thymine and uracil were perpendicular to the surface. Ferrihydrite adsorbed much more adenine than thymine; thus adenine would have been better protected against degradation by hydrolysis or UV radiation on prebiotic Earth.
Collapse
Affiliation(s)
- José E Canhisares-Filho
- 1 Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Cristine E A Carneiro
- 1 Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Henrique de Santana
- 1 Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Alexandre Urbano
- 2 Departamento de Física-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Antonio C S da Costa
- 3 Departamento de Agronomia-CCA, Universidade Estadual de Maringá , Maringá-PR, Brazil
| | - Cássia T B V Zaia
- 4 Departamento de Ciências Fisiológicas-CCB, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Dimas A M Zaia
- 1 Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| |
Collapse
|