1
|
Carlo MJ, Nanney ALM, Patrick AL. Energy-Resolved In-Source Collison-Induced Dissociation for Isomer Discrimination. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2631-2641. [PMID: 39016059 DOI: 10.1021/jasms.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
While mass spectrometry remains a gold-standard tool for analyte detection, characterization, and quantitation, isomer differentiation is often a challenge. Tandem mass spectrometry is a common approach to increase the selectivity of mass spectrometry and energy-resolved measurements can provide further improvements. However, not all mass spectrometers, especially those that are very compact and affordable, are amenable to such experiments. For instance, single-stage mass spectrometers with soft ionization provide no dissociation information and quadrupole ion trap instruments with resonant excitation do not necessarily provide as informative of energy-resolved curves, for instance when extensive sequential dissociation is responsible for much of the "fingerprint". In-source collision-induced dissociation (IS-CID) is one approach to overcoming these barriers to exploit the analytical selectivity of energy-resolved CID without the need for additional instrumentation; this approach could broaden the reach of these selectivity gains to additional user bases (e.g., educational settings, field portable devices). Here, we specifically investigate energy-resolved IS-CID with the goal of (1) comparing between energy-resolved appearance curves measured with true tandem mass spectrometry on a quadrupole time-of-flight instrument and those obtained using IS-CID, (2) evaluating the approach as a means of differentiating isomers/isobar sets, especially those with similar dissociation patterns, and (3) exploring additional analytical considerations relevant to method development and implementation. This proof-of-concept work establishes the analytical potential of this approach, opening doors for future method development for specific applications.
Collapse
Affiliation(s)
- Matthew J Carlo
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Andie L M Nanney
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Amanda L Patrick
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
2
|
Fernandes E, Lopes CM, Lúcio M. Lipid Biomimetic Models as Simple Yet Complex Tools to Predict Skin Permeation and Drug-Membrane Biophysical Interactions. Pharmaceutics 2024; 16:807. [PMID: 38931927 PMCID: PMC11207520 DOI: 10.3390/pharmaceutics16060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The barrier function of the skin is primarily determined by its outermost layer, the Stratum Corneum (SC). The SC consists of corneocytes embedded in a lipid matrix composed mainly of ceramides, cholesterol, and free fatty acids in equimolar proportions and is organised in a complex lamellar structure with different periodicities and lateral packings. This matrix provides a diffusion pathway across the SC for bioactive compounds that are administered to the skin. In this regard, and as the skin administration route has grown in popularity, there has been an increase in the use of lipid mixtures that closely resemble the SC lipid matrix, either for a deeper biophysical understanding or for pharmaceutical and cosmetic purposes. This review focuses on a systematic analysis of the main outcomes of using lipid mixtures as SC lipid matrix models for pharmaceutical and cosmetic purposes. Thus, a methodical evaluation of the main outcomes based on the SC structure is performed, as well as the main recent developments in finding suitable new in vitro tools for permeation testing based on lipid models.
Collapse
Affiliation(s)
- Eduarda Fernandes
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
| | - Carla M. Lopes
- FFP-I3ID—Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS—Biomedical and Health Sciences Research Unit, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200–150 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, MedTech–Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marlene Lúcio
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
- CBMA—Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Bouwstra JA, Nădăban A, Bras W, McCabe C, Bunge A, Gooris GS. The skin barrier: An extraordinary interface with an exceptional lipid organization. Prog Lipid Res 2023; 92:101252. [PMID: 37666282 PMCID: PMC10841493 DOI: 10.1016/j.plipres.2023.101252] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The barrier function of the skin is primarily located in the stratum corneum (SC), the outermost layer of the skin. The SC is composed of dead cells with highly organized lipid lamellae in the intercellular space. As the lipid matrix forms the only continuous pathway, the lipids play an important role in the permeation of compounds through the SC. The main lipid classes are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). Analysis of the SC lipid matrix is of crucial importance in understanding the skin barrier function, not only in healthy skin, but also in inflammatory skin diseases with an impaired skin barrier. In this review we provide i) a historical overview of the steps undertaken to obtain information on the lipid composition and organization in SC of healthy skin and inflammatory skin diseases, ii) information on the role CERs, CHOL and FFAs play in the lipid phase behavior of very complex lipid model systems and how this knowledge can be used to understand the deviation in lipid phase behavior in inflammatory skin diseases, iii) knowledge on the role of both, CER subclasses and chain length distribution, on lipid organization and lipid membrane permeability in complex and simple model systems with synthetic CERs, CHOL and FFAs, iv) similarity in lipid phase behavior in SC of different species and complex model systems, and vi) future directions in modulating lipid composition that is expected to improve the skin barrier in inflammatory skin diseases.
Collapse
Affiliation(s)
- Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - Clare McCabe
- School of Engineering & Physical Science, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Annette Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Gerrit S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
4
|
Nădăban A, Rousel J, El Yachioui D, Gooris GS, Beddoes CM, Dalgliesh RM, Malfois M, Rissmann R, Bouwstra JA. Effect of sphingosine and phytosphingosine ceramide ratio on lipid arrangement and barrier function in skin lipid models. J Lipid Res 2023; 64:100400. [PMID: 37301511 PMCID: PMC10457584 DOI: 10.1016/j.jlr.2023.100400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
The lipids in the uppermost layer of the skin, the stratum corneum (SC), play an important role in the skin barrier function. The three main subclasses in the SC lipid matrix are ceramides (CER), cholesterol, and free fatty acids. In inflammatory skin diseases, such as atopic dermatitis and psoriasis, the SC lipid composition is modulated compared to the composition in healthy SC. One of the main alterations is the molar ratio between the concentration of CER N-(tetracosanoyl)-sphingosine (CER NS) and CER N-(tetracosanoyl)-phytosphingosine (CER NP), which correlated with an impaired skin barrier function. In the present study, we investigated the impact of varying the CER NS:CER NP ratios on the lipid organization, lipid arrangement, and barrier functionality in SC lipid model systems. The results indicate that a higher CER NS:CER NP ratio as observed in diseased skin did not alter the lipid organization or lipid arrangement in the long periodicity phase encountered in SC. The trans-epidermal water loss, an indication of the barrier functionality, was significantly higher for the CER NS:CER NP 2:1 model (mimicking the ratio in inflammatory skin diseases) compared to the CER NS:CER NP 1:2 ratio (in healthy skin). These findings provide a more detailed insight into the lipid organization in both healthy and diseased skin and suggest that in vivo the molar ratio between CER NS:CER NP contributes to barrier impairment as well but might not be the main factor.
Collapse
Affiliation(s)
- Andreea Nădăban
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jannik Rousel
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Centre for Human Drug Research, Leiden, The Netherlands
| | - Dounia El Yachioui
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Gerrit S Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Charlotte M Beddoes
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | | | - Robert Rissmann
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Centre for Human Drug Research, Leiden, The Netherlands; Leiden University Medical Center, Leiden, The Netherlands
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
5
|
Rahma A, Lane ME, Sinkó B. A comparative study of the in vitro permeation of 2-phenoxyethanol in the skin PAMPA model and mammalian skin. Int J Pharm 2023; 635:122692. [PMID: 36758884 DOI: 10.1016/j.ijpharm.2023.122692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
For permeation studies that use excised skin, experimental data may show variability associated with the use of biological tissues. As a consequence, achieving reproducible results and data interpretation may be challenging. The skin parallel artificial membrane permeability assay (skin PAMPA) model has been proposed as a high-throughput tool for predicting skin permeation of chemicals. A number of skin cleansing wipe formulations for the diaper area of infants contain 2-phenoxyethanol (PE) as a preservative and cetylpyridinium chloride (CPC) as a surfactant with antimicrobial activity. However, information regarding cutaneous absorption of PE and CPC in the scientific literatures is remarkably limited. The main aim of the present study was to assess the suitability of the skin PAMPA model for prediction of skin permeation of PE. A secondary aim was to investigate the influence of CPC on the dermal absorption of PE. PE (1 % w/w) was prepared in two vehicles, namely propylene glycol (PG) and water-PG (WP). Permeability of PE was investigated in vitro using the skin PAMPA membrane, porcine skin and human skin under finite dose conditions. The highest permeation of PE was observed for the water-PG preparation with 0.2 % w/w of CPC. This finding was consistently observed in the skin PAMPA model and in Franz cell studies using porcine skin and human skin. Permeation of CPC was not detected in the three permeation models. However, permeation of PE increased significantly (p < 0.05) in the presence of CPC compared with formulations without CPC. When comparing the skin PAMPA data and the mammalian skin data for the cumulative amount of PE permeated, the r2 values for PAMPA-porcine skin and PAMPA-human skin were 0.84 and 0.89, respectively. The findings in this study demonstrate the capability of the skin PAMPA model to differentiate between various doses and formulations and are encouraging for further applications of this model as a high throughput screening tool in topical formulation development.
Collapse
Affiliation(s)
- Annisa Rahma
- School of Pharmacy, Institut Teknologi Bandung, Ganesa 10, Bandung 40132, Indonesia; School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom.
| | - Majella E Lane
- School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom.
| | - Bálint Sinkó
- Pion Inc., 10 Cook Street, Billerica, MA 01821, United States.
| |
Collapse
|
6
|
Saitoh H, Takami K, Ohnari H, Chiba Y, Ikeuchi-Takahashi Y, Obata Y. Effects and Mode of Action of Oleic Acid and Tween 80 on Skin Permeation of Disulfiram. Chem Pharm Bull (Tokyo) 2023; 71:289-298. [PMID: 36709972 DOI: 10.1248/cpb.c22-00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oral disulfiram (DSF) has been used clinically for alcohol dependence and recently has been found to have antitumor activity. A transdermal delivery system would be useful for maintaining drug concentration and reducing the frequency of administration of DSF for cancer treatment. Penetrating the stratum corneum (SC) barrier is a challenge to the transdermal delivery of DSF. Therefore, we investigated the promoting effects and mechanism of action of the combination of oleic acid (OA) and Tween 80 on the skin permeation of DSF. Hairless mouse skin was exposed to OA and Tween 80, combined in various ratios (1:0, 2:1, 1:1, 1:2, and 0:1). A permeation experiment was performed, and total internal reflection infrared spectroscopic measurements, differential scanning calorimetry, and synchrotron radiation X-ray diffraction measurements were taken of the SC with each applied formulation. The combination of OA and Tween 80 further enhanced the absorption-promoting effect of DSF, compared with individual application. The peak of the CH2 inverse symmetric stretching vibration near the skin surface temperature was shifted by a high frequency due to the application of OA, and DSF solubility increased in response to Tween 80. We believe that the increased fluidity of the intercellular lipids due to OA and the increased solubility of DSF due to Tween 80 promoted the absorption of DSF. Our study clarifies the detailed mechanism of action of the skin permeation and promoting effect of DSF through the combined use of OA and Tween 80, contributing to the development of a transdermal preparation of DSF.
Collapse
Affiliation(s)
| | - Ken Takami
- Department of Pharmaceutical Technology, Hoshi University
| | - Hiroki Ohnari
- Department of Pharmaceutical Technology, Hoshi University
| | | | | | - Yasuko Obata
- Department of Pharmaceutical Technology, Hoshi University
| |
Collapse
|
7
|
Gupta KM, Das S, Wong ABH, Chow PS. Formulation and Skin Permeation of Active-Loaded Lipid Nanoparticles: Evaluation and Screening by Synergizing Molecular Dynamics Simulations and Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:308-319. [PMID: 36573314 DOI: 10.1021/acs.langmuir.2c02550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Encapsulation into nanoparticles (NPs) is a potential method to deliver pharmaceutical/cosmetic actives deep into the skin. However, understanding the NP formulations and underlying mechanism of active delivery to skin has scarcely been studied. We report a simulation platform that screens, evaluates, formulates, and provides atomic-resolution interpretation of NP-based formulations, and reveals the active permeation mechanism from NPs to skin. First, three actives, namely, ferulic acid (FA), clotrimazole (CZE), and tretinoin (TTN), and five lipid excipients' (Compritol, Precirol, Geleol, Gelot, Gelucire) combinations were screened by MD simulations for the best pairs. For each suggested pair, the actual active and lipid compositions for the synthesis of stable NP formulations were then obtained by experiments. MD simulations demonstrate that in NP formulations, FA and CZE actives are present at the surface of the NPs, whereas TTN actives are present at both the surface and interior of the NP core. The NP shapes obtained by simulation perfectly match with experiments. For each NP, separate MD simulations illustrate that active-loaded NPs approach the skin surface quickly, and then actives translocate from NP surface to skin surface followed by penetration of NPs through skin. The driving force for the translocation which initiates during the penetration process, is the stronger active-skin interaction compared to active-NP interaction. Permeation free energy indicates spontaneous transfer of actives from solution phase to the surface of the skin bilayer. The free energy barriers are increased in the order of FA < TTN < CZE. Significantly lower diffusions of actives are obtained in the main barrier region compared to bulk, and the average diffusion coefficients of actives are in the same order of magnitude (∼10-6 cm2/s). The estimated permeability coefficients (log P) of actives are mainly governed by free energy barriers. The study would facilitate the development of novel lipid-based NP formulations for personal-care/pharmaceutical applications.
Collapse
Affiliation(s)
- Krishna M Gupta
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island627833, Singapore
| | - Surajit Das
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island627833, Singapore
| | - Annie B H Wong
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island627833, Singapore
| | - Pui Shan Chow
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island627833, Singapore
| |
Collapse
|
8
|
Badhe Y, Schmitt T, Gupta R, Rai B, Neubert RH. Investigating the nanostructure of a CER[NP]/CER[AP]-based stratum corneum lipid matrix model: A combined neutron diffraction & molecular dynamics simulations approach. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOMEMBRANES 2022; 1864:184007. [PMID: 35863424 DOI: 10.1016/j.bbamem.2022.184007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
The human skin provides a physiochemical and biological protective barrier due to the unique structure of its outermost layer known as the Stratum corneum. This layer consists of corneocytes and a multi-lamellar lipid matrix forming a composite, which is a major determining factor for the barrier function of the Stratum corneum. A substantiated understanding of this barrier is necessary, as controlled breaching or modulation of the same is also essential for various health and personal care applications such as topical drug delivery and cosmetics to a name few. In this study, we discuss the state-of-the-art of neutron diffraction techniques, using specifically deuterated lipids, combined with the information obtained from molecular models using molecular dynamics simulations, to understand the structure and barrier function of the Stratum corneum lipid matrix. As an example, the effect of ceramide concentration on a lipid lamella system consisting of CER[NP]/CER[AP]/Cholesterol/free fatty acid (deprotonated) is studied. This study demonstrates the usefulness of the combined approach of neutron diffraction and molecular dynamics simulations for effective analysis of the model systems created for the Stratum corneum lipid matrix. The optimization of force fields by comparison with experimental data is furthermore an important step in the direction of providing a predictive quality.
Collapse
|
9
|
Shamaprasad P, Frame CO, Moore TC, Yang A, Iacovella CR, Bouwstra JA, Bunge AL, McCabe C. Using molecular simulation to understand the skin barrier. Prog Lipid Res 2022; 88:101184. [PMID: 35988796 PMCID: PMC10116345 DOI: 10.1016/j.plipres.2022.101184] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022]
Abstract
Skin's effectiveness as a barrier to permeation of water and other chemicals rests almost entirely in the outermost layer of the epidermis, the stratum corneum (SC), which consists of layers of corneocytes surrounded by highly organized lipid lamellae. As the only continuous path through the SC, transdermal permeation necessarily involves diffusion through these lipid layers. The role of the SC as a protective barrier is supported by its exceptional lipid composition consisting of ceramides (CERs), cholesterol (CHOL), and free fatty acids (FFAs) and the complete absence of phospholipids, which are present in most biological membranes. Molecular simulation, which provides molecular level detail of lipid configurations that can be connected with barrier function, has become a popular tool for studying SC lipid systems. We review this ever-increasing body of literature with the goals of (1) enabling the experimental skin community to understand, interpret and use the information generated from the simulations, (2) providing simulation experts with a solid background in the chemistry of SC lipids including the composition, structure and organization, and barrier function, and (3) presenting a state of the art picture of the field of SC lipid simulations, highlighting the difficulties and best practices for studying these systems, to encourage the generation of robust reproducible studies in the future. This review describes molecular simulation methodology and then critically examines results derived from simulations using atomistic and then coarse-grained models.
Collapse
Affiliation(s)
- Parashara Shamaprasad
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Chloe O Frame
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Timothy C Moore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Alexander Yang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Christopher R Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Joke A Bouwstra
- Division of BioTherapeutics, LACDR, Leiden University, 2333 CC Leiden, the Netherlands
| | - Annette L Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America; School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, United Kingdom.
| |
Collapse
|
10
|
Quantin P, Stricher M, Catoire S, Ficheux H, Egles C. Dermatokinetics: Advances and Experimental Models, Focus on Skin Metabolism. Curr Drug Metab 2022; 23:340-354. [PMID: 35585827 DOI: 10.2174/1389200223666220517114004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
Numerous dermal contact products, such as drugs or cosmetics, are applied on the skin, the first protective barrier to their entrance into the organism. These products contain various xenobiotic molecules that can penetrate the viable epidermis. Many studies have shown that keratinocyte metabolism could affect their behavior by biotransformation. While aiming for detoxification, toxic metabolites can be produced. These metabolites may react with biological macromolecules often leading to sensitization reactions. After passing through the epidermis, xenobiotics can reach the vascularized dermis and therefore be bioavailable and distributed into the entire organism. To highlight these mechanisms, dermatokinetics, based on the concept of pharmacokinetics, has been developed recently. It provides information on the action of xenobiotics that penetrate the organism through the dermal route. The purpose of this review is first to describe and synthesize the dermatokinetics mechanisms to consider when assessing the absorption of a xenobiotic through the skin. We focus on skin absorption and specifically on skin metabolism, the two main processes involved in dermatokinetics. In addition, experimental models and methods to assess dermatokinetics are described and discussed to select the most relevant method when evaluating, in a specific context, dermatokinetics parameters of a xenobiotic. We also discuss the limits of this approach as it is notably used for risk assessment in the industry where scenario studies generally focus only on one xenobiotic and do not consider interactions with the rest of the exposome. The hypothesis of adverse effects due to the combination of chemical substances in contact with individuals and not to a single molecule are being increasingly studied and embraced in the scientific community.
Collapse
Affiliation(s)
- Paul Quantin
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France
| | - Mathilde Stricher
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France Biological Engineering
| | | | - Hervé Ficheux
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France Biological Engineering
| | - Christophe Egles
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France
| |
Collapse
|
11
|
Sochorová M, Vávrová K, Fedorova M, Ni Z, Slenter D, Kutmon M, Willighagen EL, Letsiou S, Töröcsik D, Marchetti-Deschmann M, Zoratto S, Kremslehner C, Gruber F. Research Techniques Made Simple: Lipidomic Analysis in Skin Research. J Invest Dermatol 2021; 142:4-11.e1. [PMID: 34924150 DOI: 10.1016/j.jid.2021.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022]
Abstract
Although lipids are crucial molecules for cell structure, metabolism, and signaling in most organs, they have additional specific functions in the skin. Lipids are required for the maintenance and regulation of the epidermal barrier, physical properties of the skin, and defense against microbes. Analysis of the lipidome-the totality of lipids-is of similar complexity to those of proteomics or other omics, with lipid structures ranging from simple, linear, to highly complex structures. In addition, the ordering and chemical modifications of lipids have consequences on their biological function, especially in the skin. Recent advances in analytic capability (usually with mass spectrometry), bioinformatic processing, and integration with other dermatological big data have allowed researchers to increasingly understand the roles of specific lipid species in skin biology. In this paper, we review the techniques used to analyze skin lipidomics and epilipidomics.
Collapse
Affiliation(s)
- Michaela Sochorová
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence (SKINMAGINE), Medical University of Vienna, Vienna, Austria; Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Vávrová
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Leipzig, Germany; Center for Biotechnology and Biomedicine (BBZ), Leipzig University, Leipzig, Germany
| | - Zhixu Ni
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Leipzig, Germany; Center for Biotechnology and Biomedicine (BBZ), Leipzig University, Leipzig, Germany
| | - Denise Slenter
- Department of Bioinformatics (BiGCaT), NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Martina Kutmon
- Department of Bioinformatics (BiGCaT), NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands; Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Egon L Willighagen
- Department of Bioinformatics (BiGCaT), NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Sophia Letsiou
- Department of Metabolic Diseases, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daniel Töröcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Martina Marchetti-Deschmann
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence (SKINMAGINE), Medical University of Vienna, Vienna, Austria; Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria; Austrian Cluster of Tissue Regeneration, Vienna, Austria
| | - Samuele Zoratto
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence (SKINMAGINE), Medical University of Vienna, Vienna, Austria; Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria; Austrian Cluster of Tissue Regeneration, Vienna, Austria
| | - Christopher Kremslehner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence (SKINMAGINE), Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence (SKINMAGINE), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Gupta KM, Das S, Chow PS. Molecular dynamics simulations to elucidate translocation and permeation of active from lipid nanoparticle to skin: complemented by experiments. NANOSCALE 2021; 13:12916-12928. [PMID: 34477775 DOI: 10.1039/d1nr02652f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the most realistic approaches for delivering actives (pharmaceuticals/cosmetics) deep into skin layers is encapsulation into nanoparticles (NPs). Nonetheless, molecular-level mechanisms related to active delivery from NPs to the skin have scarcely been studied despite the large number of synthesis and characterization studies. We herein report the underlying mechanism of active translocation and permeation through the outermost layer of skin, the stratum corneum (SC), via molecular dynamics (MD) simulations complemented by experimental studies. A SC molecular model is constructed using current state-of-the-art methodology via incorporating the three most abundant skin lipids: ceramides, free fatty acids, and cholesterol. As a potent antioxidant, ferulic acid (FA) is used as the model active, and it is loaded into Gelucire 50/13 NP. MD simulations elucidate that, first, FA-loaded NP approaches the skin surface quickly, followed by slight penetration and adsorption onto the upper skin surface; FA then translocates from the NP surface to the skin surface due to stronger NP-skin interactions compared to the FA-NP interactions; then, once FA is released onto the skin surface, it slowly permeates deep into the skin bilayer. Both the free energy and resistance to permeation not only indicate the spontaneous transfer of FA from the bulk to the skin surface, but they also reveal that the main barrier against permeation exists in the middle of the lipid hydrophobic tails. Significantly lower diffusion of FA is obtained in the main barrier region compared to the bulk. The estimated permeability coefficient (log P) values are found to be higher than the experimental values. Importantly, the permeation process evaluated via MD simulations perfectly matches with experiments. The study suggests a molecular simulation platform that provides various crucial insights relating to active delivery from loaded NP to skin, and it could facilitate the design and development of novel NP-based formulations for transdermal delivery and the topical application of drugs/cosmetics.
Collapse
Affiliation(s)
- Krishna M Gupta
- Institute of Chemical & Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833.
| | | | | |
Collapse
|
13
|
Uche L, Gooris GS, Bouwstra JA, Beddoes CM. Increased Levels of Short-Chain Ceramides Modify the Lipid Organization and Reduce the Lipid Barrier of Skin Model Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9478-9489. [PMID: 34319754 PMCID: PMC8389989 DOI: 10.1021/acs.langmuir.1c01295] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The skin barrier function is attributed to the stratum corneum (SC) intercellular lipid matrix, which is composed primarily of ceramides (CERs), free fatty acids, and cholesterol. These lipids are organized in two lamellar phases: the short and long periodicity phases (SPP and LPP), respectively. The LPP is considered important for the skin barrier function. High levels of short-chain CERs are observed in various inflammatory skin diseases and have been correlated with barrier dysfunction. In this research, we investigated how the increase in the fraction of the short-chain CER with a nonhydroxy C16 acyl chain linked to a C18 sphingosine base CER NS(C16) at the expense of the physiological chain length CER NS with a C24 acyl chain (CER NS(C24)) impacts the microstructure and barrier function of a lipid model that mimicked certain characteristics of the SC lipid organization. The permeability and lipid organization of the model membranes were compared with that of a control model without CER NS(C16). The permeability increased significantly when ≥50% of CER NS(C24) was substituted with CER NS(C16). Employing biophysical techniques, we showed that the lipid packing density reduced with an increasing proportion of CER NS(C16). Substitution of 75% of CER NS(C24) by CER NS(C16) resulted in the formation of phase-separated lipid domains and alteration of the LPP structure. Using deuterium-labeled lipids enabled simultaneous characterization of the C24 and C16 acyl chains in the lipid models, providing insight into the mechanisms underlying the reduced skin barrier function in diseased skin.
Collapse
|
14
|
Petracca B, Nădăban A, Eeman M, Gooris GS, Bouwstra JA. Effects of ozone on stratum corneum lipid integrity and assembly. Chem Phys Lipids 2021; 240:105121. [PMID: 34352254 DOI: 10.1016/j.chemphyslip.2021.105121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/04/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
The stratum corneum (SC) acts as the main barrier of the skin against exogenous substances (e.g. air pollutants) and against the loss of endogenous substances such as water. The SC consists of keratin-rich dead cells surrounded by crystalline lamellar lipid regions. The main lipid classes are ceramides (CERs), free fatty acids (FFAs), and cholesterol (CHOL). Tropospheric ozone (O3) is a potent oxidant compound that reacts instantly with biological molecules such as lipids and proteins. Although it has been reported that O3 induces biological responses at the cellular level, to the best of our knowledge, there is no information related to the damages O3 can cause at the level of the SC extracellular lipid matrix. The aim of our work was to investigate which SC lipid subclasses are prone to oxidation when exposed to O3 and how the changes in chemical structures affect the lipid organization in a stratum corneum substitute (SCS) membrane. Ultimately the barrier properties of the SCS were examined. Our studies reveal that O3 induces chemical modifications of the unsaturated bonds in CERs and CHOL. The appearance of carbonyl groups at the headgroup level and the removal of the linoleate moiety of omega acylceramides (CER EOS) impact the lamellar organization of the lipid assembly and to a lesser extent the lateral packing of the lipids. Unexpectedly, the modifications improved the barrier function of the SCS.
Collapse
Affiliation(s)
- Benedetta Petracca
- Dow Silicones Belgium SRL, Rue Jules Bordet, Parc Industriel Zone C, B-7180 Seneffe, Belgium; Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| | - Marc Eeman
- Dow Silicones Belgium SRL, Rue Jules Bordet, Parc Industriel Zone C, B-7180 Seneffe, Belgium.
| | - Gert S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| | - Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| |
Collapse
|
15
|
Mieremet A, Helder RWJ, Nadaban A, Boiten WA, Gooris GS, El Ghalbzouri A, Bouwstra JA. Multitargeted Approach for the Optimization of Morphogenesis and Barrier Formation in Human Skin Equivalents. Int J Mol Sci 2021; 22:ijms22115790. [PMID: 34071405 PMCID: PMC8198964 DOI: 10.3390/ijms22115790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
In vitro skin tissue engineering is challenging due to the manifold differences between the in vivo and in vitro conditions. Yet, three-dimensional (3D) human skin equivalents (HSEs) are able to mimic native human skin in many fundamental aspects. However, the epidermal lipid barrier formation, which is essential for the functionality of the skin barrier, remains compromised. Recently, HSEs with an improved lipid barrier formation were generated by (i) incorporating chitosan in the dermal collagen matrix, (ii) reducing the external oxygen level to 3%, and (iii) inhibiting the liver X receptor (LXR). In this study, we aimed to determine the synergic effects in full-thickness models (FTMs) with combinations of these factors as single-, double-, and triple-targeted optimization approaches. The collagen–chitosan FTM supplemented with the LXR inhibitor showed improved epidermal morphogenesis, an enhanced lipid composition, and a better lipid organization. Importantly, barrier functionality was improved in the corresponding approach. In conclusion, our leading optimization approach substantially improved the epidermal morphogenesis, barrier formation, and functionality in the FTM, which therefore better resembled native human skin.
Collapse
Affiliation(s)
- Arnout Mieremet
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.M.); (A.E.G.)
| | - Richard W. J. Helder
- Division of BioTherapeutics, Leiden Academic Centre of Drug Research, Leiden University, 2333 CD Leiden, The Netherlands; (R.W.J.H.); (A.N.); (W.A.B.); (G.S.G.)
| | - Andreea Nadaban
- Division of BioTherapeutics, Leiden Academic Centre of Drug Research, Leiden University, 2333 CD Leiden, The Netherlands; (R.W.J.H.); (A.N.); (W.A.B.); (G.S.G.)
| | - Walter A. Boiten
- Division of BioTherapeutics, Leiden Academic Centre of Drug Research, Leiden University, 2333 CD Leiden, The Netherlands; (R.W.J.H.); (A.N.); (W.A.B.); (G.S.G.)
| | - Gert S. Gooris
- Division of BioTherapeutics, Leiden Academic Centre of Drug Research, Leiden University, 2333 CD Leiden, The Netherlands; (R.W.J.H.); (A.N.); (W.A.B.); (G.S.G.)
| | - Abdoelwaheb El Ghalbzouri
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.M.); (A.E.G.)
| | - Joke A. Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre of Drug Research, Leiden University, 2333 CD Leiden, The Netherlands; (R.W.J.H.); (A.N.); (W.A.B.); (G.S.G.)
- Correspondence: ; Tel.: +31-71-527-4208
| |
Collapse
|
16
|
Uche LE, Gooris GS, Bouwstra JA, Beddoes CM. High concentration of the ester-linked ω-hydroxy ceramide increases the permeability in skin lipid model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183487. [PMID: 33068546 DOI: 10.1016/j.bbamem.2020.183487] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 02/04/2023]
Abstract
The ester-linked ω-hydroxy acyl chain linked to a sphingosine base referred to as CER EOS is essential for the skin barrier lipid organization. While the majority of the skin lipids form a dense, crystalline structure, associated with low permeability, the unsaturated moiety of CER EOS, (either the linoleate or the oleate chain) exists in a liquid phase at the skin's physiological temperature. Thus, the relationship between CER EOS and barrier function is not entirely comprehended. We studied the permeability and lipid organization in skin lipid models, gradually increasing in CER EOS concentration, mixed with non-hydroxy sphingosine-based ceramide (CER NS) in an equimolar ratio of CERs, cholesterol, and free fatty acids (FFAs) mimicking the ratio in the native skin. A significant increase in the orthorhombic-hexagonal phase transition temperature was recorded when CER EOS concentration was raised to 70 mol% of the total CER content and higher, rendering a higher fraction of lipids in the orthorhombic phase at the expense of the hexagonal phase at physiological temperature. The model's permeability did not differ when CER EOS concentration ranged between 10 and 30% but increased significantly at 70% and higher. Using CER EOS with a perdeuterated oleate chain, it was shown that the fraction of lipids in a liquid phase increased with CER EOS concentration, while the neighboring CERs and FFAs remained in a crystalline state. The increased fraction of the liquid phase therefore, had a stronger effect on permeability than the increased fraction of lipids forming an orthorhombic phase.
Collapse
Affiliation(s)
- Lorretta E Uche
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| | - Gerrit S Gooris
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| | - Joke A Bouwstra
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands.
| | - Charlotte M Beddoes
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| |
Collapse
|
17
|
Uche LE, Gooris GS, Bouwstra JA, Beddoes CM. Barrier Capability of Skin Lipid Models: Effect of Ceramides and Free Fatty Acid Composition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15376-15388. [PMID: 31698908 DOI: 10.1021/acs.langmuir.9b03029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The skin is an effective barrier that prevents the influx of harmful substances from the environment and the efflux of body fluid. This barrier function is ascribed to the intercellular lipids present in the outermost layer of the skin referred to as the stratum corneum (SC). These lipids are composed mainly of ceramides (CERs), cholesterol, and free fatty acids (FFAs). Alterations in the SC lipid composition and barrier function impairment occur in several skin diseases including atopic dermatitis (AD). As the etiology of AD is multifactorial, establishing the relationship between the changes in SC lipid composition and barrier function impairment in the patients remains a challenge. Here, we employed model membrane systems to investigate the contribution of various anomalies in the SC CER and FFA composition observed in AD patients' skin to the barrier dysfunction. Using ethyl-p-aminobenzoate permeation and transepidermal water loss values as markers for barrier function, we determined that the alterations in SC lipid composition contribute to the impaired barrier function in AD patients. By the use of biophysical techniques, we established that the largest reduction in barrier capability was observed in the model with an increased fraction of short-chain FFAs, evident by the decrease in chain packing density. Modulations in the CER subclass composition impacted the lamellar organization while having a smaller effect on the barrier function. These findings provide evidence that AD therapies normalizing the FFA composition are at least as important as normalizing CER composition.
Collapse
Affiliation(s)
- Lorretta E Uche
- Division BioTherapeutics, Leiden Academic Centre for Drug Research , Leiden University , 2333 CC Leiden , Netherlands
| | - Gerrit S Gooris
- Division BioTherapeutics, Leiden Academic Centre for Drug Research , Leiden University , 2333 CC Leiden , Netherlands
| | - Joke A Bouwstra
- Division BioTherapeutics, Leiden Academic Centre for Drug Research , Leiden University , 2333 CC Leiden , Netherlands
| | - Charlotte M Beddoes
- Division BioTherapeutics, Leiden Academic Centre for Drug Research , Leiden University , 2333 CC Leiden , Netherlands
| |
Collapse
|
18
|
Lin MH, Hsu FF, Crumrine D, Meyer J, Elias PM, Miner JH. Fatty acid transport protein 4 is required for incorporation of saturated ultralong-chain fatty acids into epidermal ceramides and monoacylglycerols. Sci Rep 2019; 9:13254. [PMID: 31519952 PMCID: PMC6744566 DOI: 10.1038/s41598-019-49684-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 01/15/2023] Open
Abstract
Fatty acid transport protein 4 (FATP4) is an acyl-CoA synthetase that is required for normal permeability barrier in mammalian skin. FATP4 (SLC27A4) mutations cause ichthyosis prematurity syndrome, a nonlethal disorder. In contrast, Fatp4-/- mice die neonatally from a defective barrier. Here we used electron microscopy and lipidomics to characterize defects in Fatp4-/- mice. Mutants showed lamellar body, corneocyte lipid envelope, and cornified envelope abnormalities. Lipidomics identified two lipids previously speculated to be present in mouse epidermis, sphingosine β-hydroxyceramide and monoacylglycerol; mutants displayed decreased proportions of these and the two ceramide classes that carry ultralong-chain, amide-linked fatty acids (FAs) thought to be critical for barrier function, unbound ω-O-acylceramide and bound ω-hydroxyceramide, the latter constituting the major component of the corneocyte lipid envelope. Other abnormalities included elevated amounts of sphingosine α-hydroxyceramide, phytosphingosine non-hydroxyceramide, and 1-O-acylceramide. Acyl chain length alterations in ceramides also suggested roles for FATP4 in esterifying saturated non-hydroxy and β-hydroxy FAs with at least 25 carbons and saturated or unsaturated ω-hydroxy FAs with at least 30 carbons to CoA. Our lipidomic analysis is the most thorough such study of the Fatp4-/- mouse skin barrier to date, providing information about how FATP4 can contribute to barrier function by regulating fatty acyl moieties in various barrier lipids.
Collapse
Affiliation(s)
- Meei-Hua Lin
- Division of Nephrology, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States
| | - Debra Crumrine
- Dermatology Service, VA Medical Center and Department of Dermatology, University of California-San Francisco, 4150 Clement St., San Francisco, CA, 94121, United States
| | - Jason Meyer
- Dermatology Service, VA Medical Center and Department of Dermatology, University of California-San Francisco, 4150 Clement St., San Francisco, CA, 94121, United States
| | - Peter M Elias
- Dermatology Service, VA Medical Center and Department of Dermatology, University of California-San Francisco, 4150 Clement St., San Francisco, CA, 94121, United States
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States.
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States.
- Department of Cell Biology and Physiology, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States.
| |
Collapse
|
19
|
Proksch E, Berardesca E, Misery L, Engblom J, Bouwstra J. Dry skin management: practical approach in light of latest research on skin structure and function. J DERMATOL TREAT 2019; 31:716-722. [PMID: 30998081 DOI: 10.1080/09546634.2019.1607024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dry skin is a common condition that is attributed to a lack of water in the stratum corneum. With the availability of new technologies, light has been shed on the pathophysiology of dry skin at the molecular level. With the aim to discuss implications of this latest research for the optimal formulation of emollients designed to treat dry skin, five specialists met in November 2017. Research on three topics thereby provided particularly detailed new insights on how to manage dry skin: research on the lipid composition and organization of the stratum corneum, research on natural moisturizing factors, and research on the peripheral nervous system. There was consensus that latest research expands the rationale to include physiological lipids in an emollient used for dry skin, as they were found to be essential for an adequate composition and organization in the stratum corneum but are reduced in dry skin. Latest findings also confirmed the incorporation of carefully selected humectants into a topical emollient for dry skin, given the reduced activity of enzymes involved in the synthesis of moisturizing factors when skin is dry. Overall, the group of specialists concluded that the previous concept of the five components for an ideal emollient for dry skin is well in accordance with latest research.
Collapse
Affiliation(s)
| | | | - Laurent Misery
- Department of Dermatology, University Hospital of Brest, Brest, France.,Laboratory of Neurosciences, University of Western Brittany, Brest, France
| | - Johan Engblom
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Joke Bouwstra
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| |
Collapse
|
20
|
Effect of Ceramide Tail Length on the Structure of Model Stratum Corneum Lipid Bilayers. Biophys J 2019; 114:113-125. [PMID: 29320678 DOI: 10.1016/j.bpj.2017.10.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
Lipid bilayers composed of non-hydroxy sphingosine ceramide (CER NS), cholesterol (CHOL), and free fatty acids (FFAs), which are components of the human skin barrier, are studied via molecular dynamics simulations. Since mixtures of these lipids exist in dense gel phases with little molecular mobility at physiological conditions, care must be taken to ensure that the simulations become decorrelated from the initial conditions. Thus, we propose and validate an equilibration protocol based on simulated tempering, in which the simulation takes a random walk through temperature space, allowing the system to break out of metastable configurations and hence become decorrelated from its initial configuration. After validating the equilibration protocol, which we refer to as random-walk molecular dynamics, the effects of the lipid composition and ceramide tail length on bilayer properties are studied. Systems containing pure CER NS, CER NS + CHOL, and CER NS + CHOL + FFA, with the CER NS fatty acid tail length varied within each CER NS-CHOL-FFA composition, are simulated. The bilayer thickness is found to depend on the structure of the center of the bilayer, which arises as a result of the tail-length asymmetry between the lipids studied. The hydrogen bonding between the lipid headgroups and with water is found to change with the overall lipid composition, but is mostly independent of the CER fatty acid tail length. Subtle differences in the lateral packing of the lipid tails are also found as a function of CER tail length. Overall, these results provide insight into the experimentally observed trend of altered barrier properties in skin systems where there are more CERs with shorter tails present.
Collapse
|
21
|
Jamin EL, Jacques C, Jourdes L, Tabet JC, Borotra N, Bessou-Touya S, Debrauwer L, Duplan H. Identification of lipids of the stratum corneum by high performance thin layer chromatography and mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:278-290. [PMID: 30545248 DOI: 10.1177/1469066718815380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The stratum corneum, the outermost layer of the epidermis, is the most important skin barrier against exogenous physical and chemical effects, in addition to protecting against dehydration. Ceramides are integral parts of the intercellular lipid lamellae of the stratum corneum and play an important role in the barrier function of mammalian skin. Ceramides are sphingolipids consisting of sphingoid bases linked to fatty acids by an amide bond. Typical sphingoid bases in the skin are composed of dihydrosphingosine, sphingosine, phytosphingosine, and 6-hydroxysphingosine, and the fatty acid acyl chains are composed of non-hydroxy fatty acid, α-hydroxy fatty acid, ω-hydroxy fatty acid, and esterified ω-hydroxy fatty acid. Analytical methods, such as gas chromatography/mass spectrometry, high performance thin layer chromatography with UV detection, and liquid chromatography/mass spectrometry, have been developed for the identification and quantification of ceramides in the stratum corneum. However, only a few publications relate to the mass fragmentation patterns specific to ceramide types to determine the structure of skin ceramides. Moreover, these studies provide very limited structural information and only for some ceramides. Therefore, the aim of our study was to develop a quick and easy method of quantification of ceramides, cholesterol, and free fatty acids by high performance thin layer chromatography with ultraviolet detection. High performance thin layer chromatography with ultraviolet detection was also coupled with mass spectrometry using negative ionization by electrospray and tandem mass spectrometry (MS/MS) for identification of ceramides' structure.
Collapse
Affiliation(s)
- Emilien L Jamin
- 1 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- 2 Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Carine Jacques
- 3 Pierre Fabre Dermo-cosmétique, Pharmacology Unit, Toulouse, France
| | - Laëtitia Jourdes
- 3 Pierre Fabre Dermo-cosmétique, Pharmacology Unit, Toulouse, France
| | - Jean-Claude Tabet
- 4 Service de Pharmacologie et d'Immunoanalyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, MetaboHUB, Gif-sur-Yvette, France
- 5 Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, Paris, France
| | - Nathalie Borotra
- 3 Pierre Fabre Dermo-cosmétique, Pharmacology Unit, Toulouse, France
| | | | - Laurent Debrauwer
- 1 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- 2 Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Hélène Duplan
- 3 Pierre Fabre Dermo-cosmétique, Pharmacology Unit, Toulouse, France
| |
Collapse
|
22
|
Čuříková-Kindlová BA, Diat O, Štěpánek F, Vávrová K, Zbytovská J. Probing the interactions among sphingosine and phytosphingosine ceramides with non- and alpha-hydroxylated acyl chains in skin lipid model membranes. Int J Pharm 2019; 563:384-394. [PMID: 30959237 DOI: 10.1016/j.ijpharm.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/26/2022]
Abstract
Ceramides (Cers) are significant constituents of the stratum corneum (SC), the uppermost skin layer responsible for skin barrier properties. Cers are a heterogeneous group of lipids whose mutual interactions are still unclear. To better understand these interactions, we characterized model membranes containing stearic acid, cholesterol, cholesterol sulfate and one or more of the following ceramides: N-stearoyl-sphingosine (CerNS), N-stearoyl-phytosphingosine (CerNP) and N-(2-hydroxy)stearoyl-phytosphingosine (CerAP). Small angle X-ray scattering and FTIR spectroscopy were used to study lipid arrangement, phase separation and thermotropic behaviour. In the one-Cer systems, the membranes with CerNP showed strong hydrogen bonding and significant phase separation, even after phase transition, while the systems containing CerAP and CerNS had increased lipid miscibility. The multi-Cer systems exhibited different behaviour. In particular, the membrane containing all three Cers was a highly miscible system with narrow one-step phase transition, which, of all the studied samples, occurred at the lowest temperatures. Our results show that even a small variation in Cer structure results in substantially different phase behaviour, which is further affected by the presence of other Cer subclasses. Interestingly, the phase behaviour of the most complex three-Cer system was simpler than that of the others, highlighting the importance of lipid diversity in real SC.
Collapse
Affiliation(s)
- Barbora Amélie Čuříková-Kindlová
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Department of Organic Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Olivier Diat
- Institute de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Bagnols-sur-Cèze, France
| | - František Štěpánek
- University of Chemistry and Technology Prague, Faculty of Chemical Engineering, Department of Chemical Engineering, Technická 5, 166 28 Prague, Czech Republic
| | - Kateřina Vávrová
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jarmila Zbytovská
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Department of Organic Technology, Technická 5, 166 28 Prague, Czech Republic; Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
23
|
3D-Organotypic Cultures to Unravel Molecular and Cellular Abnormalities in Atopic Dermatitis and Ichthyosis Vulgaris. Cells 2019; 8:cells8050489. [PMID: 31121896 PMCID: PMC6562513 DOI: 10.3390/cells8050489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Atopic dermatitis (AD) is characterized by dry and itchy skin evolving into disseminated skin lesions. AD is believed to result from a primary acquired or a genetically-induced epidermal barrier defect leading to immune hyper-responsiveness. Filaggrin (FLG) is a protein found in the cornified envelope of fully differentiated keratinocytes, referred to as corneocytes. Although FLG null mutations are strongly associated with AD, they are not sufficient to induce the disease. Moreover, most patients with ichthyosis vulgaris (IV), a monogenetic skin disease characterized by FLG homozygous, heterozygous, or compound heterozygous null mutations, display non-inflamed dry and scaly skin. Thus, all causes of epidermal barrier impairment in AD have not yet been identified, including those leading to the Th2-predominant inflammation observed in AD. Three dimensional organotypic cultures have emerged as valuable tools in skin research, replacing animal experimentation in many cases and precluding the need for repeated patient biopsies. Here, we review the results on IV and AD obtained with epidermal or skin equivalents and consider these findings in the context of human in vivo data. Further research utilizing complex models including immune cells and cutaneous innervation will enable finer dissection of the pathogenesis of AD and deepen our knowledge of epidermal biology.
Collapse
|
24
|
Uche LE, Gooris GS, Beddoes CM, Bouwstra JA. New insight into phase behavior and permeability of skin lipid models based on sphingosine and phytosphingosine ceramides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1317-1328. [PMID: 30991016 DOI: 10.1016/j.bbamem.2019.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/25/2019] [Accepted: 04/11/2019] [Indexed: 11/27/2022]
Abstract
The intercellular lipid matrix of the stratum corneum (SC), which consist mainly of ceramides (CERs), free fatty acids and cholesterol, is fundamental to the skin barrier function. These lipids assemble into two lamellar phases, known as the long and short periodicity phases (LPP and SPP respectively). The LPP is unique in the SC and is considered important for the skin barrier function. Alterations in CER composition, as well as impaired skin barrier function, are commonly observed in diseased skin, yet the understanding of this relationship remains insufficient. In this study, we have investigated the influence of non-hydroxy and α-hydroxy sphingosine-based CERs and their phytosphingosine counterparts on the permeability and lipid organization of model membranes, which were adjusted in composition to enhance formation of the LPP. The permeability was compared by diffusion studies using ethyl-p-aminobenzoate as a model drug, and the lipid organization was characterized by X-ray diffraction and infrared spectroscopy. Both the sphingosine- and phytosphingosine-based CER models formed the LPP, while the latter exhibited a longer LPP repeat distance. The ethyl-p-aminobenzoate flux across the sphingosine-based CER models was higher when compared to the phytosphingosine counterparts, contrary to the fact that the α-hydroxy phytosphingosine-based CER model had the lowest chain packing density. The unanticipated low permeability of the α-hydroxy phytosphingosine-based model is probably associated with a stronger headgroup hydrogen bonding network. Our findings indicate that the increased level of sphingosine-based CERs at the expense of phytosphingosine-based CERs, as observed in the diseased skin, may contribute to the barrier function impairment.
Collapse
Affiliation(s)
- L E Uche
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| | - G S Gooris
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| | - C M Beddoes
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands
| | - J A Bouwstra
- Division BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Netherlands.
| |
Collapse
|
25
|
A comparison of the in vitro permeation of niacinamide in mammalian skin and in the Parallel Artificial Membrane Permeation Assay (PAMPA) model. Int J Pharm 2018; 556:142-149. [PMID: 30529662 DOI: 10.1016/j.ijpharm.2018.11.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 11/23/2022]
Abstract
The in vitro skin penetration of pharmaceutical or cosmetic ingredients is usually assessed in human or animal tissue. However, there are ethical and practical difficulties associated with sourcing these materials; variability between donors may also be problematic when interpreting experimental data. Hence, there has been much interest in identifying a robust and high throughput model to study skin permeation that would generate more reproducible results. Here we investigate the permeability of a model active, niacinamide (NIA), in (i) conventional vertical Franz diffusion cells with excised human skin or porcine skin and (ii) a recently developed Parallel Artificial Membrane Permeation Assay (PAMPA) model. Both finite and infinite dose conditions were evaluated in both models using a series of simple NIA solutions and one commercial preparation. The Franz diffusion cell studies were run over 24 h while PAMPA experiments were conducted for 2.5 h. A linear correlation between both models was observed for the cumulative amount of NIA permeated in tested models under finite dose conditions. The corresponding correlation coefficients (r2) were 0.88 for porcine skin and 0.71 for human skin. These results confirm the potential of the PAMPA model as a useful screening tool for topical formulations. Future studies will build on these findings and expand further the range of actives investigated.
Collapse
|
26
|
Beddoes CM, Gooris GS, Bouwstra JA. Preferential arrangement of lipids in the long-periodicity phase of a stratum corneum matrix model. J Lipid Res 2018; 59:2329-2338. [PMID: 30333154 DOI: 10.1194/jlr.m087106] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
The lipid matrix of the stratum corneum, the outermost skin layer, consists primarily of ceramides, cholesterol, and FFAs. These lipids form a trilayer long-periodicity phase (LPP) that is unique to this barrier. Knowledge about the LPP is essential in understanding the barrier function. Previous studies of LPP lipid models have identified the position of the major lipid classes and suggested that a large fraction of FFAs and the ceramide acyl chain are present in the central region. However, the precise arrangement, such as lipid subclass mixing (isolated or mixed) and ceramide conformation (extended or hairpin), remains unknown. Here, we deuterated FFAs and the ceramide acyl chain to study CD2 and CH2 interactions with Fourier-transform infrared spectroscopy. The ceramide and FFAs of various chain lengths were not in separate domains but had mixed together. The larger number of CD2-CD2 lipid chain interactions in the LPP than in a symmetrical bilayer structure implied that the ceramide had primarily adopted an extended conformation. Shorter FFAs were present in the central region of the LPP. This model explores the biophysical properties of the stratum corneum's LPP to improve the understanding of the barrier function of this layer.
Collapse
Affiliation(s)
- Charlotte M Beddoes
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Gorlaeus Laboratories, University of Leiden, Leiden, The Netherlands
| | - Gert S Gooris
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Gorlaeus Laboratories, University of Leiden, Leiden, The Netherlands
| | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Gorlaeus Laboratories, University of Leiden, Leiden, The Netherlands
| |
Collapse
|
27
|
Abstract
AbstractThe outer layer of the skin, stratum corneum (SC) is an efficient transport barrier and it tolerates mechanical deformation. At physiological conditions, the majority of SC lipids are solid, while the presence of a small amount of fluid lipids is considered crucial for SC barrier and material properties. Here we use solid-state and diffusion nuclear magnetic resonance to characterize the composition and molecular dynamics of the fluid lipid fraction in SC model lipids, focusing on the role of the essential SC lipid CER EOS, which is a ceramide esterified omega-hydroxy sphingosine linoleate with very long chain. We show that both rigid and mobile structures are present within the same CER EOS molecule, and that the linoleate segments undergo fast isotropic reorientation while exhibiting extraordinarily slow self-diffusion. The characterization of this unusual self-assembly in SC lipids provides deepened insight into the molecular arrangement in the SC extracellular lipid matrix and the role of CER EOS linoleate in the healthy and diseased skin.
Collapse
|
28
|
Abstract
The skin acts as an interface between the body and its surrounding environment. The epidermis, the surface layer of the skin, is chiefly responsible for this interactive protective function. The epidermal barrier may be subdivided into three defensive systems: the photoprotective barrier, the immune barrier, and the physical and chemical barrier of the stratum corneum or horny layer. To protect against harmful ultraviolet radiation, the epidermis has absorption factors such as melanin, produced by melanocytes, and urocanic acid, which is a degradation product of filaggrin. The epidermal immune defence system comprises an innate component, which is rapid but non-specific, together with adaptive response, which is systemic and antigen-specific, initiated by Langerhans cells. The stratum corneum, derived from terminal differentiation of epidermal keratinocytes, plays a key role as a physical and chemical permeability barrier. This horny layer is made up of corneocytes, covered with horny envelopes and linked to one another by corneodesmosomes and by extracellular matrix sheets. The epidermal barrier, which is constantly being renewed, is characterised by its extremely great capacity of adaptation to changing conditions in the environment.
Collapse
Affiliation(s)
- R Abdayem
- EA4169 « Aspects fondamentaux, cliniques et thérapeutiques de la fonction barrière cutanée », SFR Lyon-Est Santé, Inserm US 7, CNRS UMS 3453, Faculté de médecine et de pharmacie, Université Lyon 1, 8, avenue Rockefeller, 69373 Lyon, France
| | - M Haftek
- EA4169 « Aspects fondamentaux, cliniques et thérapeutiques de la fonction barrière cutanée », SFR Lyon-Est Santé, Inserm US 7, CNRS UMS 3453, Faculté de médecine et de pharmacie, Université Lyon 1, 8, avenue Rockefeller, 69373 Lyon, France.
| |
Collapse
|
29
|
Hartkamp R, Moore TC, Iacovella CR, Thompson MA, Bulsara PA, Moore DJ, McCabe C. Composition Dependence of Water Permeation Across Multicomponent Gel-Phase Bilayers. J Phys Chem B 2018; 122:3113-3123. [PMID: 29504755 PMCID: PMC6028149 DOI: 10.1021/acs.jpcb.8b00747] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The permeability
of multicomponent phospholipid bilayers in the
gel phase is investigated via molecular dynamics simulation. The physical
role of the different molecules is probed by comparing multiple mixed-component
bilayers containing distearylphosphatidylcholine (DSPC) with varying
amounts of either the emollient isostearyl isostearate or long-chain
alcohol (dodecanol, octadecanol, or tetracosanol) molecules. Permeability
is found to depend on both the tail packing density and hydrogen bonding
between lipid headgroups and water. Whereas the addition of emollient
or alcohol molecules to a gel-phase DSPC bilayer can increase the
tail packing density, it also disturbed the hydrogen-bonding network,
which in turn can increase interfacial water dynamics. These phenomena
have opposing effects on bilayer permeability, which is found to depend
on the balance between enhanced tail packing and decreased hydrogen
bonding.
Collapse
Affiliation(s)
- Remco Hartkamp
- Process & Energy Department , Delft University of Technology , Leeghwaterstraat 39 , 2628 CB Delft , The Netherlands
| | | | | | - Michael A Thompson
- GlaxoSmithKline Consumer Healthcare , 184 Liberty Corner Road , Suite 200, Warren , New Jersey 07059 , United States
| | - Pallav A Bulsara
- GlaxoSmithKline Consumer Healthcare , 184 Liberty Corner Road , Suite 200, Warren , New Jersey 07059 , United States
| | - David J Moore
- GlaxoSmithKline Consumer Healthcare , 184 Liberty Corner Road , Suite 200, Warren , New Jersey 07059 , United States
| | | |
Collapse
|
30
|
Altered lipid properties of the stratum corneum in Canine Atopic Dermatitis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:526-533. [DOI: 10.1016/j.bbamem.2017.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022]
|
31
|
Kováčik A, Pullmannová P, Maixner J, Vávrová K. Effects of Ceramide and Dihydroceramide Stereochemistry at C-3 on the Phase Behavior and Permeability of Skin Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:521-529. [PMID: 29228775 DOI: 10.1021/acs.langmuir.7b03448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ceramides (Cer) are key components of the skin permeability barrier. Sphingosine-based CerNS and dihydrosphingosine-based CerNdS (dihydroCer) have two chiral centers; however, the importance of the correct stereochemistry in the skin barrier Cer is unknown. We investigated the role of the configuration at C-3 of CerNS and CerNdS in the organization and permeability of model skin lipid membranes. Unnatural l-threo-CerNS and l-threo-CerNdS with 24-C acyl chains were synthesized and, along with their natural d-erythro-isomers, incorporated into membranes composed of major stratum corneum lipids (Cer, free fatty acids, cholesterol, and cholesteryl sulfate). The membrane microstructure was investigated by X-ray powder diffraction and infrared spectroscopy, including deuterated free fatty acids. Inversion of the C-3 configuration in CerNS and CerNdS increased phase transition temperatures, had no significant effects on lamellar phases, but also decreased the proportion of orthorhombic packing and decreased lipid mixing in the model membranes. These changes in membrane organization resulted in membrane permeabilities that ranged from unchanged to 5-fold higher (depending on the permeability markers, namely, water loss, electrical impedance, flux of theophylline, and flux of indomethacin) compared to membranes with natural CerNS/NdS isomers. Thus, the physiological d-erythro stereochemistry of skin Cer and dihydroCer appears to be essential for their correct barrier function.
Collapse
Affiliation(s)
- Andrej Kováčik
- Skin Barrier Research Group, Charles University , Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Petra Pullmannová
- Skin Barrier Research Group, Charles University , Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jaroslav Maixner
- University of Chemistry and Technology in Prague , Faculty of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Charles University , Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
32
|
Paz Ramos A, Gooris G, Bouwstra J, Lafleur M. Evidence of hydrocarbon nanodrops in highly ordered stratum corneum model membranes. J Lipid Res 2017; 59:137-143. [PMID: 29092959 DOI: 10.1194/jlr.m080432] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/26/2017] [Indexed: 01/18/2023] Open
Abstract
The stratum corneum (SC), the top layer of skin, dictates the rate of both water loss through the skin and absorption of exogenous molecules into the body. The crystalline organization of the lipids in the SC is believed to be a key feature associated with the very limited permeability of the skin. In this work, we characterized the organization of SC lipid models that include, as in native SC, cholesterol, a series of FFAs (saturated with C16-C24 chains), as well as a ceramide bearing an oleate chain-linked to a very long saturated acyl chain [N-melissoyl-oleoyloxy hexacosanoyl-D-erythro-sphingosine (Cer EOS)]. The latter is reported to be essential for the native SC lipid organization. Our 2H-NMR, infrared, and Raman spectroscopy data reveal that Cer EOS leads to the formation of highly disordered liquid domains in a solid/crystalline matrix. The lipid organization imposes steric constraint on Cer EOS oleate chains in such a way that these hydrocarbon nanodroplets remain in the liquid state down to -30°C. These findings modify the structural description of the SC substantially and propose a novel role of Cer EOS, as this lipid is a strong modulator of SC solid/liquid balance.
Collapse
Affiliation(s)
- Adrian Paz Ramos
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Gert Gooris
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, 2333 CC Leiden, The Netherlands
| | - Joke Bouwstra
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, 2333 CC Leiden, The Netherlands
| | - Michel Lafleur
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
33
|
Čuříková BA, Procházková K, Filková B, Diblíková P, Svoboda J, Kováčik A, Vávrová K, Zbytovská J. Simplified stratum corneum model membranes for studying the effects of permeation enhancers. Int J Pharm 2017; 534:287-296. [PMID: 29061325 DOI: 10.1016/j.ijpharm.2017.10.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 01/10/2023]
Abstract
The activity of transdermal permeation enhancers is usually evaluated in vitro on human or animal skin, but skin samples can be hard to source and highly variable. To provide a more consistent basis for evaluating the activity of permeation enhancers, we prepared relatively simple and inexpensive artificial membranes that imitate the stratum corneum (SC) lipid matrix. Our membranes were composed of stearic acid, cholesterol, cholesterol sulfate and a ceramide (CER) component consisting of N-2-hydroxystearoyl phytosphingosine (CER[AP]) and/or N-stearoyl phytosphingosine (CER[NP]). First, the permeation of theophylline (TH) and indomethacin (IND) through these membranes was compared with their permeation through porcine skin. Because the mixed CER[AP]/[NP] membrane gave the closest results to skin, this membrane was then used to test the effects of two permeation enhancers: N-dodecyl azepan-2-one (Azone) and (S)-N-acetylproline dodecyl ester (L-Pro2). Both enhancers significantly increased the flux of TH and IND through the skin and, even more markedly, through the lipid membrane, L-Pro2 having a stronger effect than Azone. Thus, our simplified model of the SC lipid membrane based on phytosphingosine CERs appears to be suitable for mimicking skin permeation.
Collapse
Affiliation(s)
- Barbora Amélie Čuříková
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Kamila Procházková
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Barbora Filková
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Petra Diblíková
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Jan Svoboda
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Andrej Kováčik
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Kateřina Vávrová
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jarmila Zbytovská
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Technická 5, 166 28, Prague, Czech Republic; Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
34
|
Sochorová M, Staňková K, Pullmannová P, Kováčik A, Zbytovská J, Vávrová K. Permeability Barrier and Microstructure of Skin Lipid Membrane Models of Impaired Glucosylceramide Processing. Sci Rep 2017; 7:6470. [PMID: 28744000 PMCID: PMC5527096 DOI: 10.1038/s41598-017-06990-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/21/2017] [Indexed: 12/17/2022] Open
Abstract
Ceramide (Cer) release from glucosylceramides (GlcCer) is critical for the formation of the skin permeability barrier. Changes in β-glucocerebrosidase (GlcCer'ase) activity lead to diminished Cer, GlcCer accumulation and structural defects in SC lipid lamellae; however, the molecular basis for this impairment is not clear. We investigated impaired GlcCer-to-Cer processing in human Cer membranes to determine the physicochemical properties responsible for the barrier defects. Minor impairment (5-25%) of the Cer generation from GlcCer decreased the permeability of the model membrane to four markers and altered the membrane microstructure (studied by X-ray powder diffraction and infrared spectroscopy), in agreement with the effects of topical GlcCer in human skin. At these concentrations, the accumulation of GlcCer was a stronger contributor to this disturbance than the lack of human Cer. However, replacement of 50-100% human Cer by GlcCer led to the formation of a new lamellar phase and the maintenance of a rather good barrier to the four studied permeability markers. These findings suggest that the major cause of the impaired water permeability barrier in complete GlcCer'ase deficiency is not the accumulation of free GlcCer but other factors, possibly the retention of GlcCer bound in the corneocyte lipid envelope.
Collapse
Affiliation(s)
- Michaela Sochorová
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy, Hradec Králové, 500 05, Czech Republic
| | - Klára Staňková
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy, Hradec Králové, 500 05, Czech Republic
| | - Petra Pullmannová
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy, Hradec Králové, 500 05, Czech Republic
| | - Andrej Kováčik
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy, Hradec Králové, 500 05, Czech Republic
| | - Jarmila Zbytovská
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hradec Králové, 500 05, Czech Republic
- Department of Organic Technology, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy, Hradec Králové, 500 05, Czech Republic.
| |
Collapse
|
35
|
Kováčik A, Šilarová M, Pullmannová P, Maixner J, Vávrová K. Effects of 6-Hydroxyceramides on the Thermotropic Phase Behavior and Permeability of Model Skin Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2890-2899. [PMID: 28230380 DOI: 10.1021/acs.langmuir.7b00184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ceramides (Cer) based on 6-hydroxysphingosine are important components of the human skin barrier, the stratum corneum. Although diminished concentrations of 6-hydroxyCer have been detected in skin diseases such as atopic dermatitis, our knowledge on these unusual sphingolipids, which have only been found in the skin, is limited. In this work, we investigate the biophysical behavior of N-lignoceroyl-6-hydroxysphingosine (Cer NH) in multilamellar lipid membranes composed of Cer/free fatty acids (FFAs) (C16-C24)/cholesterol/cholesteryl sulfate. To probe the Cer structure-activity relationships, we compared Cer NH membranes with membranes containing Cer with sphingosine (Cer NS), dihydrosphingosine, and phytosphingosine (Cer NP), all with the same acyl chain length (C24). Compared with Cer NS, 6-hydroxylation of Cer not only increased membrane water loss and permeability in a lipophilic model compound but also dramatically increased the membrane opposition to electrical current, which is proportional to the flux of ions. Infrared spectroscopy revealed that Cer hydroxylation (in either Cer NH or Cer NP) increased the main transition temperature of the membrane but prevented good Cer mixing with FFAs. X-ray powder diffraction showed not only lamellar phases with shorter periodicity upon Cer hydroxylation but also the formation of an unusually long periodicity phase (d = 10.6 nm) in Cer NH-containing membranes. Thus, 6-hydroxyCer behaves differently from sphingosine- and phytosphingosine-based Cer. In particular, the ability to form a long-periodicity lamellar phase and highly limited permeability to ions indicate the manner in which 6-hydroxylated Cer contribute to the skin barrier function.
Collapse
Affiliation(s)
- Andrej Kováčik
- Faculty of Pharmacy in Hradec Králové, Charles University , 500 05 Prague, Hradec Kralove
| | - Michaela Šilarová
- Faculty of Pharmacy in Hradec Králové, Charles University , 500 05 Prague, Hradec Kralove
| | - Petra Pullmannová
- Faculty of Pharmacy in Hradec Králové, Charles University , 500 05 Prague, Hradec Kralove
| | - Jaroslav Maixner
- University of Chemistry and Technology , 166 28 Prague, Czech Republic
| | - Kateřina Vávrová
- Faculty of Pharmacy in Hradec Králové, Charles University , 500 05 Prague, Hradec Kralove
| |
Collapse
|
36
|
Školová B, Kováčik A, Tesař O, Opálka L, Vávrová K. Phytosphingosine, sphingosine and dihydrosphingosine ceramides in model skin lipid membranes: permeability and biophysics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:824-834. [PMID: 28109750 DOI: 10.1016/j.bbamem.2017.01.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 12/19/2022]
Abstract
Ceramides based on phytosphingosine, sphingosine and dihydrosphingosine are essential constituents of the skin lipid barrier that protects the body from excessive water loss. The roles of the individual ceramide subclasses in regulating skin permeability and the reasons for C4-hydroxylation of these sphingolipids are not completely understood. We investigated the chain length-dependent effects of dihydroceramides, sphingosine ceramides (with C4-unsaturation) and phytoceramides (with C4-hydroxyl) on the permeability, lipid organization and thermotropic behavior of model stratum corneum lipid membranes composed of ceramide/lignoceric acid/cholesterol/cholesteryl sulfate. Phytoceramides with very long C24 acyl chains increased the permeability of the model lipid membranes compared to dihydroceramides or sphingosine ceramides with the same chain lengths. Either unsaturation or C4-hydroxylation of dihydroceramides induced chain length-dependent increases in membrane permeability. Infrared spectroscopy showed that C4-hydroxylation of the sphingoid base decreased the relative ratio of orthorhombic chain packing in the membrane and lowered the miscibility of C24 phytoceramide with lignoceric acid. The phase separation in phytoceramide membranes was confirmed by X-ray diffraction. In contrast, phytoceramides formed strong hydrogen bonds and highly thermostable domains. Thus, the large heterogeneity in ceramide structures and in their aggregation mechanisms may confer resistance towards the heterogeneous external stressors that are constantly faced by the skin barrier.
Collapse
Affiliation(s)
- Barbora Školová
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Andrej Kováčik
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Ondřej Tesař
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Lukáš Opálka
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| |
Collapse
|
37
|
Opálka L, Kováčik A, Maixner J, Vávrová K. Omega-O-Acylceramides in Skin Lipid Membranes: Effects of Concentration, Sphingoid Base, and Model Complexity on Microstructure and Permeability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12894-12904. [PMID: 27934529 DOI: 10.1021/acs.langmuir.6b03082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Omega-O-acylceramides (acylCer), a subclass of sphingolipids with an ultralong N-acyl chain (from 20 to 38 carbons, most usually 30 and 32 carbons), are crucial components of the skin permeability barrier. AcylCer are involved in the formation of the long periodicity lamellar phase (LPP, 12-13 nm), which is essential for preventing water loss from the body. Lower levels of acylCer and LPP accompany skin diseases, such as atopic dermatitis, lamellar ichthyosis, and psoriasis. We studied how the concentration and structure of acylCer influence the organization and permeability barrier properties of model lipid membranes. For simple model membranes composed of the sphingosine-containing acylCer (EOS), N-lignoceroyl sphingosine, lignoceric acid, cholesterol (Chol), and cholesteryl sulfate (CholS), the LPP formed at 10% Cer EOS (of the total Cer) and the short periodicity phase disappeared at 30% Cer EOS. Surprisingly, membranes with the LPP had higher permeabilities than the control membrane without acylCer. In the complex models consisting of acylCer (EOS, phytosphingosine EOP, dihydrosphingosine EOdS, or their mixture; at 10% of the total Cer), a six-component Cer mixture, a free fatty acid mixture, cholesterol (Chol), and cholesteryl sulfate (CholS), acylCer decreased the membrane permeability to model permeants (with the strongest effects for acylCer EOP and EOdS) when compared with the permeability of the control membrane without acylCer. However, in the complex model, only a mixture of acylCer EOS, EOdS, and EOP and not the individual acylCer formed both the LPP and orthorhombic chain packing at the 10% level. Thus, the relationships between acylCer, LPP formation, and permeability barrier function are not trivial. Lipid heterogeneity is essential-only the most complex model with nine Cer subclasses mimicked both the organization and permeability of stratum corneum lipid membranes.
Collapse
Affiliation(s)
- Lukáš Opálka
- Faculty of Pharmacy, Charles University , Hradec Králové 500 05, Czech Republic
| | - Andrej Kováčik
- Faculty of Pharmacy, Charles University , Hradec Králové 500 05, Czech Republic
| | - Jaroslav Maixner
- University of Chemistry and Technology Prague , Prague 166 28, Czech Republic
| | - Kateřina Vávrová
- Faculty of Pharmacy, Charles University , Hradec Králové 500 05, Czech Republic
| |
Collapse
|
38
|
Gupta R, Sridhar DB, Rai B. Molecular Dynamics Simulation Study of Permeation of Molecules through Skin Lipid Bilayer. J Phys Chem B 2016; 120:8987-96. [PMID: 27518707 DOI: 10.1021/acs.jpcb.6b05451] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stratum Corneum (SC), the outermost layer of skin, is mainly responsible for skin's barrier function. The complex lipid matrix of SC determines these barrier properties. In this study, the lipid matrix is modeled as an equimolar mixture of ceramide (CER), cholesterol (CHOL), and free fatty acid (FFA). The permeation of water, oxygen, ethanol, acetic acid, urea, butanol, benzene, dimethyl sulfoxide (DMSO), toluene, phenol, styrene, and ethylbenzene across this layer is studied using a constrained MD simulations technique. Several long constrained simulations are performed at a skin temperature of 310 K under NPT conditions. The free energy profiles and diffusion coefficients along the bilayer normal have been calculated for each molecule. Permeability coefficients are also calculated and compared with experimental data. The main resistance for the permeation of hydrophilic and hydrophobic permeants has been found to be in the interior of the lipid bilayer and near the lipid-water interface, respectively. The obtained permeability is found to be a few orders of magnitude higher than experimental values for hydrophilic molecules while for hydrophobic molecules more discrepancy was observed. Overall, the qualitative ranking is consistent with the experiments.
Collapse
Affiliation(s)
- Rakesh Gupta
- Physical Science Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services , 54B, Hadapsar Industrial Estate, Pune - 411013, India
| | - D B Sridhar
- Physical Science Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services , 54B, Hadapsar Industrial Estate, Pune - 411013, India
| | - Beena Rai
- Physical Science Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services , 54B, Hadapsar Industrial Estate, Pune - 411013, India
| |
Collapse
|
39
|
Quantitative analysis of ceramides using a novel lipidomics approach with three dimensional response modelling. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1652-1661. [PMID: 27422369 DOI: 10.1016/j.bbalip.2016.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022]
Abstract
In the outermost layer of the skin, the stratum corneum (SC), ceramides form a diverse and essential pool of lipids. Due to their diversity and the limited availability of synthetic standards it is challenging to quantitatively analyse all SC ceramides independently. We aim to perform a detailed analysis of ceramides on SC harvested from in vivo and ex vivo skin, therefore, a LC/MS method was developed in which all steps from sample acquisition until data analysis were examined and optimized. Improving extraction efficiency of ceramides resulted in an increase in efficiency from 71.5% to 99.3%. It was shown that sample harvesting by tape-stripping in vivo was accurate and precise. A full scan MS method was developed, compatible with all sample types, enabling simultaneously qualitative and quantitative data analysis. A novel three dimensional response model was constructed to quantify all detected ceramides from full scan data using a limited amount of synthetic ceramides. The application is demonstrated on various SC sample types. When ex vivo SC was regenerated during human skin culture, increases are observed in the amount of the ceramide sphingosine subclasses, in mono unsaturated ceramides (which have an cis-double bond in the acyl chain), and ceramides with a short C34 carbon chain (ceramides with a total carbon chain of 34 carbon atoms), compared with native human skin. These changes in ceramide levels are also often encountered in diseased skin.
Collapse
|
40
|
Uchiyama M, Oguri M, Mojumdar EH, Gooris GS, Bouwstra JA. Free fatty acids chain length distribution affects the permeability of skin lipid model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2050-2059. [PMID: 27287726 DOI: 10.1016/j.bbamem.2016.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 01/06/2023]
Abstract
The lipid matrix in the stratum corneum (SC) plays an important role in the barrier function of the skin. The main lipid classes in this lipid matrix are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The aim of this study was to determine whether a variation in CER subclass composition and chain length distribution of FFAs affect the permeability of this matrix. To examine this, we make use of lipid model membranes, referred to as stratum corneum substitute (SCS). We prepared SCS containing i) single CER subclass with either a single FFA or a mixture of FFAs and CHOL, or ii) a mixture of various CER subclasses with either a single FFA or a mixture of FFAs and CHOL. In vitro permeation studies were performed using ethyl-p-aminobenzoic acid (E-PABA) as a model drug. The flux of E-PABA across the SCS containing the mixture of FFAs was higher than that across the SCS containing a single FA with a chain length of 24 C atoms (FA C24), while the E-PABA flux was not effected by the CER composition. To select the underlying factors for the changes in permeability, the SCSs were examined by Fourier transform infrared spectroscopy (FTIR) and Small angle X-ray scattering (SAXS). All lipid models demonstrated a similar phase behavior. However, when focusing on the conformational ordering of the individual FFA chains, the shorter chain FFA (with a chain length of 16, 18 or 20 C atoms forming only 11m/m% of the total FFA level) had a higher conformational disordering, while the conformational ordering of the chains of the CER and FA C24 and FA C22 hardly did not change irrespective of the composition of the SCS. In conclusion, the conformational mobility of the short chain FFAs present only at low levels in the model SC lipid membranes has a great impact on the permeability of E-PABA.
Collapse
Affiliation(s)
- Masayuki Uchiyama
- Tokyo Research Laboratories, Kao Corporation, Bunka, Sumida-ku, Tokyo 131-8501, Japan; Leiden/Amsterdam Center for Drug Research, Department of Drug Delivery Technology, Leiden University, 2300 RA Leiden, The Netherlands
| | - Masashi Oguri
- Tochigi Research Laboratories, Kao Corporation, Ichikai, Haga, Tochigi 321-3497, Japan; Leiden/Amsterdam Center for Drug Research, Department of Drug Delivery Technology, Leiden University, 2300 RA Leiden, The Netherlands
| | - Enamul H Mojumdar
- Tochigi Research Laboratories, Kao Corporation, Ichikai, Haga, Tochigi 321-3497, Japan
| | - Gert S Gooris
- Tochigi Research Laboratories, Kao Corporation, Ichikai, Haga, Tochigi 321-3497, Japan
| | - Joke A Bouwstra
- Tochigi Research Laboratories, Kao Corporation, Ichikai, Haga, Tochigi 321-3497, Japan.
| |
Collapse
|
41
|
Influence of artificial sebum on the dermal absorption of chemicals in excised human skin: A proof-of-concept study. Toxicol In Vitro 2016; 33:23-8. [PMID: 26911728 DOI: 10.1016/j.tiv.2016.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 11/24/2022]
Abstract
In an initial diffusion cell study, the influence of artificial sebum on dermal penetration and intradermal reservoir of ethanol and toluene was investigated in comparison with the effects of a skin cream (o/w- and w/o-emulsion) and untreated (control) skin. Human skin was exposed to neat ethanol and toluene for 4h, respectively. During the experiments, the penetration of the compounds was assessed in the receptor fluid. The amounts of the test compounds in the skin were determined at the end of exposure. In the control experiments, 42% of the total resorbed ethanol amounts were found in the intradermal reservoir after 4h, whereas 82% of the toluene amounts were found in the skin compartments. The treatment with artificial sebum showed no significant differences in dermal absorption of both test compounds compared to control skin. In contrast, the treatment with skin cream increased the percutaneous penetration (p<0.001) and the intradermal reservoir of ethanol ~2-fold but not of toluene. In all exposure scenarios, a relevant intradermal reservoir was formed. The results indicate that sebum does not influence the percutaneous penetration and the intradermal reservoir of epidermally applied chemicals, whereas the application of skin creams may increase the dermal penetration of the compounds.
Collapse
|
42
|
Školová B, Janůšová B, Vávrová K. Ceramides with a pentadecasphingosine chain and short acyls have strong permeabilization effects on skin and model lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:220-32. [PMID: 26615916 DOI: 10.1016/j.bbamem.2015.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/12/2015] [Accepted: 11/21/2015] [Indexed: 01/27/2023]
Abstract
The composition and organization of stratum corneum lipids play an essential role in skin barrier function. Ceramides represent essential components of this lipid matrix; however, the importance of the individual structural features in ceramides is not fully understood. To probe the structure-permeability relationships in ceramides, we prepared analogs of N-lignoceroylsphingosine with shortened sphingosine (15 and 12 carbons) and acyl chains (2, 4 and 6 carbons) and studied their behavior in skin and in model lipid membranes. Ceramide analogs with pentadecasphingosine (15C) chains were more barrier-perturbing than 12C- and 18C-sphingosine ceramides; the greatest effects were found with 4 to 6C acyls (up to 15 times higher skin permeability compared to an untreated control and up to 79 times higher permeability of model stratum corneum lipid membranes compared to native very long-chain ceramides). Infrared spectroscopy using deuterated lipids and X-ray powder diffraction showed surprisingly similar behavior of the short ceramide membranes in terms of lipid chain order and packing, phase transitions and domain formation. The high- and low-permeability membranes differed in their amide I band shape and lamellar organization. These skin and membrane permeabilization properties of some short ceramides may be explored, for example, for the rational design of permeation enhancers for transdermal drug delivery.
Collapse
Affiliation(s)
- Barbora Školová
- Skin Barrier Research Group, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Inorganic and Organic Chemistry, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Barbora Janůšová
- Skin Barrier Research Group, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Inorganic and Organic Chemistry, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Department of Inorganic and Organic Chemistry, Heyrovského 1203, Hradec Králové, Czech Republic.
| |
Collapse
|
43
|
Quantin P, Thélu A, Catoire S, Ficheux H. Perspectives and strategies of alternative methods used in the risk assessment of personal care products. ANNALES PHARMACEUTIQUES FRANÇAISES 2015; 73:422-35. [DOI: 10.1016/j.pharma.2015.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/02/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
|
44
|
Rawlings AV. Molecular basis for stratum corneum maturation and moisturization. Br J Dermatol 2015; 171 Suppl 3:19-28. [PMID: 25234174 DOI: 10.1111/bjd.13303] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2014] [Indexed: 12/31/2022]
Abstract
This themed edition of BJD is dedicated to the work of Professor Ronald Marks for his untiring work on the understanding of stratum corneum (SC) structure and function. He and his coworkers, in my opinion, had the right focus for cosmetic dermatology issues. Namely, consumers experience the wonderful properties of the SC through sight, touch and the somatosensory system. They do not experience, for example, transepidermal water loss and skin conductance or capacitance! Marks understood this and set about developing the methodologies to examine the changes in SC architecture and function when desquamation goes haywire. More importantly, he understood that moisturizers do far more than simply hydrate the SC, as exemplified in the paper by Tree and Marks, 'An explanation for the placebo effect of bland ointment bases.' Moisturizing ingredients influence the properties of the SC in many ways with the sole purpose of overcoming the signs and symptoms of dry skin. Marks demonstrated the decrease in SC cohesion following use of hydrating agents, which led to the mechanistic work on the effects of a simple molecule like glycerol on the desquamatory process. In further exploiting forced desquamation and use of abrasion, he showed that improvements in exfoliation contribute to the mitigation of the signs of photodamaged skin, which can explain part of the antiageing effect of simple moisturizers. It is here that I should point out that at least this particular author in 1988 was 'standing on the shoulders of' a great corneologist whose work influenced his research directions. So this paper will provide an update on the latest developments for the molecular basis of SC maturation and moisturization, while highlighting the contributions of Professor Marks in the different areas.
Collapse
Affiliation(s)
- A V Rawlings
- AVR Consulting Ltd, 26 Shavington Way, Northwich, Cheshire, CW9 8FH, U.K
| |
Collapse
|
45
|
In vitro skin models as a tool in optimization of drug formulation. Eur J Pharm Sci 2015; 75:10-24. [PMID: 25746955 DOI: 10.1016/j.ejps.2015.02.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 11/21/2022]
Abstract
(Trans)dermal drug therapy is gaining increasing importance in the modern drug development. To fully utilize the potential of this route, it is important to optimize the delivery of active ingredient/drug into/through the skin. The optimal carrier/vehicle can enhance the desired outcome of the therapy therefore the optimization of skin formulations is often included in the early stages of the product development. A rational approach in designing and optimizing skin formulations requires well-defined skin models, able to identify and evaluate the intrinsic properties of the formulation. Most of the current optimization relies on the use of suitable ex vivo animal/human models. However, increasing restrictions in use and handling of animals and human skin stimulated the search for suitable artificial skin models. This review attempts to provide an unbiased overview of the most commonly used models, with emphasis on their limitations and advantages. The choice of the most applicable in vitro model for the particular purpose should be based on the interplay between the availability, easiness of the use, cost and the respective limitations.
Collapse
|
46
|
The relationship between self-organization, physicochemical properties, and biological activity of low-concentration solutions of p-aminobenzoic acid. Russ Chem Bull 2015. [DOI: 10.1007/s11172-015-0904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
A Microfluidic Diffusion Cell for Fast and Easy Percutaneous Absorption Assays. Pharm Res 2015; 32:2704-12. [PMID: 25724160 DOI: 10.1007/s11095-015-1654-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/10/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Percutaneous absorption assays of molecules for pharmaceutical and cosmetology purposes are important to determine the bioavailability of new compounds, once topically applied. The current method of choice is to measure the rate of diffusion through excised human skin using a diffusion cell. This method however entails significant drawbacks such as scarce availability and poor reproducibility of the sample, low sampling rate, and tedious assay setup. METHODS The objective of the present work is to propose an alternative method that overcomes these issues by integrating an experimental model of the skin (artificial stratum corneum) and online optical sensors into a microfluidic device. RESULTS The measurement of the diffusion profile followed by the calculation of the permeability coefficients and time lag were performed on seven different molecules and obtained data positively fit with those available from literature on human skin penetration. The coating of the lipid mixture to generate the artificial stratum corneum also proved robust and reproducible. The results show that the proposed device is able to give fast, real-time, accurate, and reproducible data in a user-friendly manner, and can be produced at a large scale. CONCLUSION These assets should help both the cosmetics and pharmaceutics fields where the skin is the target or a pathway of a formulated compound, by allowing more candidate molecules or formulations to be assessed during the various stages of their development.
Collapse
|
48
|
Animal models for cutaneous vaccine delivery. Eur J Pharm Sci 2015; 71:112-22. [PMID: 25686596 DOI: 10.1016/j.ejps.2015.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 12/20/2022]
Abstract
Main challenges in skin vaccination are overcoming the stratum corneum (SC) barrier and targeting the antigen presenting cells (APC) in the epidermis and the dermis. For this purpose many delivery techniques are being developed. In vivo immunogenicity and safety studies in animals are mandatory before moving to clinical trials. However, the results obtained in animals may or may not be predictive for humans. Knowledge about differences and similarities in skin architecture and immunology within a species and between species is crucial. In this review, we discuss variables, including skin morphology, skin barrier function, mechanical properties, site of application and immunology, which should be taken into account when designing animal studies for vaccination via the skin in order to support the translation to clinical trial outcomes.
Collapse
|
49
|
Danso MO, van Drongelen V, Mulder A, Gooris G, van Smeden J, El Ghalbzouri A, Bouwstra JA. Exploring the potentials of nurture: 2nd and 3rd generation explant human skin equivalents. J Dermatol Sci 2015; 77:102-9. [DOI: 10.1016/j.jdermsci.2014.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/21/2014] [Accepted: 12/17/2014] [Indexed: 01/03/2023]
|
50
|
Miki R, Ichitsuka Y, Yamada T, Kimura S, Egawa Y, Seki T, Juni K, Ueda H, Morimoto Y. Development of a membrane impregnated with a poly(dimethylsiloxane)/poly(ethylene glycol) copolymer for a high-throughput screening of the permeability of drugs, cosmetics, and other chemicals across the human skin. Eur J Pharm Sci 2015; 66:41-9. [DOI: 10.1016/j.ejps.2014.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 11/17/2022]
|