1
|
Sithamparam M, Afrin R, Tharumen N, He MJ, Chen C, Yi R, Wang PH, Jia TZ, Chandru K. Probing the Limits of Reactant Concentration and Volume in Primitive Polyphenyllactate Synthesis and Microdroplet Assembly Processes. ACS BIO & MED CHEM AU 2025; 5:131-142. [PMID: 39990942 PMCID: PMC11843335 DOI: 10.1021/acsbiomedchemau.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 02/25/2025]
Abstract
Polyester microdroplets have been investigated as primitive protocell models that can exhibit relevant primitive functions such as biomolecule segregation, coalescence, and salt uptake. Such microdroplets assemble after dehydration synthesis of alpha-hydroxy acid (αHA) monomers, commonly available on early Earth, via heating at mild temperatures, followed by rehydration in aqueous media. αHAs, in particular, are also ubiquitous in biology, participating in a variety of biochemical processes such as metabolism, suggesting the possible strong link between primitive and modern αHA-based processes. Although some primitive αHA polymerization conditions have been probed previously, including monomer chirality and reaction temperature, relevant factors pertaining to early Earth's local environmental conditions that would likely affect primitive αHA polymerization are yet to be fully investigated. Hence, probing the entire breadth of possible conditions that could promote primitive αHA polymerization is required to understand the plausibility of polyester microdroplet assembly on early Earth at the origin of life. In particular, there are numerous aqueous environments available on early Earth that could have resulted in varying volumes and concentrations of αHA accumulation, which would have affected subsequent αHA polymerization reactions. Similarly, there were likely varying levels of salt in the various aqueous prebiotic solutions, such as in the ocean, lakes, and small pools, that may have affected primitive reactions. Here, we probe the limits of the dehydration synthesis and subsequent membraneless microdroplet (MMD) assembly of phenyllactic acid (PA), a well-studied αHA relevant to both biology and prebiotic chemistry, with respect to reactant concentration and volume and salinity through mass spectrometry- and microscopy-based observations. Our study showed that polymerization and subsequent microdroplet assembly of PA appear robust even at low reactant concentrations, smaller volumes, and higher salinities than those previously tested. This indicates that PA-polyester and its microdroplets are very much viable under a wide variety of conditions, thus more likely participating in prebiotic chemistries at the origins of life.
Collapse
Affiliation(s)
- Mahendran Sithamparam
- Space
Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor 43650, Malaysia
| | - Rehana Afrin
- Earth-Life
Science Institute, Institute of Future Science, Institute of Science Tokyo, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Navaniswaran Tharumen
- Space
Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor 43650, Malaysia
| | - Ming-Jing He
- Department
of Chemical Engineering and Materials Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan 32001, Taiwan (R.O.C.)
| | - Chen Chen
- Biofunctional
Catalyst Research Team, RIKEN Center for Sustainable Resource Science
(CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ruiqin Yi
- State
Key Laboratory of Isotope Geochemistry and CAS Center for Excellence
in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Po-Hsiang Wang
- Department
of Chemical Engineering and Materials Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan 32001, Taiwan (R.O.C.)
- Graduate
Institute of Environmental Engineering, National Central University, No. 300, Zhongda Road, Zhongli District, Taoyuan City 320, Taiwan
| | - Tony Z. Jia
- Earth-Life
Science Institute, Institute of Future Science, Institute of Science Tokyo, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Blue Marble
Space Institute of Science, 600 first Ave, Floor 1, Seattle, Washington 98104, United States
| | - Kuhan Chandru
- Space
Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor 43650, Malaysia
- Polymer Research
Center (PORCE), Faculty of Science and Technology, National University of Malaysia, Selangor 43600 Malaysia
- Institute
of Physical Chemistry, CENIDE, University
of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
2
|
Singh RP, Mishra A, Chandel SS, Agarwal M, Chawra HS, Singh M, Dubey G. Unlocking New Approaches to Urolithiasis Management Via Nutraceuticals. Curr Pharm Biotechnol 2024; 25:1124-1131. [PMID: 37608670 DOI: 10.2174/1389201024666230821122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 08/24/2023]
Abstract
Urolithiasis, commonly known as kidney stones, is characterized by the formation of hard deposits in the urinary tract. These stones can cause severe pain and discomfort, and their management typically involves a combination of medical interventions and lifestyle modifications. According to the literature, 30% and 50% of urolithiasis cases recur. Between 9 and 12% of persons in industrialised countries are predicted to have urolithiasis at some time. Due to the high frequency of stone formation, recurrent nature, and prevalence in adults, it has a significant impact on society, the person, and the health care system. Adopting the best prophylactic measures is crucial in light of these developments to decrease the impact of urolithiasis on individuals and society. In recent years, there has been growing interest in the potential role of nutraceuticals in the management of urolithiasis. Nutraceuticals, such as herbal extracts, vitamins, minerals, and probiotics, have gained recognition for their potential in promoting urinary health and reducing the risk of urolithiasis. These compounds can aid in various ways, including inhibiting crystal formation, enhancing urine pH balance, reducing urinary calcium excretion, and supporting kidney function. Additionally, nutraceuticals can help alleviate symptoms associated with urolithiasis, such as pain and inflammation. While medical interventions remain crucial, incorporating nutraceuticals into a comprehensive management plan can offer a holistic approach to urolithiasis, improving patient outcomes and quality of life. Therefore, nutraceuticals may be a desirable choice for treating and avoiding recurring urolithiasis for patients and medical professionals. Therefore, the present study has focused on nutraceuticals' role in preventing urolithiasis.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Anurag Mishra
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | | | - Mohit Agarwal
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Himmat Singh Chawra
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Mithilesh Singh
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Gaurav Dubey
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| |
Collapse
|
3
|
Abstract
BACKGROUND Bees provide essential pollination services for many food crops and are critical in supporting wild plant diversity. However, the dietary landscape of pollen food sources for social and solitary bees has changed because of agricultural intensification and habitat loss. For this reason, understanding the basic nutrient metabolism and meeting the nutritional needs of bees is becoming an urgent requirement for agriculture and conservation. We know that pollen is the principal source of dietary fat and sterols for pollinators, but a precise understanding of what the essential nutrients are and how much is needed is not yet clear. Sterols are key for producing the hormones that control development and may be present in cell membranes, where fatty-acid-containing species are important structural and signalling molecules (phospholipids) or to supply, store and distribute energy (glycerides). AIM OF THE REVIEW In this critical review, we examine the current general understanding of sterol and lipid metabolism of social and solitary bees from a variety of literature sources and discuss implications for bee health. KEY SCIENTIFIC CONCEPTS OF REVIEW We found that while eusocial bees are resilient to some dietary variation in sterol supply the scope for this is limited. The evidence of both de novo lipogenesis and a dietary need for particular fatty acids (FAs) shows that FA metabolism in insects is analogous to mammals but with distinct features. Bees rely on their dietary intake for essential sterols and lipids in a way that is dependent upon pollen availability.
Collapse
Affiliation(s)
- Samuel Furse
- Royal Botanic Gardens, Kew Green, Kew, Surrey, TW9 3AB, UK.
| | - Hauke Koch
- Royal Botanic Gardens, Kew Green, Kew, Surrey, TW9 3AB, UK
| | | | - Philip C Stevenson
- Royal Botanic Gardens, Kew Green, Kew, Surrey, TW9 3AB, UK.
- Natural Resources Institute, University of Greenwich, Chatham, Kent, ME4 4TB, UK.
| |
Collapse
|
4
|
Gözen I, Köksal ES, Põldsalu I, Xue L, Spustova K, Pedrueza-Villalmanzo E, Ryskulov R, Meng F, Jesorka A. Protocells: Milestones and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106624. [PMID: 35322554 DOI: 10.1002/smll.202106624] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The origin of life is still one of humankind's great mysteries. At the transition between nonliving and living matter, protocells, initially featureless aggregates of abiotic matter, gain the structure and functions necessary to fulfill the criteria of life. Research addressing protocells as a central element in this transition is diverse and increasingly interdisciplinary. The authors review current protocell concepts and research directions, address milestones, challenges and existing hypotheses in the context of conditions on the early Earth, and provide a concise overview of current protocell research methods.
Collapse
Affiliation(s)
- Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Elif Senem Köksal
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Inga Põldsalu
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Lin Xue
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Karolina Spustova
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Esteban Pedrueza-Villalmanzo
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- Department of Physics, University of Gothenburg, Universitetsplatsen 1, Gothenburg, 40530, Sweden
| | - Ruslan Ryskulov
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Fanda Meng
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| |
Collapse
|