1
|
Abstract
RNA-based therapeutics have shown great promise in treating a broad spectrum of diseases through various mechanisms including knockdown of pathological genes, expression of therapeutic proteins, and programmed gene editing. Due to the inherent instability and negative-charges of RNA molecules, RNA-based therapeutics can make the most use of delivery systems to overcome biological barriers and to release the RNA payload into the cytosol. Among different types of delivery systems, lipid-based RNA delivery systems, particularly lipid nanoparticles (LNPs), have been extensively studied due to their unique properties, such as simple chemical synthesis of lipid components, scalable manufacturing processes of LNPs, and wide packaging capability. LNPs represent the most widely used delivery systems for RNA-based therapeutics, as evidenced by the clinical approvals of three LNP-RNA formulations, patisiran, BNT162b2, and mRNA-1273. This review covers recent advances of lipids, lipid derivatives, and lipid-derived macromolecules used in RNA delivery over the past several decades. We focus mainly on their chemical structures, synthetic routes, characterization, formulation methods, and structure-activity relationships. We also briefly describe the current status of representative preclinical studies and clinical trials and highlight future opportunities and challenges.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Changzhen Sun
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Katarina E Jankovic
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Puchkov PA, Maslov MA. Lipophilic Polyamines as Promising Components of Liposomal Gene Delivery Systems. Pharmaceutics 2021; 13:920. [PMID: 34205825 PMCID: PMC8234823 DOI: 10.3390/pharmaceutics13060920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
Gene therapy requires an effective and safe delivery vehicle for nucleic acids. In the case of non-viral vehicles, including cationic liposomes, the structure of compounds composing them determines the efficiency a lot. Currently, cationic amphiphiles are the most frequently used compounds in liposomal formulations. In their structure, which is a combination of hydrophobic and cationic domains and includes spacer groups, each component contributes to the resulting delivery efficiency. This review focuses on polycationic and disulfide amphiphiles as prospective cationic amphiphiles for gene therapy and includes a discussion of the mutual influence of structural components.
Collapse
Affiliation(s)
| | - Michael A. Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia;
| |
Collapse
|
3
|
Zhi D, Zhang S, Cui S, Zhao Y, Wang Y, Zhao D. The Headgroup Evolution of Cationic Lipids for Gene Delivery. Bioconjug Chem 2013; 24:487-519. [DOI: 10.1021/bc300381s] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Defu Zhi
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116012, China
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Shubiao Zhang
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Shaohui Cui
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Yinan Zhao
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | | | - Defeng Zhao
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116012, China
| |
Collapse
|
4
|
Stevanovic A, Thiele C. Monotopic topology is required for lipid droplet targeting of ancient ubiquitous protein 1. J Lipid Res 2012. [PMID: 23197321 DOI: 10.1194/jlr.m033852] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ancient ubiquitous protein 1 (AUP1) is a multifunctional protein, which acts on both lipid droplets (LDs) and the endoplasmic reticulum (ER) membrane. Double localization to these two organelles, featuring very different membrane characteristics, was observed also for several other integral proteins, but little is known about the signals and mechanisms behind dual protein targeting to ER and LDs. Here we dissect the AUP1 targeting signals by analyses of localization and topology of several deletion and point mutants. We found that AUP1 is inserted into the membrane of the ER in a monotopic hairpin fashion, and subsequently transported to the hemi-membrane of LDs. A single domain localized in the N-terminal part of AUP1 enables its ER residence, the monotopic insertion, and the LD localization. Different specific residues within this multifunctional domain are responsible for achieving the complex spatial distribution pattern. A mutation of three amino acids, which changes AUP1 topology from hairpin to transmembrane, abolishes LD localization. These findings suggest that the cell is able to target a protein to multiple intracellular locations using a single domain.
Collapse
Affiliation(s)
- Ana Stevanovic
- LIMES Life and Medical Sciences Institute, University of Bonn, D-53115 Bonn, Germany
| | | |
Collapse
|
5
|
Blagbrough IS, Metwally AA, Ghonaim HM. Asymmetrical N4,N9-diacyl spermines: SAR studies of nonviral lipopolyamine vectors for efficient siRNA delivery with silencing of EGFP reporter gene. Mol Pharm 2012; 9:1853-61. [PMID: 22224453 DOI: 10.1021/mp200428d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our aim is to study the effects of varying the two acyl moieties in synthesized N(4),N(9)-diacyl spermines on siRNA formulations and their delivery efficiency in cell lines. Six novel asymmetrical lipopolyamines, [N(4)-cholesteryloxy-3-carbonyl-N(9)-oleoyl-, N(4)-decanoyl-N(9)-oleoyl-, N(4)-decanoyl-N(9)-stearoyl-, N(4)-lithocholoyl-N(9)-oleoyl-, N(4)-myristoleoyl-N(9)-myristoyl-, and N(4)-oleoyl-N(9)-stearoyl]-1,12-diamino-4,9-diazadodecane, were assessed for their abilities to bind to siRNA, studied using a RiboGreen intercalation assay, and to form nanoparticles. Their siRNA delivery efficiencies were quantified in FEK4 primary skin cells and in an immortalized cancer cell line (HtTA) using a fluorescein-tagged siRNA, and compared with formulations of N(4),N(9)-dioleoyl-1,12-diamino-4,9-diazadodecane and of a leading transfecting agent, TransIT-TKO. Transfection was measured in terms of siRNA delivery and silencing of EGFP reporter gene in HeLa cells. By incorporating two different acyl moieties, changing their length and oxidation level in a controlled manner, we show efficient fluorescein-tagged siRNA formulation, delivery, and knock-down of EGFP reporter gene. N(4)-Oleoyl-N(9)-stearoyl spermine and N(4)-myristoleoyl-N(9)-myristoyl spermine are effective siRNA delivery vectors typically resulting in 89% cell delivery and gene silencing to 34% in the presence of serum, comparable with the results obtained with TransIT-TKO; adding a second lipid chain is better than incorporating a steroid moiety.
Collapse
Affiliation(s)
- Ian S Blagbrough
- Department of Pharmacy and Pharmacology, University of Bath , Bath BA2 7AY, U.K
| | | | | |
Collapse
|
6
|
Do TT, Tang VJ, Aguilera JA, Perry CC, Milligan JR. Characterization of a Lipophilic Plasmid DNA Condensate Formed with a Cationic Peptide Fatty Acid Conjugate. Biomacromolecules 2011; 12:1731-7. [DOI: 10.1021/bm200127u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Trinh T. Do
- Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0610, United States
| | - Vicky J. Tang
- Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0610, United States
| | - Joe A. Aguilera
- Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0610, United States
| | - Christopher C. Perry
- Department of Biochemistry, Loma Linda University, 11085 Campus Street, Loma Linda, California 92350, United States
| | - Jamie R. Milligan
- Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0610, United States
| |
Collapse
|
7
|
Kher G, Trehan S, Misra A. Antisense Oligonucleotides and RNA Interference. CHALLENGES IN DELIVERY OF THERAPEUTIC GENOMICS AND PROTEOMICS 2011. [PMCID: PMC7150054 DOI: 10.1016/b978-0-12-384964-9.00007-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Tsoi M, Do TT, Tang V, Aguilera JA, Perry CC, Milligan JR. Characterization of condensed plasmid DNA models for studying the direct effect of ionizing radiation. Biophys Chem 2010; 147:104-10. [PMID: 20096988 DOI: 10.1016/j.bpc.2009.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 12/19/2009] [Accepted: 12/19/2009] [Indexed: 10/20/2022]
Abstract
We have examined the changes in physical properties of aqueous solutions of the plasmid pUC18 that take place on the addition of the cationic oligopeptide penta-arginine. An increase in sedimentation rate and static light scattering, and changes in the nucleic acid CD spectrum all suggest that this ligand acts to condense the plasmid. Dynamic light scattering suggests the hydrodynamic radii of the condensate particles are a few micrometers, ca. 50-fold larger than that of the monomeric plasmid. Condensation of the plasmid also produces a ca. 100-fold decrease in the strand break yield produced by gamma irradiation. This extensive protection against reactive intermediates in the bulk of the solution implies that condensed plasmid DNA may offer a model system with which to study the direct effect of ionizing radiation (ionization of the DNA itself). The use of peptide ligands as condensing agents in this application is attractive because the derivatives of several amino acids (particularly tryptophan and tyrosine) have been shown to modify the radiation chemistry of DNA extensively.
Collapse
Affiliation(s)
- Mandi Tsoi
- Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610, USA
| | | | | | | | | | | |
Collapse
|
9
|
Ghonaim HM, Li S, Blagbrough IS. N 1,N 12 -Diacyl Spermines: SAR Studies on Non-viral Lipopolyamine Vectors for Plasmid DNA and siRNA Formulation. Pharm Res 2009; 27:17-29. [DOI: 10.1007/s11095-008-9764-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 10/21/2008] [Indexed: 02/06/2023]
|
10
|
Ghonaim HM, Ahmed OAA, Pourzand C, Blagbrough IS. Varying the chain length in N4,N9-diacyl spermines: non-viral lipopolyamine vectors for efficient plasmid DNA formulation. Mol Pharm 2009; 5:1111-21. [PMID: 19434924 DOI: 10.1021/mp800062j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aims of this work are to study the effect of varying the chain length in synthesized N4,N9-diacyl spermines on DNA condensation and then to compare their transfection efficiencies in cell lines. The five novel N4,N9-diacyl lipopolyamines: N4,N9-[didecanoyl, dilauroyl, dimyristoyl, dimyristoleoyl, and dipalmitoyl]-1,12-diamino-4,9-diazadodecane were synthesized from the naturally occurring polyamine spermine. The abilities of these novel compounds to condense DNA and to form nanoparticles were studied using ethidium bromide fluorescence quenching and nanoparticle characterization techniques. Transfection efficiency was studied in FEK4 primary skin cells and in an immortalized cancer cell line (HtTA), and compared with a saturated (distearoyl) analogue and also with the non-liposomal transfection formulation Lipogen, N4,N9-dioleoyl-1,12-diamino-4,9-diazadodecane. By incorporating two aliphatic chains and changing their length in a stepwise manner, we show efficient circular plasmid DNA (pEGFP) formulation and transfection of primary skin and cancer cell lines. Two C14 chains (both saturated or both cis-monounsaturated) were efficient transfecting agents, even in the presence of serum, but they were too toxic. N4,N9-Dioleoyl spermine efficiently condenses pDNA and achieves the highest transfection levels with the highest cell viability among the studied lipopolyamines in cultured cells even in the presence of serum.
Collapse
Affiliation(s)
- Hassan M Ghonaim
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | | | | | | |
Collapse
|
11
|
Design and synthesis of N4,N9-disubstituted spermines for non-viral siRNA delivery--structure-activity relationship studies of siFection efficiency versus toxicity. Pharm Res 2008; 26:286-95. [PMID: 18841447 DOI: 10.1007/s11095-008-9731-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE To study the effect of sequentially changing the chain length, oxidation level, and charge distribution in N4,N9-diacyl and N4,N9-dialkyl spermines on siRNA formulation, and then to compare their lipoplex transfection efficiency in cell lines. METHODS Eight N4,N9-diacyl polyamines: N4,N9-[didecanoyl, dilauroyl, dimyristoyl, dimyristoleoyl, dipalmitoyl, distearoyl, dioleoyl and diretinoyl]-1,12-diamino-4,9-diazadodecane were synthesized. Their abilities to bind to siRNA and form nanoparticles were studied using a RiboGreen intercalation assay and particle sizing. Two diamides were also reduced to afford tetraamines N4,N9-distearyl- and N4,N9-dioleyl-1,12-diamino-4,9-diazadodecane. Delivery of fluorescein-labelled Label IT RNAi Delivery Control was studied in FEK4 primary skin cells and in an immortalized cancer cell line (HtTA), and compared with TransIT-TKO. RESULTS The design, synthesis, and structure-activity relationship studies of a series of N4,N9-disubstituted spermines as efficient vectors for non-viral siRNA delivery to primary skin and cancer cell lines is reported. These non-liposomal cationic lipids are promising siRNA carriers based on the naturally occurring polyamine spermine showing that C-18 is a better chain length as shorter chains are more toxic. CONCLUSIONS N4,N9-Distearoyl spermine and N4,N9-dioleoyl spermine are efficient siRNA formulation and delivery vectors, even in the presence of serum, comparable to TransIT-TKO. However, four positive charges distributed as in spermine was significantly more toxic.
Collapse
|
12
|
Blagbrough IS, Zara C. Animal models for target diseases in gene therapy--using DNA and siRNA delivery strategies. Pharm Res 2008; 26:1-18. [PMID: 18841450 PMCID: PMC7088656 DOI: 10.1007/s11095-008-9646-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 05/29/2008] [Indexed: 11/29/2022]
Abstract
Nanoparticles, including lipopolyamines leading to lipoplexes, liposomes, and polyplexes are targeted drug carrier systems in the current search for a successful delivery system for polynucleic acids. This review is focused on the impact of gene and siRNA delivery for studies of efficacy, pharmacodynamics, and pharmacokinetics within the setting of the wide variety of in vivo animal models now used. This critical appraisal of the recent literature sets out the different models that are currently being investigated to bridge from studies in cell lines through towards clinical reality. Whilst many scientists will be familiar with rodent (murine, fecine, cricetine, and musteline) models, few probably think of fish as a clinically relevant animal model, but zebrafish, madake, and rainbow trout are all being used. Larger animal models include rabbit, cat, dog, and cow. Pig is used both for the prevention of foot-and-mouth disease and human diseases, sheep is a model for corneal transplantation, and the horse naturally develops arthritis. Non-human primate models (macaque, common marmoset, owl monkey) are used for preclinical gene vector safety and efficacy trials to bridge the gap prior to clinical studies. We aim for the safe development of clinically effective delivery systems for DNA and RNAi technologies.
Collapse
Affiliation(s)
- Ian S Blagbrough
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK.
| | | |
Collapse
|
13
|
Ghonaim HM, Li S, Blagbrough IS. Very long chain N4, N9 -diacyl spermines: non-viral lipopolyamine vectors for efficient plasmid DNA and siRNA delivery. Pharm Res 2008; 26:19-31. [PMID: 18781381 DOI: 10.1007/s11095-008-9705-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 08/06/2008] [Indexed: 01/27/2023]
Abstract
PURPOSE To study the effect of increasing the chain length over C-18 and varying the oxidation level in synthesized N4, N9-diacyl spermines on DNA and siRNA formulation, and then to compare their transfection efficiency in cell lines METHODS The five novel very long chain N4, N9-diacyl polyamines: N4, N9-[diarachidoyl, diarachidonoyl, dieicosenoyl, dierucoyl and dinervonoyl]-1,12-diamino-4,9-diazadodecane were synthesized. The abilities of these novel compounds to condense DNA and to form nanoparticles were studied using ethidium bromide fluorescence quenching and nanoparticle characterization techniques. Transfection efficiency was studied in FEK4 primary skin cells and in an immortalized cancer cell line (HtTA), and compared with the non-liposomal transfection formulation Lipogen, N4, N9-dioleoyl-1,12-diamino-4,9-diazadodecane. Also, the abilities of these compounds to condense siRNA and to form nanoparticles were studied using a RiboGreen intercalation assay and their abilities to deliver siRNA into cells were studied in FEK4 and HtTA cells using fluorescein-labelled Label IT(R) RNAi Delivery Control, a sequenced 21-mer from Mirus. RESULTS We show efficient pEGFP and siRNA formulation and delivery to primary skin and cancer cell lines. CONCLUSIONS Adding two C20 or C22 chains, both mono-cis-unsaturated, N4, N9-dieicosenoyl spermine and N4, N9-dierucoyl spermine, gave efficient siRNA delivery vectors, even in the presence of serum, comparable to TransIT-TKO and with excellent cell viability.
Collapse
Affiliation(s)
- Hassan M Ghonaim
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | | | | |
Collapse
|
14
|
|
15
|
Ahmed OAA, Pourzand C, Blagbrough IS. Varying the unsaturation in N4,N9-dioctadecanoyl spermines: nonviral lipopolyamine vectors for more efficient plasmid DNA formulation. Pharm Res 2006; 23:31-40. [PMID: 16382281 DOI: 10.1007/s11095-005-8717-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 09/23/2005] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of the study is to analyze the effect of varying the degree of unsaturation in synthesized N4,N9-dioctadecanoyl spermines on DNA condensation and then to compare their transfection efficiency in cell culture. METHODS The N4,N9-di-C18 lipopolyamines-saturated (stearoyl), C9-cis- (oleoyl), and C9,12-di-cis- (linoleoyl)-were synthesized from the naturally occurring polyamine spermine. The ability of these novel compounds to condense DNA and form nanoparticles was studied using ethidium bromide fluorescence quenching and nanoparticle characterization techniques. Transfection efficiency was studied in several primary skin cells (FEK4, FCP4, FCP5, FCP7, and FCP8) and in an immortalized cancer cell line (HtTA) and was compared with the commercially available nonliposomal transfection formulation Transfectam (dioctadecylamidoglycyl spermine), which also contains two saturated C18 lipid chains. RESULTS N4,N9-Dilinoleoyl spermine (C18, di-cis-9,12) is efficient at circular plasmid DNA (pEGFP) condensation and gives the most effective transfection in a series of primary skin cells and cancer cell lines at low charge ratios of 5.5 (+/-ammonium/phosphate). CONCLUSIONS The dienoic fatty acyl spermine conjugate N4,N9-dilinoleoyl spermine efficiently condenses DNA and achieves the highest transfection levels among the studied lipopolyamines in cultured cells.
Collapse
Affiliation(s)
- Osama A A Ahmed
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | | | | |
Collapse
|
16
|
Adjimatera N, Kral T, Hof M, Blagbrough IS. Lipopolyamine-mediated single nanoparticle formation of calf thymus DNA analyzed by fluorescence correlation spectroscopy. Pharm Res 2006; 23:1564-73. [PMID: 16783476 DOI: 10.1007/s11095-006-0278-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 02/27/2006] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim of this study is to analyze linear calf thymus DNA (ct DNA) nanoparticle formation with N4,N9-dioleoylspermine and N1-cholesteryl spermine carbamate. METHODS Fluorescence correlation spectroscopy (FCS) was used to determine the quality of ct DNA condensed by lipopolyamines. ct DNA was prelabeled with PicoGreen (PG) to allow fluorescence intensity fluctuation measurement and analysis. RESULTS N4,N9-dioleoylspermine efficiently condensed ct DNA into point-like molecules with diffusion coefficient (D) = 1.8 x 10(-12) m2/s and particle number (PN) = 0.7 [at ammonium/phosphate (N/P) charge ratio = 1.0-1.5]. The determined PN values are close to the theoretical value of 0.6, providing evidence that the DNA conformation has been fully transformed, and thus a single nanoparticle has been detected. N1-cholesteryl spermine carbamate showed (slightly) poorer DNA condensation efficiency, even at higher N/P ratios (N/P = 1.5-2.5) with D = 1.3 x 10(-12) m2/s and PN value of 5.2. N4,N9-dioleoylspermine is a more efficient DNA-condensing agent than N1-cholesteryl spermine carbamate. CONCLUSIONS FCS measurement using PG as the probe is a novel analytical method to detect single nanoparticles of condensed DNA in nonviral gene therapy formulation studies.
Collapse
Affiliation(s)
- Noppadon Adjimatera
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | | | | | | |
Collapse
|
17
|
McLaggan D, Adjimatera N, Sepčić K, Jaspars M, MacEwan DJ, Blagbrough IS, Scott RH. Pore forming polyalkylpyridinium salts from marine sponges versus synthetic lipofection systems: distinct tools for intracellular delivery of cDNA and siRNA. BMC Biotechnol 2006; 6:6. [PMID: 16412248 PMCID: PMC1361793 DOI: 10.1186/1472-6750-6-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 01/16/2006] [Indexed: 11/24/2022] Open
Abstract
Background Haplosclerid marine sponges produce pore forming polyalkylpyridinium salts (poly-APS), which can be used to deliver macromolecules into cells. The aim of this study was to investigate the delivery of DNA, siRNA and lucifer yellow into cells mediated by poly-APS and its potential mechanisms as compared with other lipofection systems (lipofectamine and N4,N9-dioleoylspermine (LipoGen)). DNA condensation was evaluated and HEK 293 and HtTA HeLa cells were used to investigate pore formation and intracellular delivery of cDNA, siRNA and lucifer yellow. Results Poly-APS and LipoGen were both found to be highly efficient DNA condensing agents. Fura-2 calcium imaging was used to measure calcium transients indicative of cell membrane pore forming activity. Calcium transients were evoked by poly-APS but not LipoGen and lipofectamine. The increases in intracellular calcium produced by poly-APS showed temperature sensitivity with greater responses being observed at 12°C compared to 21°C. Similarly, delivery of lucifer yellow into cells with poly-APS was enhanced at lower temperatures. Transfection with cDNA encoding for the expression enhanced green fluorescent protein was also evaluated at 12°C with poly-APS, lipofectamine and LipoGen. Intracellular delivery of siRNA was achieved with knockdown in beta-actin expression when lipofectamine and LipoGen were used as transfection reagents. However, intracellular delivery of siRNA was not achieved with poly-APS. Conclusion Poly-APS mediated pore formation is critical to its activity as a transfection reagent, but lipofection systems utilise distinct mechanisms to enable delivery of DNA and siRNA into cells.
Collapse
Affiliation(s)
- Debra McLaggan
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Noppadon Adjimatera
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Veèna pot 111, 1000 Ljubljana, Slovenia
| | - Marcel Jaspars
- Marine Natural Products Laboratory, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - David J MacEwan
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Ian S Blagbrough
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Roderick H Scott
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|