1
|
Muñoz-Iglesias V, Sánchez-García L, Carrizo D, Molina A, Fernández-Sampedro M, Prieto-Ballesteros O. Raman spectroscopic peculiarities of Icelandic poorly crystalline minerals and their implications for Mars exploration. Sci Rep 2022; 12:5640. [PMID: 35379897 PMCID: PMC8979959 DOI: 10.1038/s41598-022-09684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
In this work, we have analyzed natural samples collected at three hydrothermal areas of Iceland by Raman spectroscopy. The studied high-latitude regions are considered environmentally and mineralogically appropriate Martian analogues since they are rich in weathered basalts that have been altered by hydrothermalism to mineral phases such as silica, clay minerals, sulfates, oxides, and sulfur. The main objective of this work was to assess the relation of the spectroscopic signatures of alteration to hydrothermal processes and biomediation, considering previous studies focused on the detection of lipid biomarkers in the same samples. The recorded Raman spectra, taken with optical parameters similar to the ExoMars 2022 Raman spectrometer, showed structural modifications in all secondary minerals in the form of peak shifts (in the case of sulfur and clay minerals), changes in the relative ratio intensity (in anatase) and/or shape broadening (in sulfates and hematite). These results reveal the suitability of Raman spectroscopy to examine areas rich in water-altered minerals, where a mixture of crystalline and amorphous phases can co-exist. The detection of silica is singularly interesting since, on the one hand, it can imply the past existence of hydrothermal hot springs rich in nutrient and redox gradients and, on the other hand, provides excellent matrix for biosignature preservation. The data can be helpful as an astrobiological database for the forthcoming missions to Mars, where potential upwelling groundwater systems could have altered the mineral phases in a similar way to that observed in this work.
Collapse
|
2
|
The Large Dendritic Morphologies in the Antoniadi Crater (Mars) and Their Potential Astrobiological Significance. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mars has held large amounts of running and standing water throughout its history, as evidenced by numerous morphologies attributed to rivers, outflow channels, lakes, and possibly an ocean. This work examines the crater Antoniadi located in the Syrtis Major quadrangle. Some parts of the central area of the crater exhibit giant polygonal mud cracks, typical of endured lake bottom, on top of which a dark, tens of kilometers-long network of dendritic (i.e., arborescent) morphologies emerges, at first resembling the remnant of river networks. The network, which is composed of tabular sub-units, is in relief overlying hardened mud, a puzzling feature that, in principle, could be explained as landscape inversion resulting from stronger erosion of the lake bottom compared to the endured crust of the riverine sediments. However, the polygonal mud cracks have pristine boundaries, which indicate limited erosion. Furthermore, the orientation of part of the network is the opposite of what the flow of water would entail. Further analyses indicate the similarity of the dendrites with controlled diffusion processes rather than with the river network, and the presence of morphologies incompatible with river, alluvial, or underground sapping processes, such as overlapping of branches belonging to different dendrites or growth along fault lines. An alternative explanation worth exploring due to its potential astrobiological importance is that the network is the product of ancient reef-building microbialites on the shallow Antoniadi lake, which enjoyed the fortunate presence of a heat source supplied by the Syrtis Major volcano. The comparison with the terrestrial examples and the dating of the bottom of the crater (formed at 3.8 Ga and subjected to a resurfacing event at 3.6 Ga attributed to the lacustrine drape) contribute to reinforcing (but cannot definitely prove) the scenario of microbialitic origin for dendrites. Thus, the present analysis based on the images available from the orbiters cannot be considered proof of the presence of microbialites in ancient Mars. It is concluded that the Antoniadi crater could be an interesting target for the research of past Martian life in future landing missions.
Collapse
|
3
|
Ye T, Wang B, Li C, Bian P, Chen L, Wang G. Exposure of cyanobacterium Nostoc sp. to the Mars-like stratosphere environment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 224:112307. [PMID: 34649187 DOI: 10.1016/j.jphotobiol.2021.112307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 01/19/2023]
Abstract
During the HH-19-2 flight mission of the Chinese Scientific Experimental System, dried Nostoc sp. cells were exposed to the stratosphere environment (32,508 m altitude) for 3 h and 22 min. The atmospheric pressure, temperature, relative humidity, and ionizing and non-ionizing radiation levels at that altitude are similar to those on the surface of Mars. Although analyses revealed decreased photosynthetic activity, a decline in autofluorescence, and damage to the cellular morphology in the flight-exposed sample, the death rate was low (28%). Physiological changes were not obvious after the exposure to the Mars-like vacuum conditions. The ground-exposed samples showed a similar trend to the flight-exposed samples, but the damage was relatively slight. RNA-sequencing data revealed a number of affected metabolic pathways: photosynthetic system and CO2 fixation function, activation of antioxidant systems, heat shock protein, DNA repair, and protein synthesis. Results suggest that Nostoc sp. has the potential to survive in a Mars-like environment and that it may be a suitable pioneer species to colonize Mars in the future in closed life-support systems (base) or in localities with relatively suitable conditions for life, such as localities with water available.
Collapse
Affiliation(s)
- Tong Ye
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiyan Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Po Bian
- Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031, China
| | - Lanzhou Chen
- School of Resource & Environmental Sciences, Wuhan University, Wuhan 430079, PR China
| | - Gaohong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Pacelli C, Alessia C, Siong LM, Lorenzo A, Moeller R, Fujimori A, Igor S, Silvano O. Insights into the Survival Capabilities of Cryomyces antarcticus Hydrated Colonies after Exposure to Fe Particle Radiation. J Fungi (Basel) 2021; 7:495. [PMID: 34206448 PMCID: PMC8304246 DOI: 10.3390/jof7070495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
The modern concept of the evolution of Mars assumes that life could potentially have originated on the planet Mars, possibly during the end of the late heavy bombardment, and could then be transferred to other planets. Since then, physical and chemical conditions on Mars changed and now strongly limit the presence of terrestrial-like life forms. These adverse conditions include scarcity of liquid water (although brine solutions may exist), low temperature and atmospheric pressure, and cosmic radiation. Ionizing radiation is very important among these life-constraining factors because it damages DNA and other cellular components, particularly in liquid conditions where radiation-induced reactive oxidants diffuse freely. Here, we investigated the impact of high doses (up to 2 kGy) of densely-ionizing (197.6 keV/µm), space-relevant iron ions (corresponding on the irradiation that reach the uppermost layer of the Mars subsurface) on the survival of an extremophilic terrestrial organism-Cryomyces antarcticus-in liquid medium and under atmospheric conditions, through different techniques. Results showed that it survived in a metabolically active state when subjected to high doses of Fe ions and was able to repair eventual DNA damages. It implies that some terrestrial life forms can withstand prolonged exposure to space-relevant ion radiation.
Collapse
Affiliation(s)
- Claudia Pacelli
- Italian Space Agency, 00133 Rome, Italy;
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (A.L.); (O.S.)
| | - Cassaro Alessia
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (A.L.); (O.S.)
| | - Loke M. Siong
- Ludwig Maximilian University of Munich, 80336 Munich, Germany;
| | - Aureli Lorenzo
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (A.L.); (O.S.)
| | - Ralf Moeller
- Radiation Biology Department, Aerospace Microbiology, German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine, 51147 Cologne (Köln), Germany;
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg (BRSU), 53359 Rheinbach, Germany
| | - Akira Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Basic Medical Sciences for Radiation Damages, NIRS/QST, Chiba 263-8555, Japan;
| | - Shuryak Igor
- Department of Radiation Oncology, Center for Radiological Research, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Onofri Silvano
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (A.L.); (O.S.)
| |
Collapse
|
5
|
Abstract
Most definitions of life assume that, at a minimum, life is a physical form of matter distinct from its environment at a lower state of entropy than its surroundings, using energy from the environment for internal maintenance and activity, and capable of autonomous reproduction. These assumptions cover all of life as we know it, though more exotic entities can be envisioned, including organic forms with novel biochemistries, dynamic inorganic matter, and self-replicating machines. The probability that any particular form of life will be found on another planetary body depends on the nature and history of that alien world. So the biospheres would likely be very different on a rocky planet with an ice-covered global ocean, a barren planet devoid of surface liquid, a frigid world with abundant liquid hydrocarbons, on a rogue planet independent of a host star, on a tidally locked planet, on super-Earths, or in long-lived clouds in dense atmospheres. While life at least in microbial form is probably pervasive if rare throughout the Universe, and technologically advanced life is likely much rarer, the chance that an alternative form of life, though not intelligent life, could exist and be detected within our Solar System is a distinct possibility.
Collapse
|
6
|
Broz AP. Organic Matter Preservation in Ancient Soils of Earth and Mars. Life (Basel) 2020; 10:E113. [PMID: 32708606 PMCID: PMC7400377 DOI: 10.3390/life10070113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/28/2020] [Accepted: 07/11/2020] [Indexed: 11/21/2022] Open
Abstract
The emerging field of astropedology is the study of ancient soils on Earth and other planetary bodies. Examination of the complex factors that control the preservation of organic matter and other biosignatures in ancient soils is a high priority for current and future missions to Mars. Though previously defined by biological activity, an updated definition of soil as planetary surfaces altered in place by biological, chemical or physical processes was adopted in 2017 by the Soil Science Society of America in response to mounting evidence of pedogenic-like features on Mars. Ancient (4.1-3.7 billion year old [Byr]) phyllosilicate-rich surface environments on Mars show evidence of sustained subaerial weathering of sediments with liquid water at circumneutral pH, which is a soil-forming process. The accumulation of buried, fossilized soils, or paleosols, has been widely observed on Earth, and recent investigations suggest paleosol-like features may be widespread across the surface of Mars. However, the complex array of preservation and degradation factors controlling the fate of biosignatures in paleosols remains unexplored. This paper identifies the dominant factors contributing to the preservation and degradation of organic carbon in paleosols through the geological record on Earth, and offers suggestions for prioritizing locations for in situ biosignature detection and Mars Sample Return across a diverse array of potential paleosols and paleoenvironments of early Mars. A compilation of previously published data and original research spanning a diverse suite of paleosols from the Pleistocene (1 Myr) to the Archean (3.7 Byr) show that redox state is the predominant control for the organic matter content of paleosols. Most notably, the chemically reduced surface horizons (layers) of Archean (2.3 Byr) paleosols have organic matter concentrations ranging from 0.014-0.25%. However, clay mineralogy, amorphous phase abundance, diagenetic alteration and sulfur content are all significant factors that influence the preservation of organic carbon. The surface layers of paleosols that formed under chemically reducing conditions with high amounts of iron/magnesium smectites and amorphous colloids should be considered high priority locations for biosignature investigation within subaerial paleoenvironments on Mars.
Collapse
Affiliation(s)
- Adrian P Broz
- Department of Earth Sciences, University of Oregon, Eugene, OR 97405, USA
| |
Collapse
|
7
|
Kereszturi A, Kapui Z, Ori GG, Taj-Eddine K, Ujvari G. Mars-Relevant Field Experiences in Morocco: The Importance of Spatial Scales and Subsurface Exploration. ASTROBIOLOGY 2018; 18:1329-1350. [PMID: 30251874 DOI: 10.1089/ast.2017.1676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
During field work at the Ibn Battuta Mars analogue sites, two research questions were analyzed: (1) How do we identify sampling sites using remote and local imaging and (2) what kind of information can be gained from shallow subsurface exploration? While remote images help in targeting field activities in general, the connection between observations at different spatial scales for different rocky desert terrain types is not well established; in this, focused comparison of remote in situ images of well-selected analogues would help a great deal. Dried up lake beds as discerned in remotely acquired data may not show signatures of past water activity, while shallow subsurface exploration could reveal the lacustrine period. Acquisition of several satellite images of the same terrain under different geometries would help to support the planning of such in situ work. The selection of appropriate sampling sites in fluvial settings could be improved by analyzing long, meter-high, open-air outcrops that formed during most recent fluvial episodes. Such settings are abundant on Earth and could be present on Mars but may be just below the resolution of available data. By using 20-30-cm-deep excavations, shallow subsurface exploration could reveal the last period of geological history that would have been unattainable by surface observation alone. Aggregates embedded in the original strata or from heavily pulverized samples could not be identified; only weakly fragmented samples viewed right after acquisition showed aggregates, and thus, the Close-Up Imager (CLUPI) on the ExoMover might provide information on cementation-related aggregation on the observing plate before crushing. The mechanical separation of different size grains (mainly clays and attached minerals) would also support the identification of individual components. To maximize context information during subsurface exploration, rover imaging should be accomplished before crushing; however, currently planned imaging may not be ideal for this.
Collapse
Affiliation(s)
- Akos Kereszturi
- 1 Konkoly Thege Miklos Astronomical Institute , Research Centre for Astronomy and Earth Sciences, Budapest, Hungary
| | - Zsuzsanna Kapui
- 2 Institute for Geological and Geochemical Research , Research Centre for Astronomy and Earth Sciences, Budapest, Hungary
| | - Gian Gabrielle Ori
- 3 Ibn Battuta Centre, Cadi Ayyad University , Marrakech, Morocco
- 4 International Research School on Planetary Sciences , Pescara, Italy
| | - Kamal Taj-Eddine
- 3 Ibn Battuta Centre, Cadi Ayyad University , Marrakech, Morocco
| | - Gabor Ujvari
- 2 Institute for Geological and Geochemical Research , Research Centre for Astronomy and Earth Sciences, Budapest, Hungary
| |
Collapse
|