1
|
Yang Y, Wang Z, Bai J, Qiao H. Prebiotic Peptide Synthesis: How Did Longest Peptide Appear? J Mol Evol 2025; 93:193-211. [PMID: 39992367 DOI: 10.1007/s00239-025-10237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
The origin of proteins is a fundamental question in the study of the origin of life. Peptides, as the building blocks of proteins, necessarily preceded the first proteins in prebiotic chemical evolution. Prebiotic peptides may have also played crucial roles in early life's evolution, contributing to self-catalysis, interacting with nucleic acids, and stabilizing primitive cell compartments. Longer and more complicated prebiotic peptides often have greater structural flexibility and functional potential to support the emergence and evolution of early life. Since the Miller-Urey experiment demonstrated that amino acids can be synthesized in a prebiotic manner, the prebiotic synthesis route of peptides has garnered increasing attention from researchers. However, it is difficult for amino acids to condense into peptides in aqueous solutions spontaneously. Over the past few decades, researchers have explored various routes of prebiotic peptide synthesis in the plausible prebiotic Earth environment, such as thermal polymerization, clay mineral catalysis, wet-dry cycles, condensing agents, and lipid-mediated. This paper reviews advancements in prebiotic peptide synthesis research and discusses the conditions that may have facilitated the emergence of longer peptides.
Collapse
Affiliation(s)
- Yuling Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jin Bai
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| | - Hai Qiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Saroha B, Kumar A, Bahadur I, Negi DS, Vats M, Kumar A, Mohammad F, Soleiman AA. Role of metal(ii) hexacyanocobaltate(iii) surface chemistry for prebiotic peptides synthesis. RSC Adv 2025; 15:7855-7868. [PMID: 40078973 PMCID: PMC11897787 DOI: 10.1039/d5ra00205b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Double metal cyanide (DMC), a heterogeneous catalyst, provides a surface for the polymerization of amino acids. Based on the hypothesis, the present study is designed to evaluate favorable environmental conditions for the chemical evolution and origin of life, such as the effects of temperature and time on the oligomerization of glycine and alanine on metal(ii) hexacyanocobaltate(iii), MHCCo. A series of MHCCo complexes were synthesized and characterized by XRD and FT-IR techniques. The effect of outer metal ions present in the MHCCo complexes on the condensation of glycine and alanine was studied. Our results revealed that Zn2+ ions in the outer sphere showed high catalytic activity compared to other metal ions in the outer sphere. Manganese(ii) hexacyanocobaltate(iii) (MnHCCo), iron(ii) hexacyanocobaltate(iii) (FeHCCo), nickel(ii) hexacyanocobaltate(iii) (NiHCCo) complexes condense the glycine up to trimer and the alanine up to dimer. At the same time, ZnHCCo showed the most valuable catalytic properties that change glycine into a tetramer and alanine into a dimer with a high yield at 90 °C after four weeks. ZnHCCo showed high catalytic activity because of its high surface area compared to other MHCCo complexes. High-Performance Liquid Chromatography (HPLC) and Electron Spray Ionization-Mass Spectroscopy (ESI-MS) techniques were used to confirm the oligomer products of glycine and alanine formed on MHCCo complexes. The results also exposed the catalytic role of MHCCo for the oligomerization of biomolecules, thus supporting chemical evolution.
Collapse
Affiliation(s)
- Babita Saroha
- School of Biological sciences, Doon University Dehradun 248001 (UK.) India
| | - Anand Kumar
- Department of Chemistry, SGRR (PG) College Dehradun 248001 (UK.) India
| | - Indra Bahadur
- Department of Chemistry, North-West University (Mafikeng Campus) Private Bag X2046 Mmabatho 2735 South Africa
| | - Devendra Singh Negi
- Department of Chemistry, H. N. B. Garhwal University Srinagar 246174 (UK.) India
| | - Monika Vats
- Department of Chemistry, Dhanauri (PG) College Dhanauri Haridwar 247667 (UK.) India
| | - Ashish Kumar
- Department of Chemistry, H. N. B. Government (PG) College Udham Singh Nagar Khatima 262308 (UK.) India
| | - Faruq Mohammad
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh11451 Kingdom of Saudi Arabia
| | | |
Collapse
|
3
|
Boigenzahn H, Yin J. Glycine to Oligoglycine via Sequential Trimetaphosphate Activation Steps in Drying Environments. ORIGINS LIFE EVOL B 2022; 52:249-261. [DOI: 10.1007/s11084-022-09634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022]
|
4
|
Baú JPT, Carneiro CEA, da Costa ACS, Valezi DF, di Mauro E, Pilau E, Zaia DAM. The Effect of Goethites on the Polymerization of Glycine and Alanine Under Prebiotic Chemistry Conditions. ORIGINS LIFE EVOL B 2022; 51:299-320. [PMID: 35064872 DOI: 10.1007/s11084-021-09618-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022]
Abstract
After pre concentration of monomers, polymerization is the second most important step for molecular evolution. The formation of peptides is an important issue for prebiotic chemistry and consequently for the origin of life. In this work, goethite was synthesized by two different routes, named goethite-I and goethite-II. Although both samples are goethite, Far-FT-IR spectroscopy and EPR spectroscopy showed differences between them, and these differences had an effect on the polymerization of glycine and alanine. For the amino acid polymerization, three protocols were used, that resembled prebiotic Earth conditions: a) amino acid plus goethite were mixed and heated at 90 °C for 10 days in solid state, b) a wet impregnation of the amino acid in the goethite, with subsequent heating at 90 °C for 10 days in solid state, and c) 10 wet/dry cycles each one for 24 h at 90 °C. Experiments with glycine plus goethite-II, using protocols B and C, produced only Gly-Gly. In addition, for the C protocol the amount of Gly-Gly synthesized was 3 times higher than the amount of Ala-Ala. Goethite-I presented a decrease in the EPR signal, when it was submitted to the protocols with and without amino acids. It is probable the decrease in the intensity of the EPR signal was due to a decrease in the imperfections of the mineral. For all protocols the mixture of alanine plus goethite-I or goethite-II produced c(Ala-Ala). However, for wet/dry cycles, protocol C presented higher yields (p < 0.05). In addition, Ala-Ala was produced using protocols A and C. The c(Ala-Ala) formation fitted a zero-order kinetic equation model. The surface areas of goethite-I and goethite-II were 35 m2 g-1 and 37 m2 g-1, respectively. Thermal analysis indicated that the mineral changes the thermal behavior of the amino acids. The main reactions for the thermal decomposition of glycine were deamination and dehydration and for alanine was deamination.
Collapse
Affiliation(s)
- João Paulo T Baú
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brasil
| | - Cristine E A Carneiro
- Centro das Ciências Exatas E Tecnologia, Universidade Federal Do Oeste da Bahia, 47810-059, Barreiras, BA, Brasil
| | | | - Daniel F Valezi
- Departamento de Física-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brasil
| | - Eduardo di Mauro
- Departamento de Física-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brasil
| | - Eduardo Pilau
- Departamento de Química-CCE, Universidade Estadual de Maringá, 87020-900, Maringá, PR, Brasil
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990, Londrina, PR, Brasil.
| |
Collapse
|
5
|
Liu Z, Wu LF, Xu J, Bonfio C, Russell DA, Sutherland JD. Harnessing chemical energy for the activation and joining of prebiotic building blocks. Nat Chem 2020; 12:1023-1028. [PMID: 33093680 DOI: 10.1038/s41557-020-00564-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/21/2020] [Indexed: 11/09/2022]
Abstract
Life is an out-of-equilibrium system sustained by a continuous supply of energy. In extant biology, the generation of the primary energy currency, adenosine 5'-triphosphate and its use in the synthesis of biomolecules require enzymes. Before their emergence, alternative energy sources, perhaps assisted by simple catalysts, must have mediated the activation of carboxylates and phosphates for condensation reactions. Here, we show that the chemical energy inherent to isonitriles can be harnessed to activate nucleoside phosphates and carboxylic acids through catalysis by acid and 4,5-dicyanoimidazole under mild aqueous conditions. Simultaneous activation of carboxylates and phosphates provides multiple pathways for the generation of reactive intermediates, including mixed carboxylic acid-phosphoric acid anhydrides, for the synthesis of peptidyl-RNAs, peptides, RNA oligomers and primordial phospholipids. Our results indicate that unified prebiotic activation chemistry could have enabled the joining of building blocks in aqueous solution from a common pool and enabled the progression of a system towards higher complexity, foreshadowing today's encapsulated peptide-nucleic acid system.
Collapse
Affiliation(s)
- Ziwei Liu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Long-Fei Wu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Jianfeng Xu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Claudia Bonfio
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - David A Russell
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
6
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
7
|
Campbell T, Febrian R, Kleinschmidt HE, Smith KA, Bracher PJ. Quantitative Analysis of Glycine Oligomerization by Ion-Pair Chromatography. ACS OMEGA 2019; 4:12745-12752. [PMID: 31460397 PMCID: PMC6681977 DOI: 10.1021/acsomega.9b01492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
This paper describes a method for the quantitative analysis of mixtures of glycine and its oligomers by ion-pair high-performance liquid chromatography (IP-HPLC), with a particular focus on applications in origins-of-life research. We demonstrate the identification of glycine oligomers (Gly n ) up to 14 residues long-the approximate detectable limit of their solubility in water-and measurement of the concentration of these species in the product mixture of an oligomerization reaction. The molar response factors for higher oligomers of glycine-which are impractical to obtain as pure samples-are extrapolated from direct analysis of pure standards of n = 3-6, which established a clear linear trend. We compare and contrast our method to those in previous reports with respect to accuracy and practicality. While the data reported here are specific to the analysis of oligomers of glycine, the approach should be applicable to the design of methods for the analysis of oligomerization of other amino acids.
Collapse
|
8
|
Environmental control programs the emergence of distinct functional ensembles from unconstrained chemical reactions. Proc Natl Acad Sci U S A 2019; 116:5387-5392. [PMID: 30842280 PMCID: PMC6431231 DOI: 10.1073/pnas.1813987116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many approaches to the origin of life focus on how the molecules found in biology might be made in the absence of biological processes, from the simplest plausible starting materials. Another approach could be to view the emergence of the chemistry of biology as process whereby the environment effectively directs "primordial soups" toward structure, function, and genetic systems over time. This does not require the molecules found in biology today to be made initially, and leads to the hypothesis that environment can direct chemical soups toward order, and eventually living systems. Herein, we show how unconstrained condensation reactions can be steered by changes in the reaction environment, such as order of reactant addition, and addition of salts or minerals. Using omics techniques to survey the resulting chemical ensembles we demonstrate there are distinct, significant, and reproducible differences between the product mixtures. Furthermore, we observe that these differences in composition have consequences, manifested in clearly different structural and functional properties. We demonstrate that simple variations in environmental parameters lead to differentiation of distinct chemical ensembles from both amino acid mixtures and a primordial soup model. We show that the synthetic complexity emerging from such unconstrained reactions is not as intractable as often suggested, when viewed through a chemically agnostic lens. An open approach to complexity can generate compositional, structural, and functional diversity from fixed sets of simple starting materials, suggesting that differentiation of chemical ensembles can occur in the wider environment without the need for biological machinery.
Collapse
|
9
|
Mattelaer HP, Mattelaer CA, Papastavrou N, Dehaen W, Herdewijn P. Oligonucleotide promoted peptide bond formation using a tRNA mimicking approach. Chem Commun (Camb) 2018; 53:5013-5016. [PMID: 28429017 DOI: 10.1039/c7cc00831g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TransferRNA's role in protein translation is the prime example of an Informational Leaving Group (ILG). A simplified model produced oligophenylalanine with a modified uracil as an ILG in the presence of specific oligonucleotides. Our preliminary studies contribute to the importance of hybrid species in bridging the gap between peptides and nucleic acids.
Collapse
Affiliation(s)
- H-P Mattelaer
- KU Leuven, Rega Institute for Medical Science, Medicinal Chemistry, Herestraat 49, 3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Raggi L, Bada JL, Lazcano A. On the lack of evolutionary continuity between prebiotic peptides and extant enzymes. Phys Chem Chem Phys 2018; 18:20028-32. [PMID: 27121024 DOI: 10.1039/c6cp00793g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The significance of experiments that claim to simulate the properties of prebiotic small peptides and polypeptides as models of the polymers that may have preceded proteins is critically addressed. As discussed here, most of these experiments are based only on a small number of a larger set of amino acids that may have been present in the prebiotic environment, supported by both experimental simulations and the repertoire of organic compounds reported in carbonaceous chondrites. Model experiments with small peptides may offer some insights into the processes that contributed to generate the chemical environment leading to the emergence of informational oligomers, but not to the origin of proteins. The large body of circumstantial evidence indicating that catalytic RNA played a key role in the origin of protein synthesis during the early stages of cellular evolution implies that the emergence of the genetic code and of protein biosynthesis are no longer synonymous with the origin of life. Hence, reports on the abiotic synthesis of small catalytic peptides under potential prebiotic conditions do not provide information on the origin of triplet encoded protein biosynthesis, but in some cases may serve as models to understand the properties of the earliest proteins.
Collapse
Affiliation(s)
- Luciana Raggi
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-407, Cd. Universitaria, 04510 Ciudad de México, Mexico.
| | - Jeffrey L Bada
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0212, USA
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-407, Cd. Universitaria, 04510 Ciudad de México, Mexico.
| |
Collapse
|
12
|
Guo C, Mandalapu D, Ji X, Gao J, Zhang Q. Chemistry and Biology of Teixobactin. Chemistry 2017; 24:5406-5422. [PMID: 28991382 DOI: 10.1002/chem.201704167] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 11/06/2022]
Abstract
Bacterial resistance to existing drugs is becoming a serious public health issue, urging extensive search for new antibiotics. Teixobactin, a cyclic depsipeptide discovered in a screen of uncultured bacteria, shows potent activity against all the tested Gram-positive bacteria. Remarkably, no teixobactin-resistant bacterial strain has been obtained despite extensive efforts, highlighting the great potential of teixobactin as a lead compound in the fight against antimicrobial resistance (AMR). This review summarizes recent progresses in the understanding of many aspects of teixobactin, including chemical structure, biological activity, biosynthetic pathway, and mode of action. We also discuss the different synthetic strategies in producing teixobactin and its analogues, and the structure-activity relationship (SAR) studies.
Collapse
Affiliation(s)
- Chuchu Guo
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | | | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Jiangtao Gao
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
13
|
Griesser H, Tremmel P, Kervio E, Pfeffer C, Steiner UE, Richert C. Ribonucleotides and RNA Promote Peptide Chain Growth. Angew Chem Int Ed Engl 2016; 56:1219-1223. [PMID: 28000995 DOI: 10.1002/anie.201610650] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/30/2016] [Indexed: 11/06/2022]
Abstract
All known forms of life use RNA-mediated polypeptide synthesis to produce the proteins encoded in their genes. Because the principal parts of the translational machinery consist of RNA, it is likely that peptide synthesis was achieved early in the prebiotic evolution of an RNA-dominated molecular world. How RNA attracted amino acids and then induced peptide formation in the absence of enzymes has been unclear. Herein, we show that covalent capture of an amino acid as a phosphoramidate favors peptide formation. Peptide coupling is a robust process that occurs with different condensation agents. Kinetics show that covalent capture can accelerate chain growth over oligomerization of the free amino acid by at least one order of magnitude, so that there is no need for enzymatic catalysis for peptide synthesis to begin. Peptide chain growth was also observed on phosphate-terminated RNA strands. Peptide coupling promoted by ribonucleotides or ribonucleotide residues may have been an important transitional form of peptide synthesis that set in when amino acids were first captured by RNA.
Collapse
Affiliation(s)
- Helmut Griesser
- Institut für Organische Chemie, Universität Stuttgart, 70569, Stuttgart, Germany
| | - Peter Tremmel
- Institut für Organische Chemie, Universität Stuttgart, 70569, Stuttgart, Germany
| | - Eric Kervio
- Institut für Organische Chemie, Universität Stuttgart, 70569, Stuttgart, Germany
| | - Camilla Pfeffer
- Institut für Organische Chemie, Universität Stuttgart, 70569, Stuttgart, Germany
| | - Ulrich E Steiner
- Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Clemens Richert
- Institut für Organische Chemie, Universität Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
14
|
Griesser H, Tremmel P, Kervio E, Pfeffer C, Steiner UE, Richert C. Ribonucleotides and RNA Promote Peptide Chain Growth. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Helmut Griesser
- Institut für Organische Chemie Universität Stuttgart 70569 Stuttgart Germany
| | - Peter Tremmel
- Institut für Organische Chemie Universität Stuttgart 70569 Stuttgart Germany
| | - Eric Kervio
- Institut für Organische Chemie Universität Stuttgart 70569 Stuttgart Germany
| | - Camilla Pfeffer
- Institut für Organische Chemie Universität Stuttgart 70569 Stuttgart Germany
| | - Ulrich E. Steiner
- Department of Chemistry University of Konstanz 78457 Konstanz Germany
| | - Clemens Richert
- Institut für Organische Chemie Universität Stuttgart 70569 Stuttgart Germany
| |
Collapse
|