1
|
Minootan Z, Wang H, Connaughton P, Lachacz K, Carrigy N, Ordoubadi M, Lechuga-Ballesteros D, Martin AR, Vehring R. On the Feasibility of Rugose Lipid Microparticles in Pressurized Metered Dose Inhalers with Established and New Propellants. AAPS PharmSciTech 2024; 25:82. [PMID: 38600288 DOI: 10.1208/s12249-024-02776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024] Open
Abstract
Pressurized metered dose inhalers (pMDIs) require optimized formulations to provide stable, consistent lung delivery. This study investigates the feasibility of novel rugose lipid particles (RLPs) as potential drug carriers in pMDI formulations. The physical stability of RLPs was assessed in three different propellants: the established HFA-134a and HFA-227ea and the new low global-warming-potential (GWP) propellant HFO-1234ze. A feedstock containing DSPC and calcium chloride was prepared without pore forming agent to spray dry two RLP batches at inlet temperatures of 55 °C (RLP55) and 75 °C (RLP75). RLPs performance in pMDI formulations was compared to two reference samples that exhibit significantly different performance when suspended in propellants: well-established engineered porous particles and particles containing 80% trehalose and 20% leucine (80T20L). An accelerated stability study at 40 °C and relative humidity of 7% ± 5% was conducted over 3 months. At different time points, a shadowgraphic imaging technique was used to evaluate the colloidal stability of particles in pMDIs. Field emission electron microscopy with energy dispersive X-ray spectroscopy was used to evaluate the morphology and elemental composition of particles extracted from the pMDIs. After 2 weeks, all 80T20L formulations rapidly aggregated upon agitation and exhibited significantly inferior colloidal stability compared to the other samples. In comparison, both the RLP55 and RLP75 formulations, regardless of the propellant used, retained their rugose structure and demonstrated excellent suspension stability comparable with the engineered porous particles. The studied RLPs demonstrate great potential for use in pMDI formulations with HFA propellants and the next-generation low-GWP propellant HFO-1234ze.
Collapse
Affiliation(s)
- Zahra Minootan
- Donadeo Innovation Centre for Engineering (DICE), 9211 116 Street NW, Edmonton, Alberta, T6G1H9, Canada
| | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G1H9, Canada.
| | - Patrick Connaughton
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Durham, North Carolina, USA
| | - Kellisa Lachacz
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Durham, North Carolina, USA
| | - Nicholas Carrigy
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Durham, North Carolina, USA
| | - Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G1H9, Canada
| | - David Lechuga-Ballesteros
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Durham, North Carolina, USA
| | - Andrew R Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G1H9, Canada
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, T6G1H9, Canada
| |
Collapse
|
2
|
Chang Z, Wang W, Huang Z, Huang Y, Wu C, Pan X. Lecithin Reverse Micelle System is Promising in Constructing Carrier Particles for Protein Drugs Encapsulated Pressurized Metered‐Dose Inhalers. ADVANCED THERAPEUTICS 2023; 6. [DOI: 10.1002/adtp.202300046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 06/25/2024]
Abstract
AbstractProtein drugs contained within pressurized metered dose inhalers (pMDIs) show immense potential for fundamental research and industrial applications, owing to their high bioavailability, convenient administration, and cost‐effectiveness. To deliver protein drugs efficiently, researchers have reached a consensus on the use of carrier particles. However, the main obstacle impeding the commercial availability of pMDI carrier particles is their low stability. This instability is primarily attributed to particle aggregation caused by the Ostwald ripening phenomenon and chemical degradation by water sensitivity of protein drugs. This study proposes the utilization of lecithin, a carrier material possessing an amphiphilic structure, to overcome this bottleneck. By constructing lecithin‐based reverse micelle systems with protein drugs encapsulated within the high‐polarity microdomain, this work anticipates an improvement in the stability of carrier particles within pMDIs. Specifically, the formation of crystalline phases in the reverse micelle systems can control carrier particle size through crystalline self‐limiting effect, preventing particle aggregation. Additionally, the low‐polarity microdomain of the carrier serves as a hydrophobic barrier, shielding protein drugs from water and preventing chemical degradation. Consequently, this work believes that the lecithin‐based reverse micelle system holds significant potential in providing new theoretical insights and experimental support for the advancement of pMDIs containing protein drugs.
Collapse
Affiliation(s)
- Ziyao Chang
- School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou Guangdong 510006 P. R. China
| | - Wenhao Wang
- School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou Guangdong 510006 P. R. China
| | - Zhengwei Huang
- College of Pharmacy Jinan University Guangzhou Guangdong 511443 P. R. China
| | - Ying Huang
- College of Pharmacy Jinan University Guangzhou Guangdong 511443 P. R. China
| | - Chuanbin Wu
- College of Pharmacy Jinan University Guangzhou Guangdong 511443 P. R. China
| | - Xin Pan
- School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou Guangdong 510006 P. R. China
| |
Collapse
|
3
|
Narmani A, Jahedi R, Bakhshian-Dehkordi E, Ganji S, Nemati M, Ghahramani-Asl R, Moloudi K, Hosseini SM, Bagheri H, Kesharwani P, Khani A, Farhood B, Sahebkar A. Biomedical applications of PLGA nanoparticles in nanomedicine: advances in drug delivery systems and cancer therapy. Expert Opin Drug Deliv 2023; 20:937-954. [PMID: 37294853 DOI: 10.1080/17425247.2023.2223941] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
INTRODUCTION During the last decades, the ever-increasing proportion of patients with cancer has been led to serious concerns worldwide. Therefore, the development and use of novel pharmaceuticals, like nanoparticles (NPs)-based drug delivery systems (DDSs), can be potentially effective in cancer therapy. AREA COVERED Poly lactic-co-glycolic acid (PLGA) NPs, as a kind of bioavailable, biocompatible, and biodegradable polymers, have approved by the Food and Drug Administration (FDA) for some biomedical and pharmaceutical applications. PLGA is comprised of lactic acid (LA) and glycolic acid (GA) and their ratio could be controlled during various syntheses and preparation approaches. LA/GA ratio determines the stability and degradation time of PLGA; lower content of GA results in fast degradation. There are several approaches for preparing PLGA NPs that can affect their various aspects, such as size, solubility, stability, drug loading, pharmacokinetics, and pharmacodynamics, and so on. EXPERT OPINION These NPs have indicated the controlled and sustained drug release in the cancer site and can use in passive and active (via surface modification) DDSs. This review aims to provide an overview of PLGA NPs, their preparation approach and physicochemical aspects, drug release mechanism and the cellular fate, DDSs for efficient cancer therapy, and status in the pharmaceutical industry and nanomedicine.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Roghayyeh Jahedi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ehsan Bakhshian-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Saeid Ganji
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ruhollah Ghahramani-Asl
- Department of Medical Physics and Radiological Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Kave Moloudi
- Department of Radiology and Nuclear Medicine, Alley School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mohammad Hosseini
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Ali Khani
- Radiation Sciences Department, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Tundisi LL, Ataide JA, Costa JSR, Coêlho DDF, Liszbinski RB, Lopes AM, Oliveira-Nascimento L, de Jesus MB, Jozala AF, Ehrhardt C, Mazzola PG. Nanotechnology as a tool to overcome macromolecules delivery issues. Colloids Surf B Biointerfaces 2023; 222:113043. [PMID: 36455361 DOI: 10.1016/j.colsurfb.2022.113043] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Nanocarriers can deliver drugs to specific organs or cells, potentially bridging the gap between a drug's function and its interaction with biological systems such as human physiology. The untapped potential of nanotechnology stems from its ability to manipulate materials, allowing control over physical and chemical properties and overcoming drug-related problems, e.g., poor solubility or poor bioavailability. For example, most protein drugs are administered parenterally, each with challenges and peculiarities. Some problems faced by bioengineered macromolecule drugs leading to poor bioavailability are short biological half-life, large size and high molecular weight, low permeability through biological membranes, and structural instability. Nanotechnology emerges as a promising strategy to overcome these problems. Nevertheless, the delivery system should be carefully chosen considering loading efficiency, physicochemical properties, production conditions, toxicity, and regulations. Moving from the bench to the bedside is still one of the major bottlenecks in nanomedicine, and toxicological issues are the greatest challenges to overcome. This review provides an overview of biotech drug delivery approaches, associated nanotechnology novelty, toxicological issues, and regulations.
Collapse
Affiliation(s)
| | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil.
| | - Juliana Souza Ribeiro Costa
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil; Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | | | - Raquel Bester Liszbinski
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Laura Oliveira-Nascimento
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil; Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Marcelo Bispo de Jesus
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - Angela Faustino Jozala
- LAMINFE - Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba, Brazil
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute Trinity College Dublin, Dublin, Ireland
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
5
|
Procopio A, Lagreca E, Jamaledin R, La Manna S, Corrado B, Di Natale C, Onesto V. Recent Fabrication Methods to Produce Polymer-Based Drug Delivery Matrices (Experimental and In Silico Approaches). Pharmaceutics 2022; 14:872. [PMID: 35456704 PMCID: PMC9027538 DOI: 10.3390/pharmaceutics14040872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023] Open
Abstract
The study of novel drug delivery systems represents one of the frontiers of the biomedical research area. Multi-disciplinary scientific approaches combining traditional or engineered technologies are used to provide major advances in improving drug bioavailability, rate of release, cell/tissue specificity and therapeutic index. Biodegradable and bio-absorbable polymers are usually the building blocks of these systems, and their copolymers are employed to create delivery components. For example, poly (lactic acid) or poly (glycolic acid) are often used as bricks for the production drug-based delivery systems as polymeric microparticles (MPs) or micron-scale needles. To avoid time-consuming empirical approaches for the optimization of these formulations, in silico-supported models have been developed. These methods can predict and tune the release of different drugs starting from designed combinations. Starting from these considerations, this review has the aim of investigating recent approaches to the production of polymeric carriers and the combination of in silico and experimental methods as promising platforms in the biomedical field.
Collapse
Affiliation(s)
- Anna Procopio
- Biomechatronics Laboratory, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Elena Lagreca
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, 80131 Naples, Italy; (E.L.); (R.J.)
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Rezvan Jamaledin
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, 80131 Naples, Italy; (E.L.); (R.J.)
| | - Sara La Manna
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Brunella Corrado
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80131 Naples, Italy;
| | - Concetta Di Natale
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80131 Naples, Italy;
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-Nanotec), Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
6
|
Huang Z, Shu L, Huang Y, Wu C, Pan X. Low Drug Loading Hampers the Clinical Translation of Peptide Drugs-Containing Metered-Dose Inhalers. Pharmaceuticals (Basel) 2022; 15:389. [PMID: 35455386 PMCID: PMC9031202 DOI: 10.3390/ph15040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Peptide-based drugs have attracted extensive attention from the medical and pharmaceutical industry because of their relatively high safety and efficacy. However, most of the peptide drugs approved are administrated by injection, which can easily cause poor patient compliance. In this circumstance, pulmonary administration as an alternative to injection administration can not only avoid the above issue but also accelerate the absorption rate of peptide drugs and improve bioavailability. Among the pulmonary delivery systems available on the market, metered-dose inhalers (MDIs) have emerged as appealing candidates for pulmonary delivery systems with clinical translational value, owing to their many merits, including portable, easy-to-operate, and cost-effective properties. Nevertheless, the industrialization of peptide drugs-containing MDIs encounters a bottleneck of low drug loading, owing to the incompatibility between the propellant and the peptide drugs, which cannot be effectively overcome by the current carrier particle encapsulation strategy. Herein, we put forward the following strategies: (1) To screen amphiphilic materials with high surface activity and strong interaction with peptide drugs; (2) To construct a chemical connection between peptide drugs and amphiphilic substances; (3) To optimize the cosolvent for dispersing peptide drugs. We suppose these strategies have the potential to defeat the bottleneck problem and provide a new idea for the industrialization of peptide drugs-containing MDIs.
Collapse
Affiliation(s)
- Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (Z.H.); (L.S.); (C.W.)
| | - Lei Shu
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (Z.H.); (L.S.); (C.W.)
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (Z.H.); (L.S.); (C.W.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (Z.H.); (L.S.); (C.W.)
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
7
|
Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater 2020; 9:153-174. [PMID: 33058072 PMCID: PMC7718366 DOI: 10.1007/s40204-020-00139-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric microparticles (MPs) are recognized as very popular carriers to increase the bioavailability and bio-distribution of both lipophilic and hydrophilic drugs. Among different kinds of polymers, poly-(lactic-co-glycolic acid) (PLGA) is one of the most accepted materials for this purpose, because of its biodegradability (due to the presence of ester linkages that are degraded by hydrolysis in aqueous environments) and safety (PLGA is a Food and Drug Administration (FDA)-approved compound). Moreover, its biodegradability depends on the number of glycolide units present in the structure, indeed, lower glycol content results in an increased degradation time and conversely a higher monomer unit number results in a decreased time. Due to this feature, it is possible to design and fabricate MPs with a programmable and time-controlled drug release. Many approaches and procedures can be used to prepare MPs. The chosen fabrication methodology influences size, stability, entrapment efficiency, and MPs release kinetics. For example, lipophilic drugs as chemotherapeutic agents (doxorubicin), anti-inflammatory non-steroidal (indomethacin), and nutraceuticals (curcumin) were successfully encapsulated in MPs prepared by single emulsion technique, while water-soluble compounds, such as aptamer, peptides and proteins, involved the use of double emulsion systems to provide a hydrophilic compartment and prevent molecular degradation. The purpose of this review is to provide an overview about the preparation and characterization of drug-loaded PLGA MPs obtained by single, double emulsion and microfluidic techniques, and their current applications in the pharmaceutical industry.Graphic abstract.
Collapse
Affiliation(s)
- Elena Lagreca
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| |
Collapse
|
8
|
Sou T, Bergström CAS. Contemporary Formulation Development for Inhaled Pharmaceuticals. J Pharm Sci 2020; 110:66-86. [PMID: 32916138 DOI: 10.1016/j.xphs.2020.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Pulmonary delivery has gained increased interests over the past few decades. For respiratory conditions, targeted drug delivery directly to the site of action can achieve a high local concentration for efficacy with reduced systemic exposure and adverse effects. For systemic conditions, the unique physiology of the lung evolutionarily designed for rapid gaseous exchange presents an entry route for systemic drug delivery. Although the development of inhaled formulations has come a long way over the last few decades, many aspects of it remain to be elucidated. In particular, a reliable and well-understood method for in vitro-in vivo correlations remains to be established. With the rapid and ongoing advancement of technology, there is much potential to better utilise computational methods including different types of modelling and simulation approaches to support inhaled formulation development. This review intends to provide an introduction on some fundamental concepts in pulmonary drug delivery and inhaled formulation development followed by discussions on some challenges and opportunities in the translation of inhaled pharmaceuticals from preclinical studies to clinical development. The review concludes with some recent advancements in modelling and simulation approaches that could play an increasingly important role in modern formulation development of inhaled pharmaceuticals.
Collapse
Affiliation(s)
- Tomás Sou
- Drug Delivery, Department of Pharmacy, Uppsala University, Uppsala, Sweden; Pharmacometrics, Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | - Christel A S Bergström
- Drug Delivery, Department of Pharmacy, Uppsala University, Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Chen T, Li S, Zhu W, Liang Z, Zeng Q. Self-assembly pH-sensitive chitosan/alginate coated polyelectrolyte complexes for oral delivery of insulin. J Microencapsul 2019; 36:96-107. [DOI: 10.1080/02652048.2019.1604846] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tingting Chen
- Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shunying Li
- Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenting Zhu
- Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhi Liang
- Biopharmaceutics, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qingbing Zeng
- Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Ni S, Liu Y, Tang Y, Chen J, Li S, Pu J, Han L. GABA B receptor ligand-directed trimethyl chitosan/tripolyphosphate nanoparticles and their pMDI formulation for survivin siRNA pulmonary delivery. Carbohydr Polym 2017; 179:135-144. [PMID: 29111036 DOI: 10.1016/j.carbpol.2017.09.075] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/08/2017] [Accepted: 09/23/2017] [Indexed: 11/25/2022]
Abstract
The effect of gene silencing by survivin siRNA (siSurvivin) on the proliferation and apoptosis of lung tumor has been attracted more interest. GABAB receptor ligand-directed nanoparticles consisting of baclofen functionalized trimethyl chitosan (Bac-TMC) as polymeric carriers, tripolyphosphate (TPP) as ionic crosslinker, and siSurvivin as therapeutic genes, were designed to enhance the survivin gene silencing. GABAB receptor agonist baclofen (Bac) was initially introduced into TMC as a novel ligand. This Bac-TMC/TPP nanoparticles increased the uptake of survivin siRNA through the interaction with GABAB receptor, further resulted in efficient cell apoptosis and gene silencing. For siRNA-loaded nanoparticles pulmonary delivery, mannitol was utilized for it delivery into pressurized metered dose inhalers (pMDI). The fine particle fractions of this formulation was (45.39±2.99)% indicating the appropriate deep lung deposition. These results revealed that this pMDI formulation containing Bac-TMC/TPP nanoparticles would be a promising siRNA delivery system for lung cancer treatment.
Collapse
Affiliation(s)
- Suhui Ni
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yun Liu
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yue Tang
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Jing Chen
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Shuhan Li
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Ji Pu
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Lidong Han
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| |
Collapse
|
11
|
Sou T, Forbes RT, Gray J, Prankerd RJ, Kaminskas LM, McIntosh MP, Morton DA. Designing a multi-component spray-dried formulation platform for pulmonary delivery of biopharmaceuticals: The use of polyol, disaccharide, polysaccharide and synthetic polymer to modify solid-state properties for glassy stabilisation. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2015.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|