1
|
Tratrat C, Petrou A, Fesatidou M, Haroun M, Chohan M, Geronikaki A. Rational Design, Synthesis, and Biological Evaluation of Novel Thiazole/Thiazolidinones Multitarget Anti-Human Immunodeficiency Virus Molecules. Pharmaceuticals (Basel) 2025; 18:298. [PMID: 40143077 PMCID: PMC11946194 DOI: 10.3390/ph18030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Background: HIV-1 RT inhibitors were the first drugs approved to treat AIDS and remain key components of highly active antiretroviral therapy (HAART). While HAART effectively suppresses viral replication and slows disease progression, it has limitations, including long-term side effects and the emergence of drug-resistant strains, highlighting the need for new treatments. Objectives: Based on our previous experience, and insights from existing inhibitors of HIV-1 RT and RNase H, we aim to design and synthesize safer, multifunctional molecules. Methods: Using molecular docking studies, these compounds will incorporate pharmacophores targeting multiple stages of the HIV life cycle to enhance efficacy, reduce resistance, and improve pharmacokinetics. The compounds were synthesized via a one-pot three component reaction. The synthesized compounds were identified using spectroscopy and tested in vitro for activity against key HIV targets, including RNA-dependent DNA polymerase (RDDP) and RNAse H. Results: Among the synthesized compounds, several demonstrated strong inhibitory activity, with compound 11 showing IC50 values comparable to the reference drug Nevirapine, and compound 4 exhibiting dual inhibition of both RT and RNase H activities. Conclusions: These findings emphasize the importance of a multidisciplinary approach, combining computational modeling with experimental validation, to identify promising leads for therapeutic development.
Collapse
Affiliation(s)
- Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Anthi Petrou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Maria Fesatidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Micheline Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohamad Chohan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Saudi Arabia;
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
2
|
N-Derivatives of ( Z)-Methyl 3-(4-Oxo-2-thioxothiazolidin-5-ylidene)methyl)-1 H-indole-2-carboxylates as Antimicrobial Agents-In Silico and In Vitro Evaluation. Pharmaceuticals (Basel) 2023; 16:ph16010131. [PMID: 36678628 PMCID: PMC9865890 DOI: 10.3390/ph16010131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Herein, we report the experimental evaluation of the antimicrobial activity of seventeen new (Z)-methyl 3-(4-oxo-2-thioxothiazolidin-5-ylidene)methyl)-1H-indole-2-carboxylate derivatives. All tested compounds exhibited antibacterial activity against eight Gram-positive and Gram-negative bacteria. Their activity exceeded those of ampicillin as well as streptomycin by 10-50 fold. The most sensitive bacterium was En. Cloacae, while E. coli was the most resistant one, followed by M. flavus. The most active compound appeared to be compound 8 with MIC at 0.004-0.03 mg/mL and MBC at 0.008-0.06 mg/mL. The antifungal activity of tested compounds was good to excellent with MIC in the range of 0.004-0.06 mg/mL, with compound 15 being the most potent. T. viride was the most sensitive fungal, while A. fumigatus was the most resistant one. Docking studies revealed that the inhibition of E. coli MurB is probably responsible for their antibacterial activity, while 14a-lanosterol demethylase of CYP51Ca is involved in the mechanism of antifungal activity. Furthermore, drug-likeness and ADMET profile prediction were performed. Finally, the cytotoxicity studies were performed for the most active compounds using MTT assay against normal MRC5 cells.
Collapse
|
3
|
Chen Y, Du F, Tang L, Xu J, Zhao Y, Wu X, Li M, Shen J, Wen Q, Cho CH, Xiao Z. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol Ther Oncolytics 2022; 24:400-416. [PMID: 35141397 PMCID: PMC8807988 DOI: 10.1016/j.omto.2022.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carborane is a carbon-boron molecular cluster that can be viewed as a 3D analog of benzene. It features special physical and chemical properties, and thus has the potential to serve as a new type of pharmacophore for drug design and discovery. Based on the relative positions of two cage carbons, icosahedral closo-carboranes can be classified into three isomers, ortho-carborane (o-carborane, 1,2-C2B10H12), meta-carborane (m-carborane, 1,7-C2B10H12), and para-carborane (p-carborane, 1,12-C2B10H12), and all of them can be deboronated to generate their nido- forms. Cage compound carborane and its derivatives have been demonstrated as useful chemical entities in antitumor medicinal chemistry. The applications of carboranes and their derivatives in the field of antitumor research mainly include boron neutron capture therapy (BNCT), as BNCT/photodynamic therapy dual sensitizers, and as anticancer ligands. This review summarizes the research progress on carboranes achieved up to October 2021, with particular emphasis on signaling transduction pathways, chemical structures, and mechanistic considerations of using carboranes.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jinrun Xu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhangang Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
4
|
Tratrat C, Petrou A, Geronikaki A, Ivanov M, Kostić M, Soković M, Vizirianakis IS, Theodoroula NF, Haroun M. Thiazolidin-4-Ones as Potential Antimicrobial Agents: Experimental and In Silico Evaluation. Molecules 2022; 27:1930. [PMID: 35335296 PMCID: PMC8954104 DOI: 10.3390/molecules27061930] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 01/01/2023] Open
Abstract
Herein, we report computational and experimental evaluations of the antimicrobial activity of twenty one 2,3-diaryl-thiazolidin-4-ones. All synthesized compounds exhibited an antibacterial activity against six Gram-positive and Gram-negative bacteria to different extents. Thus, the MIC was in the range of 0.008-0.24 mg/mL, while the MBC was 0.0016-0.48 mg/mL. The most sensitive bacterium was S. Typhimurium, whereas S. aureus was the most resistant. The best antibacterial activity was observed for compound 5 (MIC at 0.008-0.06 mg/mL). The three most active compounds 5, 8, and 15, as well as compound 6, which were evaluated against three resistant strains, MRSA, P. aeruginosa, and E. coli, were more potent against all bacterial strains used than ampicillin. The antifungal activity of some compounds exceeded or were equipotent with those of the reference antifungal agents bifonazole and ketoconazole. The best activity was expressed by compound 5. All compounds exhibited moderate to good drug-likeness scores ranging from -0.39 to 0.39. The docking studies indicated a probable involvement of E. coli Mur B inhibition in the antibacterial action, while CYP51 inhibition is likely responsible for the antifungal activity of the tested compounds. Finally, the assessment of cellular cytotoxicity of the compounds in normal human MRC-5 cells revealed that the compounds were not toxic.
Collapse
Affiliation(s)
- Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Anthi Petrou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Marija Ivanov
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research, Siniša Stankovic-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (M.K.); (M.S.)
| | - Marina Kostić
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research, Siniša Stankovic-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (M.K.); (M.S.)
| | - Marina Soković
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research, Siniša Stankovic-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (M.K.); (M.S.)
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.S.V.); (N.F.T.)
- Department of Life and Health Sciences, University of Nicosia, Nicosia CY-1700, Cyprus
| | - Nikoleta F. Theodoroula
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.S.V.); (N.F.T.)
| | - Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
5
|
Synthesis, Biological Evaluation and Molecular Docking Studies of 5-indolylmethylen-4-oxo-2-thioxothiazolidine Derivatives. Molecules 2022; 27:molecules27031068. [PMID: 35164333 PMCID: PMC8839324 DOI: 10.3390/molecules27031068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Infectious diseases represent a significant global strain on public health security and impact on socio-economic stability all over the world. The increasing resistance to the current antimicrobial treatment has resulted in the crucial need for the discovery and development of novel entities for the infectious treatment with different modes of action that could target both sensitive and resistant strains. Methods: Compounds were synthesized using the classical organic chemistry methods. Prediction of biological activity spectra was carried out using PASS and PASS-based web applications. Pharmacophore modeling in LigandScout software was used for quantitative modeling of the antibacterial activity. Antimicrobial activity was evaluated using the microdilution method. AutoDock 4.2® software was used to elucidate probable bacterial and fungal molecular targets of the studied compounds. Results: All compounds exhibited better antibacterial potency than ampicillin against all bacteria tested. Three compounds were tested against resistant strains MRSA, P.aeruginosa and E.coli and were found to be more potent than MRSA than reference drugs. All compounds demonstrated a higher degree of antifungal activity than the reference drugs bifonazole (6–17-fold) and ketoconazole (13–52-fold). Three of the most active compounds could be considered for further development of the new, more potent antimicrobial agents. Conclusion: Compounds 5b (Z)-3-(3-hydroxyphenyl)-5-((1-methyl-1H-indol-3-yl)methylene)-2-thioxothiazolidin-4-one and 5g (Z)-3-[5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxo-thiazolidin-3-yl]-benzoic acid as well as 5h (Z)-3-(5-((5-methoxy-1H-indol-3-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)benzoic acid can be considered as lead compounds for further development of more potent and safe antibacterial and antifungal agents.
Collapse
|
6
|
4-(Indol-3-yl)thiazole-2-amines and 4-ιndol-3-yl)thiazole Acylamines as Νovel Antimicrobial Agents: Synthesis, In Silico and In Vitro Evaluation. Pharmaceuticals (Basel) 2021; 14:ph14111096. [PMID: 34832877 PMCID: PMC8624152 DOI: 10.3390/ph14111096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 01/26/2023] Open
Abstract
This manuscript deals with the synthesis and computational and experimental evaluation of the antimicrobial activity of twenty-nine 4-(indol-3-yl)thiazole-2-amines and 4-ιndol-3-yl)thiazole acylamines. An evaluation of antibacterial activity against Gram (+) and Gram (-) bacteria revealed that the MIC of indole derivatives is in the range of 0.06-1.88 mg/mL, while among fourteen methylindole derivatives, only six were active, with an MIC in the range of of 0.47-1.88 mg/mL. S. aureus appeared to be the most resistant strain, while S. Typhimurium was the most sensitive. Compound 5x was the most promising, with an MIC in the range of 0.06-0.12 mg/mL, followed by 5d and 5m. An evaluation of these three compounds against resistant strains, namely MRSA P. aeruginosa and E. coli, revealed that they were more potent against MRSA than ampicillin. Furthermore, compounds 5m and 5x were superior inhibitors of biofilm formation, compared to ampicillin and streptomycin, in terms Compounds 5d, 5m, and 5x interact with streptomycin in additive manner. The antifungal activity of some compounds exceeded or was equipotent to those of the reference antifungal agents bifonazole and ketoconazole. The most potent antifungal agent was found to be compound 5g. Drug likeness scores of compounds was in a range of -0.63 to 0.29, which is moderate to good. According to docking studies, E. coli MurB inhibition is probably responsible for the antibacterial activity of compounds, whereas CYP51 inhibition was implicated in antifungal activity. Compounds appeared to be non-toxic, according to the cytotoxicity assessment in MRC-5 cells.
Collapse
|
7
|
Li M, Song Y, Song N, Wu G, Zhou H, Long J, Zhang P, Shi L, Yu Z. Supramolecular Antagonists Promote Mitochondrial Dysfunction. NANO LETTERS 2021; 21:5730-5737. [PMID: 34142834 DOI: 10.1021/acs.nanolett.1c01469] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mitochondrion-targeting therapy exhibits great potential in cancer therapy but significantly suffers from limited therapeutic efficiency. Here we report on mitochondrion-targeting supramolecular antagonist-inducing tumor cell death via simultaneously promoting cellular apoptosis and preventing survival. The supramolecular antagonist was created via coassembly of a mitochondrion-targeting pentapeptide with its two derivatives functionalized with a BH3 domain or the drug camptothecin (CPT). While drug CPT released from the antagonist induced cellular apoptosis via decreasing the mitochondrial membrane potential, the BH3 domain prevented cellular survival through facilitating the association between the supramolecular antagonists and antiapoptotic proteins, thereby initiating mitochondrial permeabilization. Both in vitro and in vivo studies confirmed the combinatorial therapeutic effect arising from the BH3 domain and CPT drug within the supramolecular antagonist on cell death and thereby inhibiting tumor growth. Our findings demonstrate an efficient combinatorial mechanism for mitochondrial dysfunction, thus potentially serving as novel organelle-targeting medicines.
Collapse
Affiliation(s)
- Mingming Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yanqiu Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Na Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Guangyao Wu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Hao Zhou
- Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Jiafu Long
- Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research & Center for Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| |
Collapse
|
8
|
Murphy N, McCarthy E, Dwyer R, Farràs P. Boron clusters as breast cancer therapeutics. J Inorg Biochem 2021; 218:111412. [PMID: 33773323 DOI: 10.1016/j.jinorgbio.2021.111412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
Since the foundation of small molecule-based therapeutics over 100 years ago, their design has been dominated by organic based components. This has also been apparent in anti-cancer therapeutics in a broad range of strategies; from the older DNA chelating drugs, to the more recent molecular-targeted therapies. The main challenges facing current treatments; multidrug resistance and low therapeutic index, can potentially be alleviated by the incorporation of boron clusters. While retaining the versatility of their organic counterparts, these compounds offer a unique set of molecular interactions, which are a useful tool in targeted therapies and can improve many organic formulations with their incorporation. This review will discuss the potential of boron clusters in medicine while focusing on their activity in the breast cancer setting.
Collapse
Affiliation(s)
- Neville Murphy
- School of Chemistry, Ryan Institute, National University of Ireland, Galway H91CF50, Ireland; CÚRAM, the SFI Research Centre for Medical Devices, National University of Ireland, Galway H91W2TY, Ireland
| | - Elan McCarthy
- Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - Róisín Dwyer
- Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland; CÚRAM, the SFI Research Centre for Medical Devices, National University of Ireland, Galway H91W2TY, Ireland
| | - Pau Farràs
- School of Chemistry, Ryan Institute, National University of Ireland, Galway H91CF50, Ireland; CÚRAM, the SFI Research Centre for Medical Devices, National University of Ireland, Galway H91W2TY, Ireland.
| |
Collapse
|
9
|
Giassafaki LPN, Siqueira S, Panteris E, Psatha K, Chatzopoulou F, Aivaliotis M, Tzimagiorgis G, Müllertz A, Fatouros DG, Vizirianakis IS. Towards analyzing the potential of exosomes to deliver microRNA therapeutics. J Cell Physiol 2020; 236:1529-1544. [PMID: 32749687 DOI: 10.1002/jcp.29991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/21/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Exosome selectivity mechanisms underlying exosome-target cell interactions and the specific traits affecting their capability to communicate still remain unclear. Moreover, the capacity of exosomes to efficiently deliver their molecular cargos intracellularly needs precise investigation towards establishing functional exosome-based delivery platforms exploitable in the clinical practice. The current study focuses on: (a) exosome production from normal MRC-5 and Vero cells growing in culture, (b) physicochemical characterization by dynamic light scattering (DLS) and cryo-transmission electron microscopy; (c) cellular uptake studies of rhodamine-labeled exosomes in normal and cancer cells, providing to exosomes either "autologous" or "heterologous" cellular delivery environments; and (d) loading exogenous Alexa Fluor 488-labeled siRNA into exosomes for the assessment of their delivering capacity by immunofluorescence in a panel of recipient cells. The data obtained thus far indicate that MRC-5 and Vero exosomes, indeed exhibit an interesting delivering profile, as promising "bio-shuttles," being pharmacologically exploitable in the context of theranostic applications.
Collapse
Affiliation(s)
- Lefki-Pavlina N Giassafaki
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Scheyla Siqueira
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Design and Drug Delivery, School of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina Psatha
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece
| | - Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michalis Aivaliotis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece.,Laboratory of Biochemistry, Department of Biological Sciences and Preventive Medicine, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,FunPATH (Functional Proteomics and Systems Biology Research Group at AUTH) Research Group, KEDEK, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Tzimagiorgis
- Laboratory of Biochemistry, Department of Biological Sciences and Preventive Medicine, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,FunPATH (Functional Proteomics and Systems Biology Research Group at AUTH) Research Group, KEDEK, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anette Müllertz
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Design and Drug Delivery, School of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,FunPATH (Functional Proteomics and Systems Biology Research Group at AUTH) Research Group, KEDEK, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Antibacterial activity of griseofulvin analogues as an example of drug repurposing. Int J Antimicrob Agents 2020; 55:105884. [PMID: 31931149 DOI: 10.1016/j.ijantimicag.2020.105884] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/19/2019] [Accepted: 12/28/2019] [Indexed: 01/30/2023]
Abstract
Griseofulvin is a well-known antifungal drug that was launched in 1962 by Merck & Co. for the treatment of dermatophyte infections. However, according to predictions using the Way2Drug computational drug repurposing platform, it may also have antibacterial activity. As no confirmation of this prediction was found in the published literature, this study estimated in-silico antibacterial activity for 42 griseofulvin derivatives. Antibacterial activity was predicted for 33 of the 42 compounds, which led to the conclusion that this activity might be considered as typical for this chemical series. Therefore, experimental testing of antibacterial activity was performed on a panel of Gram-positive and Gram-negative micro-organisms. Antibacterial activity was evaluated using the microdilution method detecting the minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). The tested compounds exhibited potent antibacterial activity against all the studied bacteria, with MIC and MBC values ranging from 0.0037 to 0.04 mg/mL and from 0.01 to 0.16 mg/mL, respectively. Activity was 2.5-12 times greater than that of ampicillin and 2-8 times greater than that of streptomycin, which were used as the reference drugs. Similarity analysis for all 42 compounds with the (approximately) 470,000 drug-like compounds indexed in the Clarivate Analytics Integrity database confirmed the significant novelty of the antibacterial activity for the compounds from this chemical class. Therefore, this study demonstrated that by using computer-aided prediction of biological activity spectra for a particular chemical series, it is possible to identify typical biological activities which may be used for discovery of new applications (e.g. drug repurposing).
Collapse
|
11
|
Petrou A, Eleftheriou P, Geronikaki A, Akrivou MG, Vizirianakis I. Novel Thiazolidin-4-ones as Potential Non-nucleoside Inhibitors of HIV-1 Reverse Transcriptase. Molecules 2019; 24:E3821. [PMID: 31652782 PMCID: PMC6864537 DOI: 10.3390/molecules24213821] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND HIV is the causative agent of Acquired Immunodeficiency Syndrome (AIDS), an infectious disease with increasing incidence worldwide. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) play an important role in the treatment of AIDS. Although, many compounds are already being used as anti-HIV drugs, research for the development of new inhibitors continues as the virus develops resistant strains. METHODS The best features of available NNRTIs were taken into account for the design of novel inhibitors. PASS (Prediction of activity spectra for substances) prediction program and molecular docking studies for the selection of designed compounds were used for the synthesis. Compounds were synthesized using conventional and microwave irradiation methods and HIV RT inhibitory action was evaluated by colorimetric photometric immunoassay. RESULTS The evaluation of HIV-1 RT inhibitory activity revealed that seven compounds have significantly lower ΙC50 values than nevirapine (0.3 μΜ). It was observed that the activity of compounds depends not only on the nature of substituent and it position in benzothiazole ring but also on the nature and position of substituents in benzene ring. CONCLUSION Twenty four of the tested compounds exhibited inhibitory action lower than 4 μΜ. Seven of them showed better activity than nevirapine, while three of the compounds exhibited IC50 values lower than 5 nM. Two compounds 9 and 10 exhibited very good inhibitory activity with IC50 1 nM.
Collapse
Affiliation(s)
- Anthi Petrou
- School of Pharmacy, Department of Pharmaceutical Chemistry,Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Phaedra Eleftheriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Thessaloniki, Greece.
| | - Athina Geronikaki
- School of Pharmacy, Department of Pharmaceutical Chemistry,Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Melpomeni G Akrivou
- School of Pharmacy Department of Pharmacology and Pharmacognosy,Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Ioannis Vizirianakis
- School of Pharmacy Department of Pharmacology and Pharmacognosy,Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
12
|
Chen H, Wang J, Feng X, Zhu M, Hoffmann S, Hsu A, Qian K, Huang D, Zhao F, Liu W, Zhang H, Cheng Z. Mitochondria-targeting fluorescent molecules for high efficiency cancer growth inhibition and imaging. Chem Sci 2019; 10:7946-7951. [PMID: 31853349 PMCID: PMC6836573 DOI: 10.1039/c9sc01410a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/25/2019] [Indexed: 01/09/2023] Open
Abstract
Fluorescent mitochondria-accumulating delocalized lipophilic cations (DLCs) for cancer therapy have drawn significant attention in the field of cancer theranostics. One of the most promising fluorescent DLCs, F16, can selectively trigger the apoptosis and necrosis of cancer cells, making it an attractive targeted theranostic drug candidate. However, it suffers from low clinical translation potential, largely due to its inefficient anti-cancer activity (IC50 in the μM range) and poorly understood structure-activity relationship (SAR). In this report, eleven indole-ring substituted F16 derivatives (F16s) were synthesized. Among these derivatives, 5BMF was identified as a highly effective theranostic agent, with in vitro studies showing a low IC50 of ∼50 nM (to H2228 cells) and high cancer to normal cell selectivity index of 225. In vivo studies revealed that tumors treated with 5BMF were significantly suppressed (almost no growth over the treatment period) compared to the PBS treated control group, and also no obvious toxicity to mice was found. In addition, the tumor imaging capability of 5BMF was demonstrated by in vivo fluorescence imaging. Finally, we report for the first time a proposed SAR for F16 DLCs. Our work lays down a solid foundation for translating 5BMF into a novel and highly promising DLC for cancer theranostics.
Collapse
Affiliation(s)
- Hao Chen
- Department of Radiology , The First Hospital of Jilin University , Changchun , 130021 , China .
- Center for Molecular Imaging Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai , 201203 , China
| | - Jing Wang
- Department of Radiology , The First Hospital of Jilin University , Changchun , 130021 , China .
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Xin Feng
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
- The College of Veterinary Medicine , Jilin University , Changchun , 130021 , China
| | - Mark Zhu
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Simon Hoffmann
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Alex Hsu
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Kun Qian
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Daijuan Huang
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Feng Zhao
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| | - Wei Liu
- Department of Radiology , The First Hospital of Jilin University , Changchun , 130021 , China .
| | - Huimao Zhang
- Department of Radiology , The First Hospital of Jilin University , Changchun , 130021 , China .
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS) , Bio-X Program , Department of Radiology , Canary Center at Stanford for Cancer Early Detection , Stanford University , California 94305-5344 , USA .
| |
Collapse
|
13
|
Rokitskaya TI, Khailova LS, Makarenkov AV, Shunaev AV, Tatarskiy VV, Shtil AA, Ol'shevskaya VA, Antonenko YN. Carborane derivatives of 1,2,3-triazole depolarize mitochondria by transferring protons through the lipid part of membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:573-583. [PMID: 30562498 DOI: 10.1016/j.bbamem.2018.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
Abstract
Boron containing polyhedra (carboranes) are three-dimensional delocalized aromatic systems. These structures have been shown to transport protons through lipid membranes and mitochondria. Conjugation of carboranes to various organic moieties is aimed at obtaining biologically active compounds with novel properties. Taking advantage of 1,2,3-triazoles as the scaffolds valuable in medicinal chemistry, we synthesized 1-(o-carboranylmethyl)-4-pentyl-1,2,3-triazole (c-triazole) and 1-(o-carboranylmethyl)-4-pentyl-1,2,3-triazolium iodide (c-triazolium). Both compounds interacted with model lipid membranes and exhibited a proton carrying activity in planar bilayers and liposomes in a concentration- and pH-dependent manner. Importantly, mechanisms of the protonophoric activity differed; namely, protonation-deprotonation reactions of the triazole and the o-carborane moieties were involved in the transport cycles of c-triazole and c-triazolium, respectively. At micromolar concentrations, c-triazole and c-triazolium stimulated respiration of isolated rat liver mitochondria and depolarized their membrane potential, with c-triazole being more potent. In living K562 (human chronic myelogenous leukemia) cells, both c-triazolium and c-triazole altered the mitochondrial membrane potential as determined by a decreased intracellular accumulation of the potential-dependent dye tetramethylrhodamine ethyl ester. Finally, cell viability testing demonstrated a cytotoxic potency of c-triazolium and, to a lesser extent, of c-triazole against K562 cells, whereas non-malignant fibroblasts were much less sensitive. In all tests, the reference boron-free benzyl-4-pentyl-1,2,3-triazole showed little-to-no effects. These results demonstrated that carboranyltriazoles carry protons across biological membranes, a property potentially important in anticancer drug design.
Collapse
Affiliation(s)
- Tatyana I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Ljudmila S Khailova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anton V Makarenkov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexei V Shunaev
- Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Victor V Tatarskiy
- Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation; National University of Science and Technology "MISiS", 4 Leninskiy Prospekt, Moscow 119049, Russian Federation
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Valentina A Ol'shevskaya
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
14
|
Akrivou MG, Demertzidou VP, Theodoroula NF, Chatzopoulou FM, Kyritsis KA, Grigoriadis N, Zografos AL, Vizirianakis IS. Uncovering the pharmacological response of novel sesquiterpene derivatives that differentially alter gene expression and modulate the cell cycle in cancer cells. Int J Oncol 2018; 53:2167-2179. [PMID: 30226586 DOI: 10.3892/ijo.2018.4550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/05/2018] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to assess the pharmacological anticancer profile of three natural and five synthetic sesquiterpenes developed by total chemical synthesis. To this end, their properties at the cellular and molecular level were evaluated in a panel of normal and cancer cell lines. The results obtained by performing cytotoxicity assays and gene expression analysis by reverse transcription-quantitative polymerase chain reaction showed that: i) Among the sesquiterpene derivatives analyzed, VDS58 exhibited a notable anticancer profile within attached (U-87 MG and MCF-7) and suspension (K562 and MEL-745) cancer cell cultures; however, U-87 MG cells were able to recover their proliferation capacity rapidly after 48 h of exposure; ii) gene expression profiling of U-87 MG cells, in contrast to K562 cells, showed a transient induction of cyclin-dependent kinase inhibitor 1A (CDKN1) expression; iii) the expression levels of transforming growth factor β1 (TGFB1) increased after 12 h of exposure of U-87 MG cells to VDS58 and were maintained at this level throughout the treatment period; iv) in K562 cells exposed to VDS58, TGFB1 expression levels were upregulated for 48 h and decrease afterwards; and v) the re-addition of VDS58 in U-87 MG cultures pretreated with VDS58 resulted in a notable increase in the expression of caspases (CASP3 and CASP9), BCL2‑associated agonist of cell death (BAD), cyclin D1, CDK6, CDKN1, MYC proto-oncogene bHLH transcription factor (MYC), TGFB1 and tumor suppressor protein p53. This upregulation persisted only for 24 h for the majority of genes, as afterwards, only the expression of TGFB1 and MYC was maintained at high levels. Through bioinformatic pathway analysis of RNA-Seq data of parental U-87 MG and K562 cells, substantial variation was reported in the expression profiles of the genes involved in the regulation of the cell cycle. This was associated with the differential pharmacological profiles observed in the same cells exposed to VDS58. Overall, the data presented in this study provide novel insights into the molecular mechanisms of action of sesquiterpene derivatives by dysregulating the expression levels of genes associated with the cell cycle of cancer cells.
Collapse
Affiliation(s)
- Melpomeni G Akrivou
- Department of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vera P Demertzidou
- Department of Chemistry, Laboratory of Organic Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikoleta F Theodoroula
- Department of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Konstantinos A Kyritsis
- Department of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Alexandros L Zografos
- Department of Chemistry, Laboratory of Organic Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis S Vizirianakis
- Department of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
15
|
Calabrese G, Daou A, Barbu E, Tsibouklis J. Towards carborane-functionalised structures for the treatment of brain cancer. Drug Discov Today 2017; 23:63-75. [PMID: 28886331 DOI: 10.1016/j.drudis.2017.08.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/03/2017] [Accepted: 08/29/2017] [Indexed: 11/26/2022]
Abstract
Boron neutron capture therapy (BNCT) is a promising targeted chemoradiotherapeutic technique for the management of invasive brain tumors, such as glioblastoma multiforme (GBM). A prerequisite for effective BNCT is the selective targeting of tumour cells with 10B-rich therapeutic moieties. To this end, polyhedral boranes, especially carboranes, have received considerable attention because they combine a high boron content with relative low toxicity and metabolic inertness. Here, we review progress in the molecular design of recently investigated carborane derivatives in light of the widely accepted performance requirements for effective BNCT.
Collapse
Affiliation(s)
- Gianpiero Calabrese
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston-upon-Thames, KT1 2EE, UK.
| | - Anis Daou
- School of Life Science, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston-upon-Thames, KT1 2EE, UK
| | - Eugen Barbu
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - John Tsibouklis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| |
Collapse
|
16
|
Ilie A, Crespo O, Gimeno MC, Holthausen MC, Laguna A, Diefenbach M, Silvestru C. (N,Se) and (Se,N,Se) Ligands Based on Carborane and Pyridine Fragments - Reactivity of 2,6-[(1′-Me-1′,2′-closo-C2B10H10)SeCH2]2C5H3N towards Copper and Silver. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Adriana Ilie
- Departamentul de Chimie; Centrul de Chimie Supramoleculară Organică şi Organometalică (CCSOOM); Facultatea de Chimie şi Inginerie Chimică; Universitatea Babeş-Bolyai; 400028 Cluj-Napoca Romania
| | - Olga Crespo
- Departamento de Química Inorgánica; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza-CSIC; 50009 Zaragoza Spain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza-CSIC; 50009 Zaragoza Spain
| | - Max C. Holthausen
- Institut für Anorganische und Analytische Chemie; Goethe-Universität Frankfurt am Main; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Antonio Laguna
- Departamento de Química Inorgánica; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza-CSIC; 50009 Zaragoza Spain
| | - Martin Diefenbach
- Institut für Anorganische und Analytische Chemie; Goethe-Universität Frankfurt am Main; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Cristian Silvestru
- Departamentul de Chimie; Centrul de Chimie Supramoleculară Organică şi Organometalică (CCSOOM); Facultatea de Chimie şi Inginerie Chimică; Universitatea Babeş-Bolyai; 400028 Cluj-Napoca Romania
| |
Collapse
|
17
|
Gianpiero C, Anis D, Aikaterini R, Eirini T, Ioannis VS, Dimitrios FG, John T. Boron-containing delocalised lipophilic cations for the selective targeting of cancer cells. MEDCHEMCOMM 2017; 8:67-72. [PMID: 30108691 PMCID: PMC6072302 DOI: 10.1039/c6md00383d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/26/2016] [Indexed: 11/25/2022]
Abstract
To limit the incidence of relapse, cancer treatments must not promote the emergence of drug resistance in tumour and cancer stem cells. Under the proviso that a therapeutic amount of boron is selectively delivered to cancer cells, Boron Neutron Capture Therapy (BNCT) may represent one approach that meets this requirement. To this end, we report the synthesis and pharmacology of several chemical entities, based on boron-rich carborane moieties that are functionalised with Delocalized Lipophilic Cations (DLCs), which selectively target the mitochondria of tumour cells. The treatment of tumour and cancer stem cells (CSCs) with such DLC-functionalized carboranes (DLC-carboranes) induces cell growth arrest that is both highly cancer-cell-selective and permanent. Experiments involving cultures of normal and cancer cells show that only normal cells exhibit recapitulation of their proliferation potential upon removal of the DLC-carborane treatment. At the molecular level, the pharmacological effect of DLC-carboranes is exerted through activation of the p53/p21 axis.
Collapse
Affiliation(s)
- Calabrese Gianpiero
- School of Life Science, Pharmacy and Chemistry , Kingston University London , Penrhyn Road , Kingston-upon-Thames , Surrey KT1 2EE , UK .
| | - Daou Anis
- School of Life Science, Pharmacy and Chemistry , Kingston University London , Penrhyn Road , Kingston-upon-Thames , Surrey KT1 2EE , UK .
| | - Rova Aikaterini
- Department of Pharmacology , School of Pharmacy , Aristotle University of Thessaloniki , GR-54124 Thessaloniki , Greece
| | - Tseligka Eirini
- Department of Pharmacology , School of Pharmacy , Aristotle University of Thessaloniki , GR-54124 Thessaloniki , Greece
| | - Vizirianakis S Ioannis
- Department of Pharmacology , School of Pharmacy , Aristotle University of Thessaloniki , GR-54124 Thessaloniki , Greece
| | - Fatouros G Dimitrios
- Department of Pharmaceutical Technology , School of Pharmacy , Aristotle University of Thessaloniki , GR-54124 Thessaloniki , Greece
| | - Tsibouklis John
- School of Pharmacy and Biomedical Sciences , University of Portsmouth , Portsmouth , PO1 2DT , UK
| |
Collapse
|