1
|
Paranjape S, Choi KY, Kashiwagi S, Choi HS. H-Dots: Renal Clearable Zwitterionic Nanocarriers for Disease Diagnosis and Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2111-2123. [PMID: 39823416 DOI: 10.1021/acs.langmuir.4c04372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Nanocarriers have shown significant promise in the diagnosis and treatment of various diseases, utilizing a wide range of biocompatible materials such as metals, inorganic substances, and organic components. Despite diverse design strategies, key physicochemical properties, including hydrodynamic diameter, shape, surface charge, and hydrophilicity/lipophilicity, are crucial for optimizing biodistribution, pharmacokinetics, and therapeutic efficacy. However, these properties are often influenced by drug payload, presenting an ongoing challenge in developing versatile platform technologies for theranostics. To enable tissue- and organ-specific targeting while minimizing nonspecific uptake, renal clearable Harvard dots (H-dots) have emerged as a promising organic nanocarrier platform. Composed of an ε-polylysine backbone for a tunable charge, near-infrared fluorophores for tracking their fate in living organisms, and β-cyclodextrins for potential drug delivery, H-dots offer a multifunctional approach to theranostic nanomedicine. Recent studies demonstrate that H-dots are effective for targeted imaging and drug delivery to solid tumors. This review highlights current nanocarrier design strategies and recent advances in H-dot applications for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Swarali Paranjape
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Kyu Young Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangnam Sacred Heart Hospital and Hallym University College of Medicine, Yeongdeungpo-gu, Seoul 07441, Republic of Korea
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
2
|
Dattani S, Li X, Lampa C, Barriscale A, Damadzadeh B, Lechuga-Ballesteros D, Jasti BR. Development of Spray-Dried Micelles, Liposomes, and Solid Lipid Nanoparticles for Enhanced Stability. Pharmaceutics 2025; 17:122. [PMID: 39861769 PMCID: PMC11768165 DOI: 10.3390/pharmaceutics17010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Objectives: Micelles, liposomes, and solid lipid nanoparticles (SLNs) are promising drug delivery vehicles; however, poor aqueous stability requires post-processing drying methods for maintaining long-term stability. The objective of this study was to compare the potential of lipid-based micelles, liposomes, and SLNs for producing stable re-dispersible spray-dried powders with trehalose or a combination of trehalose and L-leucine. This study provides novel insights into the implementation of spray drying as a technique to enhance long-term stability for these lipid-based nanocarriers. Methods: Aqueous dispersions of LDV-targeted micelles, liposomes, and SLNs loaded with paclitaxel (PTX) were converted into re-dispersible powders using spray drying. The physicochemical properties of the nanocarriers were determined via scanning electron microscopy (SEM), Karl Fischer titration, differential scanning calorimetry (DSC), and dynamic light scattering (DLS). Short-term stability of all nanocarrier formulations was compared by measuring particle size, polydispersity index (PDI), and paclitaxel retention over 7 days at room temperature and at 4 °C. Results: Paclitaxel-loaded micelles, liposomes, and SLN formulations were successfully converted into well-dispersed spray-dried powders with acceptable yields (71.5 to 83.5%), low moisture content (<2%), and high transition temperatures (95.1 to 100.8 °C). SEM images revealed differences in morphology, where nanocarriers spray-dried with trehalose or a combination of trehalose and L-leucine produced smooth or corrugated particle surfaces, respectively. Reconstituted spray-dried nanocarriers maintained their nanosize and paclitaxel content over 7 days at 4 °C. Conclusions: The results of this study demonstrate the potential for the development of spray-dried lipid-based nanocarriers for long-term stability.
Collapse
Affiliation(s)
- Shradha Dattani
- Department of Pharmaceutics and Medicinal Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | - Xiaoling Li
- Department of Pharmaceutics and Medicinal Chemistry, University of the Pacific, Stockton, CA 95211, USA
| | - Charina Lampa
- Inhalation Product Development, PT&D AstraZeneca, LLC, South San Francisco, CA 94080, USA
| | - Amanda Barriscale
- Inhalation Product Development, PT&D AstraZeneca, LLC, South San Francisco, CA 94080, USA
| | - Behzad Damadzadeh
- Inhalation Product Development, PT&D AstraZeneca, LLC, South San Francisco, CA 94080, USA
| | | | - Bhaskara R Jasti
- Department of Pharmaceutics and Medicinal Chemistry, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
3
|
Allam T, Balderston DE, Chahal MK, Hilton KLF, Hind CK, Keers OB, Lilley RJ, Manwani C, Overton A, Popoola PIA, Thompson LR, White LJ, Hiscock JR. Tools to enable the study and translation of supramolecular amphiphiles. Chem Soc Rev 2023; 52:6892-6917. [PMID: 37753825 DOI: 10.1039/d3cs00480e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
This tutorial review focuses on providing a summary of the key techniques used for the characterisation of supramolecular amphiphiles and their self-assembled aggregates; from the understanding of low-level molecular interactions, to materials analysis, use of data to support computer-aided molecular design and finally, the translation of this class of compounds for real world application, specifically within the clinical setting. We highlight the common methodologies used for the study of traditional amphiphiles and build to provide specific examples that enable the study of specialist supramolecular systems. This includes the use of nuclear magnetic resonance spectroscopy, mass spectrometry, X-ray scattering techniques (small- and wide-angle X-ray scattering and single crystal X-ray diffraction), critical aggregation (or micelle) concentration determination methodologies, machine learning, and various microscopy techniques. Furthermore, this review provides guidance for working with supramolecular amphiphiles in in vitro and in vivo settings, as well as the use of accessible software programs, to facilitate screening and selection of druggable molecules. Each section provides: a methodology overview - information that may be derived from the use of the methodology described; a case study - examples for the application of these methodologies; and a summary section - providing methodology specific benefits, limitations and future applications.
Collapse
Affiliation(s)
- Thomas Allam
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Dominick E Balderston
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Mandeep K Chahal
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Kira L F Hilton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Charlotte K Hind
- Research and Evaluation, UKHSA, Porton Down, Salisbury SP4 0JG, UK
| | - Olivia B Keers
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Rebecca J Lilley
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Chandni Manwani
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Alix Overton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Precious I A Popoola
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Lisa R Thompson
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Lisa J White
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Jennifer R Hiscock
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| |
Collapse
|
4
|
Dattani S, Li X, Lampa C, Lechuga-Ballesteros D, Barriscale A, Damadzadeh B, Jasti BR. A comparative study on micelles, liposomes and solid lipid nanoparticles for paclitaxel delivery. Int J Pharm 2023; 631:122464. [PMID: 36464111 DOI: 10.1016/j.ijpharm.2022.122464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/13/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
The purpose of this work was to compare the in vitro and in vivo characteristics of LDV-targeted lipid-based micelles, liposomes and solid lipid nanoparticles (SLN) to provide further insights into their therapeutic potential for clinical development. Micelles, liposomes and SLN were prepared using LDV peptide amphiphiles and palmitic acid-derived lipids using solvent evaporation, thin-film hydration and microfluidic mixing respectively. Nanocarriers were characterized for their physicochemical properties, paclitaxel loading efficiency, in vitro release behavior, stability in biological media as well as in vivo antitumor efficacy in melanoma xenograft model. TEM and DLS results confirmed the presence of paclitaxel-loaded nanosized micelles (6 to 12 nm), liposomes (123.31 ± 5.87 nm) and SLN (80.53 ± 5.37 nm). SLN demonstrated the slowest paclitaxel release rate and the highest stability in biological media compared to micelles and liposomes. Paclitaxel-loaded SLN demonstrated a statistically significant delay in tumor growth compared to mice treated with paclitaxel-loaded liposomes and paclitaxel-loaded micelles (p < 0.05). The results obtained in this study indicate the potential of SLN as drug delivery vehicles for anticancer therapy.
Collapse
Affiliation(s)
| | - Xiaoling Li
- University of the Pacific, Stockton, CA, USA
| | - Charina Lampa
- Inhalation Product Development, PT&D AstraZeneca LLC, South San Francisco, CA, USA
| | | | - Amanda Barriscale
- Inhalation Product Development, PT&D AstraZeneca LLC, South San Francisco, CA, USA
| | - Behzad Damadzadeh
- Inhalation Product Development, PT&D AstraZeneca LLC, South San Francisco, CA, USA
| | | |
Collapse
|
5
|
Mahadik N, Bhattacharya D, Padmanabhan A, Sakhare K, Narayan KP, Banerjee R. Targeting steroid hormone receptors for anti-cancer therapy-A review on small molecules and nanotherapeutic approaches. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1755. [PMID: 34541822 DOI: 10.1002/wnan.1755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
The steroid hormone receptors (SHRs) among nuclear hormone receptors (NHRs) are steroid ligand-dependent transcription factors that play important roles in the regulation of transcription of genes promoted via hormone responsive elements in our genome. Aberrant expression patterns and context-specific regulation of these receptors in cancer, have been routinely reported by multiple research groups. These gave an window of opportunity to target those receptors in the context of developing novel, targeted anticancer therapeutics. Besides the development of a plethora of SHR-targeting synthetic ligands and the availability of their natural, hormonal ligands, development of many SHR-targeted, anticancer nano-delivery systems and theranostics, especially based on small molecules, have been reported. It is intriguing to realize that these cytoplasmic receptors have become a hot target for cancer selective delivery. This is in spite of the fact that these receptors do not fall in the category of conventional, targetable cell surface bound or transmembrane receptors that enjoy over-expression status. Glucocorticoid receptor (GR) is one such exciting SHR that in spite of it being expressed ubiquitously in all cells, we discovered it to behave differently in cancer cells, thus making it a truly druggable target for treating cancer. This review selectively accumulates the knowledge generated in the field of SHR-targeting as a major focus for cancer treatment with various anticancer small molecules and nanotherapeutics on progesterone receptor, mineralocorticoid receptor, and androgen receptor while selectively emphasizing on GR and estrogen receptor. This review also briefly highlights lipid-modification strategy to convert ligands into SHR-targeted cancer nanotherapeutics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Namita Mahadik
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Dwaipayan Bhattacharya
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Akshaya Padmanabhan
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Kalyani Sakhare
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Rajkumar Banerjee
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Nano-Strategies Targeting the Integrin αvβ3 Network for Cancer Therapy. Cells 2021; 10:cells10071684. [PMID: 34359854 PMCID: PMC8307885 DOI: 10.3390/cells10071684] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Integrin αvβ3, a cell surface receptor, participates in signaling transduction pathways in cancer cell proliferation and metastasis. Several ligands bind to integrin αvβ3 to regulate proliferation and metastasis in cancer cells. Crosstalk between the integrin and other signal transduction pathways also plays an important role in modulating cancer proliferation. Carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) activates the downstream integrin FAK to stimulate biological activities including cancer proliferation and metastasis. Blockage of signals related to integrin αvβ3 was shown to be a promising target for cancer therapies. 3,3′,5,5′-tetraiodothyroacetic acid (tetrac) completely binds to the integrin with the thyroid hormone to suppress cancer proliferation. The (E)-stilbene analog, resveratrol, also binds to integrin αvβ3 to inhibit cancer growth. Recently, nanotechnologies have been used in the biomedical field for detection and therapeutic purposes. In the current review, we show and evaluate the potentiation of the nanomaterial carrier RGD peptide, derivatives of PLGA-tetrac (NDAT), and nanoresveratrol targeting integrin αvβ3 in cancer therapies.
Collapse
|
7
|
Prencipe F, Diaferia C, Rossi F, Ronga L, Tesauro D. Forward Precision Medicine: Micelles for Active Targeting Driven by Peptides. Molecules 2021; 26:4049. [PMID: 34279392 PMCID: PMC8271712 DOI: 10.3390/molecules26134049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Precision medicine is based on innovative administration methods of active principles. Drug delivery on tissue of interest allows improving the therapeutic index and reducing the side effects. Active targeting by means of drug-encapsulated micelles decorated with targeting bioactive moieties represents a new frontier. Between the bioactive moieties, peptides, for their versatility, easy synthesis and immunogenicity, can be selected to direct a drug toward a considerable number of molecular targets overexpressed on both cancer vasculature and cancer cells. Moreover, short peptide sequences can facilitate cellular intake. This review focuses on micelles achieved by self-assembling or mixing peptide-grafted surfactants or peptide-decorated amphiphilic copolymers. Nanovectors loaded with hydrophobic or hydrophilic cytotoxic drugs or with gene silence sequences and externally functionalized with natural or synthetic peptides are described based on their formulation and in vitro and in vivo behaviors.
Collapse
Affiliation(s)
- Filippo Prencipe
- Institute of Crystallography (IC) CNR, Via Amendola 122/o, 70126 Bari, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| | - Filomena Rossi
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| | - Luisa Ronga
- Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux, Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64053 Pau, France
| | - Diego Tesauro
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
8
|
Wu QL, Xu HL, Xiong C, Lan QH, Fang ML, Cai JH, Li H, Zhu ST, Xu JH, Tao FY, Lu CT, Zhao YZ, Chen B. c(RGDyk)-modified nanoparticles encapsulating quantum dots as a stable fluorescence probe for imaging-guided surgical resection of glioma under the auxiliary UTMD. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:143-158. [PMID: 32207347 DOI: 10.1080/21691401.2019.1699821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Surgical resection remains the preferred approach for some patients with glioblastoma (GBM), and eradication of the residual tumour niche after surgical resection is very helpful for prolonging patient survival. However, complete surgical resection of invasive GBM is difficult because of its ambiguous boundary. Herein, a novel targeting material, c(RGDyk)-poloxamer-188, was synthesized by modifying carboxyl-terminated poloxamer-188 with a glioma-targeting cyclopeptide, c(RGDyk). Quantum dots (QDs) as fluorescent probe were encapsulated into the self-assembled c(RGDyk)-poloxamer-188 polymer nanoparticles (NPs) to construct glioma-targeted QDs-c(RGDyk)NP for imaging-guided surgical resection of GBM. QDs-c(RGDyk)NP exhibited a moderate hydrodynamic diameter of 212.4 nm, a negative zeta potential of -10.1 mV and good stability. QDs-c(RGDyk)NP exhibited significantly lower toxicity against PC12 and C6 cells and HUVECs than free QDs. Moreover, in vitro cellular uptake experiments demonstrated that QDs-c(RGDyk)NP specifically targeted C6 cells, making them display strong fluorescence. Combined with ultrasound-targeted microbubble destruction (UTMD), QDs-c(RGDyk)NP specifically accumulated in glioma tissue in orthotropic tumour rats after intravenous administration, evidenced by ex vivo NIR fluorescence imaging of bulk brain and glioma tissue sections. Furthermore, fluorescence imaging with QDs-c(RGDyk)NP guided accurate surgical resection of glioma. Finally, the safety of QDs-c(RGDyk)NP was verified using pathological HE staining. In conclusion, QDs-c(RGDyk)NP may be a potential imaging probe for imaging-guided surgery.
Collapse
Affiliation(s)
- Qi-Long Wu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Cui Xiong
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Qing-Hua Lan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ming-Ling Fang
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Jin-Hua Cai
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Hui Li
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Shu-Ting Zhu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Jing-Hong Xu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Fang-Yi Tao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Cui-Tao Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Bin Chen
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| |
Collapse
|
9
|
Wu PH, Opadele AE, Onodera Y, Nam JM. Targeting Integrins in Cancer Nanomedicine: Applications in Cancer Diagnosis and Therapy. Cancers (Basel) 2019; 11:E1783. [PMID: 31766201 PMCID: PMC6895796 DOI: 10.3390/cancers11111783] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023] Open
Abstract
Due to advancements in nanotechnology, the application of nanosized materials (nanomaterials) in cancer diagnostics and therapeutics has become a leading area in cancer research. The decoration of nanomaterial surfaces with biological ligands is a major strategy for directing the actions of nanomaterials specifically to cancer cells. These ligands can bind to specific receptors on the cell surface and enable nanomaterials to actively target cancer cells. Integrins are one of the cell surface receptors that regulate the communication between cells and their microenvironment. Several integrins are overexpressed in many types of cancer cells and the tumor microvasculature and function in the mediation of various cellular events. Therefore, the surface modification of nanomaterials with integrin-specific ligands not only increases their binding affinity to cancer cells but also enhances the cellular uptake of nanomaterials through the intracellular trafficking of integrins. Moreover, the integrin-specific ligands themselves interfere with cancer migration and invasion by interacting with integrins, and this finding provides a novel direction for new treatment approaches in cancer nanomedicine. This article reviews the integrin-specific ligands that have been used in cancer nanomedicine and provides an overview of the recent progress in cancer diagnostics and therapeutic strategies involving the use of integrin-targeted nanomaterials.
Collapse
Affiliation(s)
- Ping-Hsiu Wu
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| | - Abayomi Emmanuel Opadele
- Molecular and Cellular Dynamics Research, Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan;
| | - Yasuhito Onodera
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| | - Jin-Min Nam
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8638, Hokkaido, Japan
| |
Collapse
|
10
|
Asampille G, Verma BK, Swain M, Shettar A, Rosenzweig SA, Kondaiah P, Atreya HS. An ultra-stable redox-controlled self-assembling polypeptide nanotube for targeted imaging and therapy in cancer. J Nanobiotechnology 2018; 16:101. [PMID: 30526620 PMCID: PMC6286583 DOI: 10.1186/s12951-018-0427-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/24/2018] [Indexed: 01/10/2023] Open
Abstract
We introduce a self-assembling polypeptide-based nanotube system having the ability to specifically target cancer cells. The nanotubes target the cancer cell surface through integrin engagement with the help of multiple RGD units present along their surface. While the nanotubes are non-toxic towards cells in general, they can be loaded with suitable drugs to be released in a sustained manner in cancer cells. In addition, the nanotubes can be utilized for cellular imaging using any covalently tagged fluorescent dye. They are stable over a wide range of temperature due to intermolecular disulphide bonds formed during the self-assembly process. At the same time, presence of disulphide bonds provides a redox molecular switch for their degradation. Taken together this system provides a unique avenue for multimodal formulation in cancer therapy.
Collapse
Affiliation(s)
- Gitanjali Asampille
- NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India.,Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Brijesh Kumar Verma
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Monalisa Swain
- NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India.,Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India.,Basic Research Laboratory, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Abhijith Shettar
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.,Biotechnology Engineering, Ramaiah Institute of Technology, Bangalore, Karnataka, 560054, India
| | - Steven A Rosenzweig
- Department of Cell and Molecular Pharmacology, & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Paturu Kondaiah
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| | - Hanudatta S Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
11
|
Duro-Castano A, Gallon E, Decker C, Vicent MJ. Modulating angiogenesis with integrin-targeted nanomedicines. Adv Drug Deliv Rev 2017; 119:101-119. [PMID: 28502767 DOI: 10.1016/j.addr.2017.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/12/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
Targeting angiogenesis-related pathologies, which include tumorigenesis and metastatic processes, has become an attractive strategy for the development of efficient guided nanomedicines. In this respect, integrins are cell-adhesion molecules involved in angiogenesis signaling pathways and are overexpressed in many angiogenic processes. Therefore, they represent specific biomarkers not only to monitor disease progression but also to rationally design targeted nanomedicines. Arginine-glycine-aspartic (RGD) containing peptides that bind to specific integrins have been widely utilized to provide ligand-mediated targeting capabilities to small molecules, peptides, proteins, and antibodies, as well as to drug/imaging agent-containing nanomedicines, with the final aim of maximizing their therapeutic index. Within this review, we aim to cover recent and relevant examples of different integrin-assisted nanosystems including polymeric nanoconstructs, liposomes, and inorganic nanoparticles applied in drug/gene therapy as well as imaging and theranostics. We will also critically address the overall benefits of integrin-targeting.
Collapse
Affiliation(s)
- Aroa Duro-Castano
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Elena Gallon
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - Caitlin Decker
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| | - María J Vicent
- Centro de Investigación Príncipe Felipe, Polymer Therapeutics Lab., Av. Eduardo Primo Yúfera 3, E-46012 Valencia, Spain.
| |
Collapse
|
12
|
Xin Y, Yin M, Zhao L, Meng F, Luo L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med 2017; 14:228-241. [PMID: 28884040 PMCID: PMC5570600 DOI: 10.20892/j.issn.2095-3941.2017.0052] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/24/2017] [Indexed: 12/19/2022] Open
Abstract
The development of cancer nanotherapeutics has attracted great interest in the recent decade. Cancer nanotherapeutics have overcome several limitations of conventional therapies, such as nonspecific biodistribution, poor water solubility, and limited bioavailability. Nanoparticles with tuned size and surface characteristics are the key components of nanotherapeutics, and are designed to passively or actively deliver anti-cancer drugs to tumor cells. We provide an overview of nanoparticle-based drug delivery methods and cancer therapies based on tumor-targeting delivery strategies that have been developed in recent years.
Collapse
Affiliation(s)
- Yanru Xin
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingming Yin
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liyuan Zhao
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
Pautu V, Leonetti D, Lepeltier E, Clere N, Passirani C. Nanomedicine as a potent strategy in melanoma tumor microenvironment. Pharmacol Res 2017; 126:31-53. [PMID: 28223185 DOI: 10.1016/j.phrs.2017.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
Melanoma originated from melanocytes is the most aggressive type of skin cancer. Despite considerable progresses in clinical treatment with the discovery of BRAF or MEK inhibitors and monoclonal antibodies, the durability of response to treatment is often limited to the development of acquired resistance and systemic toxicity. The limited success of conventional treatment highlights the importance of understanding the role of melanoma tumor microenvironment in tumor developement and drug resistance. Nanoparticles represent a promising strategy for the development of new cancer treatments able to improve the bioavailability of drugs and increase their penetration by targeting specifically tumors cells and/or tumor environment. In this review, we will discuss the main influence of tumor microenvironment in melanoma growth and treatment outcome. Furthermore, third generation loaded nanotechnologies represent an exciting tool for detection, treatment, and escape from possible mechanism of resistance mediated by tumor microenvironment, and will be highlighted in this review.
Collapse
Affiliation(s)
- Vincent Pautu
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | | | - Elise Lepeltier
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Nicolas Clere
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Catherine Passirani
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| |
Collapse
|
14
|
Li J, Wang F, Sun D, Wang R. A review of the ligands and related targeting strategies for active targeting of paclitaxel to tumours. J Drug Target 2016; 24:590-602. [PMID: 26878228 DOI: 10.3109/1061186x.2016.1154561] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It has been 30 years since the discovery of the anti-tumour property of paclitaxel (PTX), which has been successfully applied in clinic for the treatment of carcinomas of the lungs, breast and ovarian. However, PTX is poorly soluble in water and has no targeting and selectivity to tumour tissue. Recent advances in active tumour targeting of PTX delivery vehicles have addressed some of the issues related to lack of solubility in water and non-specific toxicities associated with PTX. These PTX delivery vehicles are designed for active targeting to specific cancer cells by the addition of ligands for recognition by specific receptors/antigens on cancer cells. This article will focus on various ligands and related targeting strategies serving as potential tools for active targeting of PTX to tumour tissues, illustrating their use in different tumour models. This review also highlights the need of further studies on the discovery of receptors in different cells of specific organ and ligands with binding efficiency to these specific receptors.
Collapse
Affiliation(s)
- Juan Li
- a Department of Pharmacy , The Second Hospital of Shandong University , Jinan , PR China
| | - Fengshan Wang
- b Key Laboratory of Chemical Biology of Natural Products (Ministry of Education) , Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University , Jinan , China ;,c National Glycoengineering Research Center , Shandong University , Jinan , China
| | - Deqing Sun
- a Department of Pharmacy , The Second Hospital of Shandong University , Jinan , PR China
| | - Rongmei Wang
- a Department of Pharmacy , The Second Hospital of Shandong University , Jinan , PR China
| |
Collapse
|