1
|
Alam A, Al Arif Jahan A, Bari MS, Khandokar L, Mahmud MH, Junaid M, Chowdhury MS, Khan MF, Seidel V, Haque MA. Allium vegetables: Traditional uses, phytoconstituents, and beneficial effects in inflammation and cancer. Crit Rev Food Sci Nutr 2022; 63:6580-6614. [PMID: 35170391 DOI: 10.1080/10408398.2022.2036094] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The genus Allium comprises of at least 918 species; the majority grown for dietary and medicinal purposes. This review describes the traditional uses, phytoconstituents, anti-inflammatory and anticancer activity, and safety profile of six main species, namely Allium sativum L. (garlic), Allium cepa L. (onions), Allium ampeloprasum L. (leek), Allium fistulosum L. (scallion), Allium schoenoprasum L. (chives) and Allium tuberosum Rottler (garlic chives). These species contain at least 260 phytoconstituents; mainly volatile compounds-including 63 organosulfur molecules-, saponins, flavonoids, anthocyanins, phenolic compounds, amino acids, organic acids, fatty acids, steroids, vitamins and nucleosides. They have prominent in vitro anti-inflammatory activity, and in vivo replications of such results have been achieved for all except for A. schoenoprasum. They also exert cytotoxicity against different cancer cell lines. Several anticancer phytoconstituents have been characterized from all except for A. fistulosum. Organosulfur constituents, saponins and flavonoid glycosides have demonstrated anti-inflammatory and anticancer activity. Extensive work has been conducted mainly on the anti-inflammatory and anticancer activity of A. sativum and A. cepa. The presence of anti-inflammatory and anticancer constituents in these two species suggests that similar bioactive constituents could be found in other species. This provides future avenues for identifying new Allium-derived anti-inflammatory and anticancer agents.
Collapse
Affiliation(s)
- Ashraful Alam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Abdullah Al Arif Jahan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md Sazzadul Bari
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Md Hasan Mahmud
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Muhammed Junaid
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | | | - Mohammad Forhad Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| |
Collapse
|
2
|
Kurnia D, Ajiati D, Heliawati L, Sumiarsa D. Antioxidant Properties and Structure-Antioxidant Activity Relationship of Allium Species Leaves. Molecules 2021; 26:7175. [PMID: 34885755 PMCID: PMC8659087 DOI: 10.3390/molecules26237175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023] Open
Abstract
Allium is a genus that is widely consumed and used as traditional medicine in several countries. This genus has two major species, namely cultivated species and wild species. Cultivated species consist of A. cepa L., A. sativum L., A. fistulosum L. and A. schoenoprasum L. and wild species consist of A. ursinum L., A. flavum L., A. scorodoprasum L., A. vineale L. and A. atroviolaceum Boiss. Several studies report that the Allium species contain secondary metabolites such as polyphenols, flavonoids and tannins and have bioactivity such as antioxidants, antibacterial, antifungal, anti-inflammatory, pancreatic α-amylase, glucoamylase enzyme inhibitors and antiplatelets. This review summarizes some information regarding the types of Allium species (ethnobotany and ethnopharmacology), the content of compounds of Allium species leaves with various isolation methods, bioactivities, antioxidant properties and the structure-antioxidant activity relationship (SAR) of Allium compounds.
Collapse
Affiliation(s)
- Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia; (D.A.); (D.S.)
| | - Dwipa Ajiati
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia; (D.A.); (D.S.)
| | - Leny Heliawati
- Study Program of Chemistry, Faculty of Mathematics and Natural Science, Universitas Pakuan, Bogor 16143, Indonesia;
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia; (D.A.); (D.S.)
| |
Collapse
|
3
|
Zhang F, Zheng J, Li Z, Cai Z, Wang F, Yang D. Purification, Characterization, and Self-Assembly of the Polysaccharide from Allium schoenoprasum. Foods 2021; 10:foods10061352. [PMID: 34208119 PMCID: PMC8230776 DOI: 10.3390/foods10061352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
The major polysaccharide component from the stalk of Allium schoenoprasum (AssP) was extracted and purified. Gel filtration chromatography purified AssP exhibited a molecular weight of around 1.7 kDa, which was verified by MALDI-ToF-MS. The monosaccharide analysis revealed its composition as rhamnose: arabinose: galactose: glucose: mannose: fructose with a molar ratio of 0.03:2.46:3.71:3.35:1.00:9.93, respectively. The Congo-red assay indicated that there was no tertiary structure of this polysaccharide, however, it self-assembled into a homogenous nanoparticle with a diameter of ~600 nm as revealed by the dynamic light scattering measurement. The solution behavior of this polysaccharide was simulated. The association of this polysaccharide was both time dependent and concentration dependent. AssP forms spherical particles spontaneously as time passes by, and when the AssP concentration increased, the spherical particles increased their sizes and eventually merged into cylindrical micelles. The diversity of AssP hydrodynamic behavior endowed potential versatility in its future applications.
Collapse
Affiliation(s)
- Fengrui Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (F.Z.); (J.Z.); (Z.L.); (Z.C.); (F.W.)
| | - Jun Zheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (F.Z.); (J.Z.); (Z.L.); (Z.C.); (F.W.)
| | - Zeyu Li
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (F.Z.); (J.Z.); (Z.L.); (Z.C.); (F.W.)
| | - Zixuan Cai
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (F.Z.); (J.Z.); (Z.L.); (Z.C.); (F.W.)
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| | - Fengqiao Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (F.Z.); (J.Z.); (Z.L.); (Z.C.); (F.W.)
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (F.Z.); (J.Z.); (Z.L.); (Z.C.); (F.W.)
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
- Correspondence: ; Tel.: +86-010-6273-7129
| |
Collapse
|
4
|
Varhan Oral E, Tokul-Ölmez Ö, Yener İ, Firat M, Tunay Z, Terzioğlu P, Aydin F, Öztürk M, Ertaş A. Trace Elemental Analysis of Allium Species by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) with Multivariate Chemometrics. ANAL LETT 2019. [DOI: 10.1080/00032719.2018.1460376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Elif Varhan Oral
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
| | - Özge Tokul-Ölmez
- Department of Chemistry, Faculty of Science, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - İsmail Yener
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
| | - Mehmet Firat
- Department of Biology, Faculty of Education, Yüzüncü Yıl University, Van, Turkey
| | - Zeki Tunay
- Science and Technology Application and Research Center, Dicle University, Diyarbakir, Turkey
| | - Pınar Terzioğlu
- Department of Chemistry and Chemical Processing Technologies, Mugla Vocational School, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Fırat Aydin
- Department of Chemistry, Faculty of Science, Dicle University, Diyarbakır, Turkey
| | - Mehmet Öztürk
- Department of Chemistry, Faculty of Science, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Abdulselam Ertaş
- Department of Pharmacognosy, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
5
|
Singh V, Chauhan G, Krishan P, Shri R. Allium schoenoprasum L.: a review of phytochemistry, pharmacology and future directions. Nat Prod Res 2017; 32:2202-2216. [DOI: 10.1080/14786419.2017.1367783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Varinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Gargi Chauhan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
6
|
Assessment of the Antioxidant Activity of Extracts of Allium schoenoprasum L. with an Experimentally Elevated Selenium Content. Pharm Chem J 2017. [DOI: 10.1007/s11094-017-1582-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Gottardi D, Bukvicki D, Prasad S, Tyagi AK. Beneficial Effects of Spices in Food Preservation and Safety. Front Microbiol 2016; 7:1394. [PMID: 27708620 PMCID: PMC5030248 DOI: 10.3389/fmicb.2016.01394] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/23/2016] [Indexed: 01/04/2023] Open
Abstract
Spices have been used since ancient times. Although they have been employed mainly as flavoring and coloring agents, their role in food safety and preservation have also been studied in vitro and in vivo. Spices have exhibited numerous health benefits in preventing and treating a wide variety of diseases such as cancer, aging, metabolic, neurological, cardiovascular, and inflammatory diseases. The present review aims to provide a comprehensive summary of the most relevant and recent findings on spices and their active compounds in terms of targets and mode of action; in particular, their potential use in food preservation and enhancement of shelf life as a natural bioingredient.
Collapse
Affiliation(s)
- Davide Gottardi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of BolognaCesena, Italy
| | - Danka Bukvicki
- Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of BelgradeBelgrade, Serbia
| | - Sahdeo Prasad
- Division of Cancer Medicine, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Amit K. Tyagi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of BolognaCesena, Italy
- Division of Cancer Medicine, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| |
Collapse
|
8
|
The Component Composition of Steroid Glycosides Extracted from the Fruits of Allium Schoenoprasum L. and Assessment of Their Effects on the Growth of Transplanted Tumors in Mice. Pharm Chem J 2014. [DOI: 10.1007/s11094-014-1104-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
López-García J, Kuceková Z, Humpolíček P, Mlček J, Sáha P. Polyphenolic extracts of edible flowers incorporated onto atelocollagen matrices and their effect on cell viability. Molecules 2013; 18:13435-45. [PMID: 24177700 PMCID: PMC6270546 DOI: 10.3390/molecules181113435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/03/2013] [Accepted: 10/23/2013] [Indexed: 11/17/2022] Open
Abstract
The phenolic extract of chives flowers (Allium schoenoprasum, Liliaceae), introduced Sage (Salvia pratensis, Lamiaceae), European elderberry (Sambucus nigra, Caprifoliaceae) and common dandelion (Taraxacum officinale, Asteraceae) were characterised by High Performance Liquid Chromatography and incorporated in different concentrations onto atelocollagen thin films. In order to assess the biological impact of these phenolic compounds on cell viability, human immortalised non-tumorigenic keratinocyte cell line was seeded on the thin films and cell proliferation was determined by using an MTT assay. In addition, their antimicrobial activity was estimated by using an agar diffusion test. Data indicated the concomitance between cell viability and concentration of polyphenols. These findings suggest that these phenolic-endowed atelocollagen films might be suitable for tissue engineering applications, on account of the combined activity of polyphenols and collagen.
Collapse
Affiliation(s)
- Jorge López-García
- Centre of Polymer Systems, Tomas Bata University in Zlín, nám. T.G.Masaryka-5555, Zlín 76001, Czech Republic; E-Mails: (J.L.-G.); (Z.K.); (P.S.)
| | - Zdenka Kuceková
- Centre of Polymer Systems, Tomas Bata University in Zlín, nám. T.G.Masaryka-5555, Zlín 76001, Czech Republic; E-Mails: (J.L.-G.); (Z.K.); (P.S.)
- Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, T.G.M. sq. 275, Zlin 76272, Czech Republic
| | - Petr Humpolíček
- Centre of Polymer Systems, Tomas Bata University in Zlín, nám. T.G.Masaryka-5555, Zlín 76001, Czech Republic; E-Mails: (J.L.-G.); (Z.K.); (P.S.)
- Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, T.G.M. sq. 275, Zlin 76272, Czech Republic
| | - Jiři Mlček
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, nám. T.G.Masaryka-5555, Zlin 76272, Czech Republic; E-Mail:
| | - Petr Sáha
- Centre of Polymer Systems, Tomas Bata University in Zlín, nám. T.G.Masaryka-5555, Zlín 76001, Czech Republic; E-Mails: (J.L.-G.); (Z.K.); (P.S.)
| |
Collapse
|