1
|
She X, Chen L, Velleman L, Li C, Zhu H, He C, Wang T, Shigdar S, Duan W, Kong L. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery. J Colloid Interface Sci 2014; 445:151-160. [PMID: 25617610 DOI: 10.1016/j.jcis.2014.12.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 02/02/2023]
Abstract
Hollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for effective drug delivery due to their large surface area, high volume for drug loading and excellent biocompatibility. However, the non-ionic surfactant templated HMSNs often have a broad size distribution and a defective mesoporous structure because of the difficulties involved in controlling the formation and organization of micelles for the growth of silica framework. In this paper, a novel "Eudragit assisted" strategy has been developed to fabricate HMSNs by utilising the Eudragit nanoparticles as cores and to assist in the self-assembly of micelle organisation. Highly dispersed mesoporous silica spheres with intact hollow interiors and through pores on the shell were fabricated. The HMSNs have a high surface area (670 m(2)/g), small diameter (120 nm) and uniform pore size (2.5 nm) that facilitated the effective encapsulation of 5-fluorouracil within HMSNs, achieving a high loading capacity of 194.5 mg(5-FU)/g(HMSNs). The HMSNs were non-cytotoxic to colorectal cancer cells SW480 and can be bioconjugated with Epidermal Growth Factor (EGF) for efficient and specific cell internalization. The high specificity and excellent targeting performance of EGF grafted HMSNs have demonstrated that they can become potential intracellular drug delivery vehicles for colorectal cancers via EGF-EGFR interaction.
Collapse
Affiliation(s)
- Xiaodong She
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Lijue Chen
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Leonora Velleman
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Chengpeng Li
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Haijin Zhu
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia; Centre of Excellence for Electromaterials Science, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Canzhong He
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Tao Wang
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia.
| |
Collapse
|