1
|
Goode O, Łapińska U, Morimoto J, Glover G, Milner DS, Santoro AE, Pagliara S, Richards TA. Permeability selection of biologically relevant membranes matches the stereochemistry of life on Earth. PLoS Biol 2025; 23:e3003155. [PMID: 40392769 PMCID: PMC12091744 DOI: 10.1371/journal.pbio.3003155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 04/07/2025] [Indexed: 05/22/2025] Open
Abstract
Early in the evolution of life, a proto-metabolic network was encapsulated within a membrane compartment. The permeability characteristics of the membrane determined several key functions of this network by determining which compounds could enter the compartment and which compounds could not. One key feature of known life is the utilization of right-handed d-ribose and d-deoxyribose sugars and left-handed l-amino acid stereochemical isomers (enantiomers); however, it is not clear why life adopted this specific chirality. Generally, archaea have l-phospholipid membrane chemistries and bacteria and eukaryotes have d-phospholipid membrane chemistries. We previously demonstrated that an l-archaeal and a d-intermediate membrane mimic, bearing a mixture of bacterial and archaeal lipid characteristics (a 'hybrid' membrane), displayed increased permeability for several key compounds compared to bacterial-like membranes. Here, we investigate if these membranes can drive stereochemical selection on pentose sugars, hexose sugars, and amino acids. Using permeability assays of homogenous unilamellar vesicles, we demonstrate that both membranes select for d-ribose and d-deoxyribose sugars while the hybrid membrane uniquely selects for a reduced alphabet of l-amino acids. This repertoire includes alanine, the plausible first l-amino acid utilized. We conclude such compartments could provide stereochemical compound selection matching those used by the core metabolism of life.
Collapse
Affiliation(s)
- Olivia Goode
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| | - Juliano Morimoto
- Institute of Mathematics, University of Aberdeen, King’s College, Aberdeen, United Kingdom
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Brazil
| | - Georgina Glover
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| | - David S. Milner
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Alyson E. Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, United States of America
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| | | |
Collapse
|
2
|
Zhao Y, Yang X, Zhang J, Huang L, Shi Z, Tian Z, Sha A, Lu G. Thaumatin-like protein family genes VfTLP4-3 and VfTLP5 are critical for faba bean's response to drought stress at the seedling stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108243. [PMID: 38048701 DOI: 10.1016/j.plaphy.2023.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Thaumatin-like proteins (TLPs) are a diverse family of pathogenesis-related proteins (PR-5) found in various plant species. Faba bean is an economically important crop known for its nutritional value and resilience to harsh environmental conditions, including drought. In this study, we conducted a comprehensive analysis of the gene structure, phylogenetics, and expression patterns of TLP genes in faba bean, with a specific focus on their response to drought stress. A total of 10 TLP genes were identified and characterized from the faba bean transcriptome, which could be classified into four distinct groups based on their evolutionary relationships. Conserved cysteine residues and REDDD motifs, which are characteristic features of TLPs, were found in most of the identified VfTLP members, and these proteins were likely to reside in the cytoplasm. Two genes, VfTLP4-3 and VfTLP5, exhibited significant upregulation under drought conditions. Additionally, ectopically expressing VfTLP4-3 and VfTLP5 in tobacco leaves resulted in enhanced drought tolerance and increased peroxidase (POD) activity. Moreover, the protein VfTLP4-3 was hypothesized to interact with glycoside hydrolase family 18 (GH18), endochitinase, dehydrin, Barwin, and aldolase, all of which are implicated in chitin metabolism. Conversely, VfTLP5 was anticipated to associate with peptidyl-prolyl cis-trans isomerase-like 3, a molecule linked to the synthesis of proline. These findings suggest that these genes may play crucial roles in mediating the drought response in faba bean through the regulation of these metabolic pathways, and serve as a foundation for future genetic improvement strategies targeting enhanced drought resilience in this economically important crop.
Collapse
Affiliation(s)
- Yongguo Zhao
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, PR China
| | - Xinyu Yang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Jiannan Zhang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China; College of Agriculture, Yangtze University, Jinzhou, 434023, PR China
| | - Liqiong Huang
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Zechen Shi
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Zhitao Tian
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430062, PR China.
| | - Aihua Sha
- College of Agriculture, Yangtze University, Jinzhou, 434023, PR China.
| | - Guangyuan Lu
- College of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China.
| |
Collapse
|
4
|
Toxvaerd S. A Prerequisite for Life. J Theor Biol 2019; 474:48-51. [PMID: 31059714 DOI: 10.1016/j.jtbi.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/28/2019] [Accepted: 05/02/2019] [Indexed: 11/28/2022]
Abstract
The complex physicochemical structures and chemical reactions in living organism have some common features: (1) The life processes take place in the cytosol in the cells, which, from a physicochemical point of view is an emulsion of biomolecules in a dilute aqueous suspension. (2) All living systems are homochiral with respect to the units of amino acids and carbohydrates, but (some) proteins are chiral unstable in the cytosol. (3) And living organism are mortal. These three common features together give a prerequisite for the prebiotic self-assembly at the start of the Abiogenesis. Here we argue, that it all together indicates, that the prebiotic self-assembly of structures and reactions took place in a more saline environment, whereby the homochirality of proteins not only could be obtained, but also preserved. A more saline environment for the prebiotic self-assembly of organic molecules and establishment of biochemical reactions could have been the hydrothermal vents.
Collapse
Affiliation(s)
- Søren Toxvaerd
- Department of Science and Environment, Roskilde University, Postbox 260, Roskilde DK-4000, Denmark.
| |
Collapse
|
5
|
Nguyen DT, Fujihara A. Chiral Recognition in Cold Gas-Phase Cluster Ions of Carbohydrates and Tryptophan Probed by Photodissociation. ORIGINS LIFE EVOL B 2018; 48:395-406. [PMID: 30953250 DOI: 10.1007/s11084-019-09574-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022]
Abstract
Chiral recognition between tryptophan (Trp) and carbohydrates such as D-glucose (D-Glc), methyl-α-D-glucoside (D-glucoside), D-maltose, and D-cellobiose in cold gas-phase cluster ions was investigated as a model for chemical evolution in interstellar molecular clouds using a tandem mass spectrometer containing a cold ion trap. The photodissociation mass spectra of cold gas-phase clusters that contained Na+, Trp enantiomers, and D-maltose showed that Na+(D-Glc) was formed via the glycosidic bond cleavage of D-maltose from photoexcited homochiral Na+(D-Trp)(D-maltose), while the dissociation did not occur in heterochiral Na+(L-Trp)(D-maltose). The enantiomer-selective dissociation was also observed in the case of D-cellobiose. The enantiomer-selective glycosidic bond cleavage of disaccharides suggested that photoexcited D-Trp could prevent chemical evolution of sugar chains from D-enantiomer of carbohydrates in molecular clouds. The spectra of gas-phase clusters that contained Na+, Trp enantiomers, and D-Glc indicated that enantiomer-selective protonation of L-Trp from D-Glc could induce enantiomeric excess via collision-activated dissociation of the protonated L-Trp. In the case of protonated clusters, photoexcited H+(L-Trp) dissociated via Cα-Cβ bond cleavage in the presence of D-Glc or D-glucoside, where the excited states of H+(L-Trp) contributed to the enantiomer-selective reaction in the clusters. These enantiomer selectivities in cold gas-phase clusters indicated that chirality of a molecule induced enantiomeric excess of other molecules via enantiomer-selective reactions in molecular clouds.
Collapse
Affiliation(s)
- Doan Thuc Nguyen
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Akimasa Fujihara
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8531, Japan.
| |
Collapse
|
6
|
Fujihara A, Okawa Y. Chiral and molecular recognition of monosaccharides by photoexcited tryptophan in cold gas-phase noncovalent complexes as a model for chemical evolution in interstellar molecular clouds. Anal Bioanal Chem 2018; 410:6279-6287. [DOI: 10.1007/s00216-018-1238-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
|
7
|
Munegumi T. Epimerization of Alanyl-Alanine Induced by γ-Rays Irradiation in Aqueous Solutions. ORIGINS LIFE EVOL B 2017; 47:69-82. [PMID: 27245350 DOI: 10.1007/s11084-016-9507-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 04/16/2016] [Indexed: 10/21/2022]
Abstract
Living organisms have homochiral L-amino acids in proteins and homochiral D-mononucleotides in nucleic acids. The chemical evolutionary process to protein homochirality has been discussed for many years. Although many scenarios have been proposed for homochirality in the monomeric compounds, homochirality in amino acids and mononucleotides does not always guarantee homochirality in polypeptides and polynucleotides. Integrated scenarios containing the pathways from monomer to polymer should be proposed because in the pathways oligomers and polymers as well as monomers racemize (or epimerize), degrade, and condense. This research addresses epimerization and degradation of dipeptides under γ-rays irradiation by a cobalt-60 (60Co) radiation source. The different rate constants of epimerization between diastereomeric dipeptides in the research suggest that the potential pathway toward homochirality could be much more complex.
Collapse
Affiliation(s)
- Toratane Munegumi
- Naruto University of Education, Naruto, Japan.
- Oyama National College of Technology, Oyama, Japan.
| |
Collapse
|