1
|
Kumar M, Jha A, Bharti K, Manjit M, Kumbhar P, Dhapte-Pawar V, Mishra B. Lipid-coated nanocrystals of paclitaxel as dry powder for inhalation: Characterization, in-vitro performance, and pharmacokinetic assessment. Colloids Surf B Biointerfaces 2024; 237:113865. [PMID: 38520950 DOI: 10.1016/j.colsurfb.2024.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Nanocrystals can be produced as a dry powder for inhalation (DPIs) to deliver high doses of drug to the lungs, owing to their high payload and stability to the shear stress of aerosolization force. Furthermore, lipid-coated nanocrystals can be formulated to improve the drug accumulation and retention in lung. OBJECTIVE The present work involved the fabrication of paclitaxel nanocrystals using hydrophilic marine biopolymer fucoidan as a stabilizer. Thereafter, fabricated nanocrystals (FPNC) were surface-modified with phospholipid to give lipid-coated nanocrystals (Lipo-NCs). METHODS The nanocrystals were fabricated by antisolvent crystallization followed by the probe sonication. The lipid coating was achieved by thin film hydration followed ultrasonic dispersion technique. Prepared nanocrystals were lyophilized to obtain a dry powder of FPNC and Lipo-NCs, used later for physicochemical, microscopic, and spectroscopic characterization to confirm the successful formation of desired nanocrystals. In-vitro and in-vivo investigations were also conducted to determine the role of nanocrystal powder in pulmonary drug delivery. RESULTS Lipo-NCs exhibited slower drug release, excellent flow properties, good aerosolization performance, higher drug distribution, and prolonged retention in the lungs compared to FPNC and pure PTX. CONCLUSION Lipid-coated nanocrystals can be a novel formulation for the maximum localization of drugs in the lungs, thereby enhancing therapeutic effects and avoiding systemic side effects in lung cancer therapy.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Kanchan Bharti
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Manjit Manjit
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Pradnya Kumbhar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra 411038, India
| | - Vividha Dhapte-Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra 411038, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
2
|
Matharu AS, Dhareshwar SS, Cao YJ. A Rapid 3-Day Excipient Screening Methodology and its Application in Identifying Chemical Stabilizers for Solid Formulations with Mixed Mechanisms of Degradation. AAPS PharmSciTech 2024; 25:12. [PMID: 38182862 DOI: 10.1208/s12249-023-02730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
This study outlines a practical approach for assessing chemical instability by heating the drug-excipient binary mixtures or multi-excipient formulations at 75°C for 3 days before characterization. Differentiating itself from other excipient compatibility methods, our methodology necessitates a saturated aqueous slurry rather than arbitrarily fixed water content. This allows bulk and surface water in the excipient to contribute to drug degradation. The synergistic impact of surface water and elevated temperature expedites degradation kinetics, resulting in accelerated data generation. Among excipient compatibility methods available, our method is quantitative and merges with traditionally used methodologies. The devised nomograph enables extrapolation of shelf life at 20°C from experimental data obtained at 75°C. This methodology also helped identify stabilizers for the drug NVS-1 where traditional excipient compatibility programs had failed. Incorporation of monovalent salts, such as sodium/potassium chloride and sodium bicarbonate at 5% w/w, significantly enhanced the chemical stability of NVS-1, ensuring stable tablet formulations. Our hypothesis posits that stabilization is due to increased ionic strength in the slurry, which stabilizes an induced dipole within the polar NVS-1 drug. Additionally, the presence of ions in the moisture layer is anticipated to stabilize π-π stacking of two planar aromatic NVS-1 molecules. The expedited generation of experimental data allowed the identification of inorganic salts to supplement a standard excipient compatibility screening panel. Considering the economic implications of stability testing methodologies in effort, cost, and duration, a faster turnaround in chemical stability data enhances formulation selection. This ultimately facilitates the development of drug formulations with greater efficiency without delays.
Collapse
Affiliation(s)
- Amol S Matharu
- Technical Research and Development, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, 07936, USA
- Falcon Sterile Automation Inc., East Windsor, New Jersey, 08512, USA
| | - Sundeep S Dhareshwar
- Global Program Management, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, 07936, USA.
| | - Yu Jade Cao
- Technical Research and Development, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, 07936, USA
- Jade Pharma Consulting LLC, 3 Franklin Ct., Montville, New Jersey, 07045, USA
| |
Collapse
|
3
|
Li J, Wang Y, Yu D. Effects of Additives on the Physical Stability and Dissolution of Polymeric Amorphous Solid Dispersions: a Review. AAPS PharmSciTech 2023; 24:175. [PMID: 37603110 DOI: 10.1208/s12249-023-02622-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Polymeric amorphous solid dispersion (ASD) is a popular approach for enhancing the solubility of poorly water-soluble drugs. However, achieving both physical stability and dissolution performance in an ASD prepared with a single polymer can be challenging. Therefore, a secondary excipient can be added. In this paper, we review three classes of additives that can be added internally to ASDs: (i) a second polymer, to form a ternary drug-polymer-polymer ASD, (ii) counterions, to facilitate in situ salt formation, and (iii) surfactants. In an ASD prepared with a combination of polymers, each polymer exerts a unique function, such as a stabilizer in the solid state and a crystallization inhibitor during dissolution. In situ salt formation in ASD usually leads to substantial increases in the glass transition temperature, contributing to improved physical stability. Surfactants can enhance the wettability of ASD particles, thereby promoting rapid drug release. However, their potential adverse effects on physical stability and dissolution, resulting from enhanced molecular mobility and competitive molecular interaction with the polymer, respectively, warrant careful consideration. Finally, we discuss the impact of magnesium stearate and inorganic salts, excipients added externally upon downstream processing, on the solid-state stability as well as the dissolution of ASD tablets.
Collapse
Affiliation(s)
- Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Yihan Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 North Pine Street, Baltimore, Maryland, 21201, USA
| | - Dongyue Yu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey, 08540, USA.
| |
Collapse
|
4
|
Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci 2023; 18:100834. [PMID: 37635801 PMCID: PMC10450425 DOI: 10.1016/j.ajps.2023.100834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most effective approaches for delivering poorly soluble drugs. In ASDs, polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level. To prepare the solid dispersions, there are many polymers with various physicochemical and thermochemical characteristics available for use in ASD formulations. Polymer selection is of great importance because it influences the stability, solubility and dissolution rates, manufacturing process, and bioavailability of the ASD. This review article provides a comprehensive overview of ASDs from the perspectives of physicochemical characteristics of polymers, formulation designs and preparation methods. Furthermore, considerations of safety and regulatory requirements along with the studies recommended for characterizing and evaluating polymeric carriers are briefly discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
5
|
Pugliese A, Tobyn M, Hawarden LE, Abraham A, Blanc F. New Development in Understanding Drug-Polymer Interactions in Pharmaceutical Amorphous Solid Dispersions from Solid-State Nuclear Magnetic Resonance. Mol Pharm 2022; 19:3685-3699. [PMID: 36037249 PMCID: PMC9644399 DOI: 10.1021/acs.molpharmaceut.2c00479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/08/2023]
Abstract
Pharmaceutical amorphous solid dispersions (ASDs) represent a widely used technology to increase the bioavailability of active pharmaceutical ingredients (APIs). ASDs are based on an amorphous API dispersed in a polymer, and their stability is driven by the presence of strong intermolecular interactions between these two species (e.g., hydrogen bond, electrostatic interactions, etc.). The understanding of these interactions at the atomic level is therefore crucial, and solid-state nuclear magnetic resonance (NMR) has demonstrated itself as a very powerful technique for probing API-polymer interactions. Other reviews have also reported exciting approaches to study the structures and dynamic properties of ASDs and largely focused on the study of API-polymer miscibility and on the identification of API-polymer interactions. Considering the increased use of NMR in the field, the aim of this Review is to specifically highlight recent experimental strategies used to identify API-polymer interactions and report promising recent examples using one-dimensional (1D) and two-dimensional (2D) experiments by exploiting the following emerging approaches of very-high magnetic field and ultrafast magic angle spinning (MAS). A range of different ASDs spanning APIs and polymers with varied structural motifs is targeted to illustrate new ways to understand the mechanism of stability of ASDs to enable the design of new dispersions.
Collapse
Affiliation(s)
- Andrea Pugliese
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Michael Tobyn
- Drug
Product Development, Bristol-Myers Squibb, Moreton CH46 1QW, United Kingdom
| | - Lucy E. Hawarden
- Drug
Product Development, Bristol-Myers Squibb, Moreton CH46 1QW, United Kingdom
| | - Anuji Abraham
- Drug
Product Development, Bristol-Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Frédéric Blanc
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- Stephenson
Institute for Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
6
|
Shikha S, Lee YW, Doyle PS, Khan SA. Microfluidic Particle Engineering of Hydrophobic Drug with Eudragit E100─Bridging the Amorphous and Crystalline Gap. Mol Pharm 2022; 19:4345-4356. [PMID: 36268657 DOI: 10.1021/acs.molpharmaceut.2c00714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Co-processing active pharmaceutical ingredients (APIs) with excipients is a promising particle engineering technique to improve the API physical properties, which can lead to more robust downstream drug product manufacturing and improved drug product attributes. Excipients provide control over critical API attributes like particle size and solid-state outcomes. Eudragit E100 is a widely used polymeric excipient to modulate drug release. Being cationic, it is primarily employed as a precipitation inhibitor to stabilize amorphous solid dispersions. In this work, we demonstrate how co-processing of E100 with naproxen (NPX) (a model hydrophobic API) into monodisperse emulsions via droplet microfluidics followed by solidification via solvent evaporation allows the facile fabrication of compact, monodisperse, and spherical particles with an expanded range of solid-state outcomes spanning from amorphous to crystalline forms. Low E100 concentrations (≤26% w/w) yield crystalline microparticles with a stable NPX polymorph distributed uniformly across the matrix at a high drug loading (∼89% w/w). Structurally, E100 incorporation reduces the size of primary particles comprising the co-processed microparticles in comparison to neat API microparticles made using the same technique and the as-received API powder. This reduction in primary particle size translates into an increased internal porosity of the co-processed microparticles, with specific surface area and pore volume ∼9 times higher than the neat API microparticles. These E100-enabled structural modifications result in faster drug release in acidic media compared to neat API microparticles. Additionally, E100-NPX microparticles have a significantly improved flowability compared to neat API microparticles and as-received API powder. Overall, this study demonstrates a facile microfluidics-based co-processing method that broadly expands the range of solid-state outcomes obtainable with E100 as an excipient, with multiscale control over the key attributes and performance of hydrophobic API-laden microparticles.
Collapse
Affiliation(s)
- Swati Shikha
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore138602, Singapore
| | - Yi Wei Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore117576, Singapore.,NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore119077, Singapore
| | - Patrick S Doyle
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore138602, Singapore.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Harvard Medical School Initiative for RNA Medicine, Boston, Massachusetts02215, United States
| | - Saif A Khan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore117576, Singapore
| |
Collapse
|
7
|
Alzahrani A, Nyavanandi D, Mandati P, Adel Ali Youssef A, Narala S, Bandari S, Repka M. A systematic and robust assessment of hot-melt extrusion-based amorphous solid dispersions: Theoretical prediction to practical implementation. Int J Pharm 2022; 624:121951. [PMID: 35753536 DOI: 10.1016/j.ijpharm.2022.121951] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Amorphous solid dispersions (ASDs) have gained attention as a formulation strategy in recent years, with the potential to improve the apparent solubility and, hence, the oral bioavailability of poorly soluble drugs. The process of formulating ASDs is commonly faced with challenges owing to the intrinsic physical and chemical instability of the initial amorphous form and the long-term physical stability of drug formulations. Numerous research publications on hot-melt extrusion (HME) technology have demonstrated that it is the most efficient approach for manufacturing reasonably stable ASDs. The HME technique has been established as a faster scale-up production strategy for formulation evaluation and has the potential to minimize the time to market. Thermodynamic evaluation and theoretical predictions of drug-polymer solubility and miscibility may assist to reduce the product development cost by HME. This review article highlights robust and established prediction theories and experimental approaches for the selection of polymeric carriers for the development of hot melt extrusion based stable amorphous solid dispersions (ASDs). In addition, this review makes a significant contribution to the literature as a pilot guide for ASD assessment, as well as to confirm the drug-polymer compatibility and physical stability of HME-based formulations.
Collapse
Affiliation(s)
- Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677; Department of Pharmacy, East Jeddah Hospital, Ministry of Health, Jeddah 22253, Saudi Arabia
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677; Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Michael Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
8
|
Okamoto Y, Higashi K, Morita T, Ueda K, Mukaide S, Takeda J, Karashima M, Ikeda Y, Moribe K. Nanostructure and Molecular-Level Characterization of Aminoalkyl Methacrylate Copolymer and the Impact on Drug Solubilization Ability. Mol Pharm 2021; 18:4111-4121. [PMID: 34641686 DOI: 10.1021/acs.molpharmaceut.1c00526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of pH changes and saccharin (SAC) addition on the nanostructure and mobility of the cationic aminoalkyl methacrylate copolymer Eudragit E PO (EUD-E) and its drug solubilization ability were investigated. Small-angle X-ray scattering performed using synchrotron radiation and atomic force microscopy showed that the EUD-E nanostructure, which has a size of approximately several nanometers, changed from a random coil structure at low pH (pH 4.0-5.0) to a partially folded structure at high pH (pH 5.5-6.5). The EUD-E also formed a partially folded structure in a wide pH range of 4.5-6.5 when SAC was present, and the coil-to-globule transition was moderate with pH increase, compared with that when SAC was absent. The equilibrium solubility of the neutral drug naringenin (NAR) was enhanced in the EUD-E solution and further increased as the pH increased. The enlargement of the hydrophobic region of EUD-E in association with the coil-to-globule transition led to efficient solubilization of NAR. The interaction with SAC enhanced the mobility of the EUD-E chains in the hydrophobic region of EUD-E, resulting in changes in the drug-solubilizing ability. 1H high-resolution magic-angle spinning NMR measurements revealed that the solubilized NAR in the partially folded structure of EUD-E showed higher molecular mobility in the presence of SAC than in the absence of SAC. This study highlighted that solution pH and the presence of SAC significantly changed the drug solubilization ability of EUD-E, followed by changes in the EUD-E nanostructure, including its hydrophobic region.
Collapse
Affiliation(s)
- Yuta Okamoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takeshi Morita
- Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Sayaka Mukaide
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Junpei Takeda
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Masatoshi Karashima
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Yukihiro Ikeda
- Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
9
|
Tsiaxerli A, Karagianni A, Ouranidis A, Kachrimanis K. Polyelectrolyte Matrices in the Modulation of Intermolecular Electrostatic Interactions for Amorphous Solid Dispersions: A Comprehensive Review. Pharmaceutics 2021; 13:pharmaceutics13091467. [PMID: 34575543 PMCID: PMC8468962 DOI: 10.3390/pharmaceutics13091467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/05/2022] Open
Abstract
Polyelectrolyte polymers have been widely used in the pharmaceutical field as excipients to facilitate various drug delivery systems. Polyelectrolytes have been used to modulate the electrostatic environment and enhance favorable interactions between the drug and the polymer in amorphous solid dispersions (ASDs) prepared mainly by hot-melt extrusion. Polyelectrolytes have been used alone, or in combination with nonionic polymers as interpolyelectrolyte complexes, or after the addition of small molecular additives. They were found to enhance physical stability by favoring stabilizing intermolecular interactions, as well as to exert an antiplasticizing effect. Moreover, they not only enhance drug dissolution, but they have also been used for maintaining supersaturation, especially in the case of weakly basic drugs that tend to precipitate in the intestine. Additional uses include controlled and/or targeted drug release with enhanced physical stability and ease of preparation via novel continuous processes. Polyelectrolyte matrices, used along with scalable manufacturing methods in accordance with green chemistry principles, emerge as an attractive viable alternative for the preparation of ASDs with improved physical stability and biopharmaceutic performance.
Collapse
Affiliation(s)
- Anastasia Tsiaxerli
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
| | - Anna Karagianni
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
| | - Andreas Ouranidis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
- Correspondence: ; Tel.: +30-2310-997666
| |
Collapse
|
10
|
Suzuki H, Iwata M, Ito M, Noguchi S. X-ray Absorption Near-Edge Spectroscopy Analysis of Indomethacin in Crystalline Forms and in Amorphous Solid Dispersions. Mol Pharm 2021; 18:3475-3483. [PMID: 34372659 DOI: 10.1021/acs.molpharmaceut.1c00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chlorine K-edge X-ray absorption near-edge spectroscopy (XANES) measurements were performed to characterize the crystal polymorphs of identical active pharmaceutical ingredients (APIs) containing chloride atoms and their amorphous solid dispersions (ASDs). Indomethacin (IMC), of which three crystal forms (α, β, and γ) have been reported, was used as a model API. The shape of XANES spectra was unique to each IMC crystal. The analysis of the crystal structures of IMC revealed that chlorine atoms of the IMCα form had unique intermolecular interactions and halogen bonds with oxygen atoms, while those of the IMCγ form do not have any notable interactions. This result showed that XANES measurements can detect weak interatomic interactions. The shapes of the ASD spectra were clearly different from those of the crystals, suggesting that the environment around the Cl atom of IMC was different from that of the crystals. A thermal stress test was then performed to study the transformation from the amorphous form to the crystalline form of IMC in the ASD. The powder X-ray diffraction (PXRD) patterns indicated that amorphous IMC transformed into crystals during the thermal stress test. In accordance with the PXRD results, the XANES spectra also transformed from ASD to crystalline form. These results indicate that the IMC transformation could be monitored by XANES measurement. Our findings led us to conclude that XANES measurement is a novel approach for the evaluation of crystal polymorphs of APIs and the crystalline state of APIs in ASDs.
Collapse
Affiliation(s)
- Hironori Suzuki
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Moemi Iwata
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Masataka Ito
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Shuji Noguchi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
11
|
Thakore SD, Akhtar J, Jain R, Paudel A, Bansal AK. Analytical and Computational Methods for the Determination of Drug-Polymer Solubility and Miscibility. Mol Pharm 2021; 18:2835-2866. [PMID: 34041914 DOI: 10.1021/acs.molpharmaceut.1c00141] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the pharmaceutical industry, poorly water-soluble drugs require enabling technologies to increase apparent solubility in the biological environment. Amorphous solid dispersion (ASD) has emerged as an attractive strategy that has been used to market more than 20 oral pharmaceutical products. The amorphous form is inherently unstable and exhibits phase separation and crystallization during shelf life storage. Polymers stabilize the amorphous drug by antiplasticization, reducing molecular mobility, reducing chemical potential of drug, and increasing glass transition temperature in ASD. Here, drug-polymer miscibility is an important contributor to the physical stability of ASDs. The current Review discusses the basics of drug-polymer interactions with the major focus on the methods for the evaluation of solubility and miscibility of the drug in the polymer. Methods for the evaluation of drug-polymer solubility and miscibility have been classified as thermal, spectroscopic, microscopic, solid-liquid equilibrium-based, rheological, and computational methods. Thermal methods have been commonly used to determine the solubility of the drug in the polymer, while other methods provide qualitative information about drug-polymer miscibility. Despite advancements, the majority of these methods are still inadequate to provide the value of drug-polymer miscibility at room temperature. There is still a need for methods that can accurately determine drug-polymer miscibility at pharmaceutically relevant temperatures.
Collapse
Affiliation(s)
- Samarth D Thakore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Junia Akhtar
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Ranjna Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
12
|
One-step preparation of sustained-release ASDs using mesoporous spherical silica. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Sarpal K, Tower CW, Munson EJ. Investigation into Intermolecular Interactions and Phase Behavior of Binary and Ternary Amorphous Solid Dispersions of Ketoconazole. Mol Pharm 2020; 17:787-801. [PMID: 31860316 DOI: 10.1021/acs.molpharmaceut.9b00970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Conventionally, amorphous solid dispersions (ASDs) have been formulated as a binary matrix, but in recent years a new class of ASDs has emerged, where generally a second polymer is also added to the formulation. Having the presence of a second polymer necessitates a comprehensive solid-state characterization to study the intermolecular interactions and phase behavior on a molecular level. With this goal in mind, ketoconazole (KET) was selected as a model drug, and hydroxypropyl methyl cellulose (HPMC) and poly(acrylic acid) (PAA) were chosen as polymeric carriers. The binary and ternary ASDs were characterized by differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, solid-state nuclear magnetic resonance (SSNMR) spectroscopy, and powder X-ray diffraction (PXRD). The binary KET:HPMC dispersions lacked any specific interactions, whereas binary KET:PAA dispersions and ternary KET:PAA:HPMC dispersions showed evidence for ionic and hydrogen bonding interactions. The 13C SSNMR deconvolution study established a comparison for molecular interactions between the binary KET:PAA and ternary KET:PAA:HPMC dispersions, with the binary KET:PAA system showing higher prevalence of ionic and hydrogen bonds than the ternary KET:PAA:HPMC system. Moreover, individual binary and ternary ASDs were found to be homogeneous on a nanometric level, implying the presence of a second polymer did not impact the phase homogeneity. In addition, a stronger interaction in binary KET:PAA and ternary KET:HPMC:PAA systems translated to better physical stability at different storage conditions. Through this case study it is recommended that a comprehensive investigation is needed to study the impact of using two polymers in ASD formulations in terms underlying intermolecular interactions and physical stability.
Collapse
Affiliation(s)
- Kanika Sarpal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Cole W Tower
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States.,Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, United States
| | - Eric J Munson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| |
Collapse
|
14
|
Review of the physicochemical methods applied in the investigation of the maillard reaction in pharmaceutical preparations. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Impact of Hot-Melt Extrusion Processing Conditions on Physicochemical Properties of Amorphous Solid Dispersions Containing Thermally Labile Acrylic Copolymer. J Pharm Sci 2020; 109:1008-1019. [DOI: 10.1016/j.xphs.2019.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/22/2022]
|
16
|
Higashi K, Ueda K, Moribe K. Intermolecular Interactions between Drugs and Aminoalkyl Methacrylate Copolymer in Solution to Enhance the Concentration of Poorly Water-Soluble Drugs. Chem Pharm Bull (Tokyo) 2019; 67:906-914. [PMID: 31474728 DOI: 10.1248/cpb.c18-00849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An aminoalkyl methacrylate copolymer, Eudragit® E (EUD-E), has gained tremendous attention as a solid dispersion carrier because it efficiently stabilizes drugs in the amorphous state. Furthermore, EUD-E remarkably enhances drug dissolution in water. This review focuses on the interaction between drugs and EUD-E in solution, which contributes to the enhancement of drug concentration. Studies examining interactions between acidic drugs and EUD-E in organic solvents have revealed that the interaction occurs predominantly by electrostatic interaction, including hydrogen bonding and dipolar interactions. Other studies on interactions in aqueous solution found evidence for strong electrostatic interactions between acidic drugs and EUD-E in ion exchange experiments. 1H-NMR studies using high-resolution magic-angle spinning, nuclear Overhauser effect spectroscopy, diffusion, and relaxation time measurements successfully identified the interaction site and strength in aqueous solution. Hydrophobic and ionic interactions occurred between drugs and EUD-E. The conformation of EUD-E, which was affected by the ionic strength and pH of the aqueous media, also influenced the interaction. The knowledge discussed in this review will be helpful in designing solid dispersion formulations with EUD-E, which will efficiently enhance drug concentration and subsequent absorption into the body.
Collapse
Affiliation(s)
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
17
|
Medarević D, Djuriš J, Barmpalexis P, Kachrimanis K, Ibrić S. Analytical and Computational Methods for the Estimation of Drug-Polymer Solubility and Miscibility in Solid Dispersions Development. Pharmaceutics 2019; 11:pharmaceutics11080372. [PMID: 31374926 PMCID: PMC6722809 DOI: 10.3390/pharmaceutics11080372] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 01/21/2023] Open
Abstract
The development of stable solid dispersion formulations that maintain desired improvement of drug dissolution rate during the entire shelf life requires the analysis of drug-polymer solubility and miscibility. Only if the drug concentration is below the solubility limit in the polymer, the physical stability of solid dispersions is guaranteed without risk for drug (re)crystallization. If the drug concentration is above the solubility, but below the miscibility limit, the system is stabilized through intimate drug-polymer mixing, with additional kinetic stabilization if stored sufficiently below the mixture glass transition temperature. Therefore, it is of particular importance to assess the drug-polymer solubility and miscibility, to select suitable formulation (a type of polymer and drug loading), manufacturing process, and storage conditions, with the aim to ensure physical stability during the product shelf life. Drug-polymer solubility and miscibility can be assessed using analytical methods, which can detect whether the system is single-phase or not. Thermodynamic modeling enables a mechanistic understanding of drug-polymer solubility and miscibility and identification of formulation compositions with the expected formation of the stable single-phase system. Advance molecular modeling and simulation techniques enable getting insight into interactions between the drug and polymer at the molecular level, which determine whether the single-phase system formation will occur or not.
Collapse
Affiliation(s)
- Djordje Medarević
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Jelena Djuriš
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Svetlana Ibrić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
18
|
Auch C, Harms M, Golitsyn Y, Reichert D, Mäder K. Miniaturized Measurement of Drug-Polymer Interactions via Viscosity Increase for Polymer Selection in Amorphous Solid Dispersions. Mol Pharm 2019; 16:2214-2225. [PMID: 30920843 DOI: 10.1021/acs.molpharmaceut.9b00186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drug-polymer interactions have a substantial impact on stability and performance of amorphous solid dispersions (ASD) but are difficult to analyze. Whereas there are many screening methods described for polymer selection based for example on glass forming ability, drug-polymer miscibility, supersaturation, or inhibition of recrystallization, the distinct detection of physico-chemical interactions mostly lacks miniaturized techniques. This work presents an interaction screening assessing the relative viscosity increase between highly concentrated polymer solutions with and without the model drug ketoconazole (KTZ). The fluorescent molecular rotor 9-(2-carboxy-2-cyanovinyl)julolidine was added to the solutions in a miniaturized setup in μL-scale. Due to its environment-sensitive emission behavior, the integrated fluorescence intensity can be used as a viscosity dye within this screening approach (FluViSc). Differences in relative viscosity increases through addition of KTZ were proposed to rank polymers regarding KTZ-polymer interactions. Absolute viscosities were measured with a cone-plate rheometer as a complimentary method and supported the results acquired by the FluViSc. Solid-state nuclear magnetic resonance (ss-NMR) relaxation time measurements and Raman spectroscopy were utilized to investigate drug-polymer interactions at a molecular level. Whereas Raman spectroscopy was not suited to reveal KTZ-polymer interactions, ss-NMR relaxation time measurements differentiated between the selected polymeric carriers hydroxypropylmethylcellulose acetate succinate (HPMCAS) and polyvinylpyrrolidone vinyl acetate 60:40 (PVP-VA64). Interactions were detected for HPMCAS/KTZ ASD while there was no hint for interactions between KTZ and PVP-VA64. These results were in correlation with the FluViSc. The findings were correlated with the dissolution performance of ASD and found to be predictive for supersaturation and inhibition of precipitation during dissolution.
Collapse
Affiliation(s)
- Carolin Auch
- Institute of Pharmacy, Faculty of Natural Sciences I , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle/Saale , Germany.,Department Pharmaceutical Technologies , Merck KGaA , Frankfurter Str. 250 , 64293 Darmstadt , Germany
| | - Meike Harms
- Department Pharmaceutical Technologies , Merck KGaA , Frankfurter Str. 250 , 64293 Darmstadt , Germany
| | - Yury Golitsyn
- Department of Physics, Faculty of Natural Sciences II , Martin Luther University Halle-Wittenberg , Betty-Heimann-Str. 7 , 06120 Halle/Saale , Germany
| | - Detlef Reichert
- Department of Physics, Faculty of Natural Sciences II , Martin Luther University Halle-Wittenberg , Betty-Heimann-Str. 7 , 06120 Halle/Saale , Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Natural Sciences I , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle/Saale , Germany
| |
Collapse
|
19
|
How changes in molecular weight and PDI of a polymer in amorphous solid dispersions impact dissolution performance. Int J Pharm 2019; 556:372-382. [DOI: 10.1016/j.ijpharm.2018.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 01/16/2023]
|
20
|
Hou HH, Rajesh A, Pandya KM, Lubach JW, Muliadi A, Yost E, Jia W, Nagapudi K. Impact of Method of Preparation of Amorphous Solid Dispersions on Mechanical Properties: Comparison of Coprecipitation and Spray Drying. J Pharm Sci 2019; 108:870-879. [DOI: 10.1016/j.xphs.2018.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/11/2018] [Accepted: 09/05/2018] [Indexed: 02/01/2023]
|
21
|
Zhou QT, Li T. Formulation and Manufacturing of Solid Dosage Forms. Pharm Res 2018; 36:16. [DOI: 10.1007/s11095-018-2547-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
|