1
|
Kim JH, Dareowolabi BO, Thiruvengadam R, Moon EY. Application of Nanotechnology and Phytochemicals in Anticancer Therapy. Pharmaceutics 2024; 16:1169. [PMID: 39339205 PMCID: PMC11435124 DOI: 10.3390/pharmaceutics16091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer is well recognized as a leading cause of mortality. Although surgery tends to be the primary treatment option for many solid cancers, cancer surgery is still a risk factor for metastatic diseases and recurrence. For this reason, a variety of medications has been adopted for the postsurgical care of patients with cancer. However, conventional medicines have shown major challenges such as drug resistance, a high level of drug toxicity, and different drug responses, due to tumor heterogeneity. Nanotechnology-based therapeutic formulations could effectively overcome the challenges faced by conventional treatment methods. In particular, the combined use of nanomedicine with natural phytochemicals can enhance tumor targeting and increase the efficacy of anticancer agents with better solubility and bioavailability and reduced side effects. However, there is limited evidence in relation to the application of phytochemicals in cancer treatment, particularly focusing on nanotechnology. Therefore, in this review, first, we introduce the drug carriers used in advanced nanotechnology and their strengths and limitations. Second, we provide an update on well-studied nanotechnology-based anticancer therapies related to the carcinogenesis process, including signaling pathways related to transforming growth factor-β (TGF-β), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3 kinase (PI3K), Wnt, poly(ADP-ribose) polymerase (PARP), Notch, and Hedgehog (HH). Third, we introduce approved nanomedicines currently available for anticancer therapy. Fourth, we discuss the potential roles of natural phytochemicals as anticancer drugs. Fifth, we also discuss the synergistic effect of nanocarriers and phytochemicals in anticancer therapy.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (B.O.D.); (E.-Y.M.)
| | - Boluwatife Olamide Dareowolabi
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (B.O.D.); (E.-Y.M.)
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Medical College, Saveetha University, Chennai 600077, India;
| | - Eun-Yi Moon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (B.O.D.); (E.-Y.M.)
| |
Collapse
|
2
|
Fornaguera C, Torres-Coll A, Olmo L, Garcia-Fernandez C, Guerra-Rebollo M, Borrós S. Engineering oncogene-targeted anisamide-functionalized pBAE nanoparticles as efficient lung cancer antisense therapies. RSC Adv 2023; 13:29986-30001. [PMID: 37842686 PMCID: PMC10573942 DOI: 10.1039/d3ra05830a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of worldwide death, mainly due to the lack of efficient and safe therapies. Currently, NSCLC standard of care for consist on the use of traditional chemotherapeutics, non-selectively distributed through the whole body, thus causing severe side effects while not achieving high efficacy outcomes. Consequently, the need of novel therapies, targeted to modify specific subcellular routes aberrantly expressed only in tumor cells is still urgent. In this context, the delivery of siRNAs that can know-down overexpressed oncogenes, such as mTOR, could become the promised targeted therapy. However, siRNA effective delivery remains a challenge due to its compromised stability in biological fluids and its inability to cross biological and plasmatic membranes. Therefore, polymeric nanoparticles that efficiently encapsulate siRNAs and are selectively targeted to tumor cells could play a pivotal role. Accordingly, we demonstrate in this work that oligopeptide end-modified poly(beta aminoester) (OM-pBAE) polymers can efficiently complex siRNA in small nanometric particles using very low polymer amounts, protecting siRNA from nucleases attack. These nanoparticles are stable in the presence of serum, advantageous fact in terms of in vivo use. We also demonstrated that they efficiently transfect cells in vitro, in the presence of serum and are able to knock down target gene expression. Moreover, we demonstrated their antitumor efficacy by encapsulating mTOR siRNA, as a model antisense therapy, which showed specific lung tumor cell growth inhibition in vitro and in vivo. Finally, through the addition of anisamide functionalization to the surface of the nanoparticles, we proved that they become selective to lung tumor cells, while not affecting healthy cells. Therefore, our results are a first step in the discovery of a tumor cell-targeted efficient silencing nanotherapy for NSCLC patients survival improvement.
Collapse
Affiliation(s)
- Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) Spain
| | - Antoni Torres-Coll
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) Spain
| | - Laura Olmo
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) Spain
| | - Coral Garcia-Fernandez
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) Spain
| | - Marta Guerra-Rebollo
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL) Spain
| |
Collapse
|
3
|
Afrin H, Geetha Bai R, Kumar R, Ahmad SS, Agarwal SK, Nurunnabi M. Oral delivery of RNAi for cancer therapy. Cancer Metastasis Rev 2023; 42:699-724. [PMID: 36971908 PMCID: PMC10040933 DOI: 10.1007/s10555-023-10099-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Cancer is a major health concern worldwide and is still in a continuous surge of seeking for effective treatments. Since the discovery of RNAi and their mechanism of action, it has shown promises in targeted therapy for various diseases including cancer. The ability of RNAi to selectively silence the carcinogenic gene makes them ideal as cancer therapeutics. Oral delivery is the ideal route of administration of drug administration because of its patients' compliance and convenience. However, orally administered RNAi, for instance, siRNA, must cross various extracellular and intracellular biological barriers before it reaches the site of action. It is very challenging and important to keep the siRNA stable until they reach to the targeted site. Harsh pH, thick mucus layer, and nuclease enzyme prevent siRNA to diffuse through the intestinal wall and thereby induce a therapeutic effect. After entering the cell, siRNA is subjected to lysosomal degradation. Over the years, various approaches have been taken into consideration to overcome these challenges for oral RNAi delivery. Therefore, understanding the challenges and recent development is crucial to offer a novel and advanced approach for oral RNAi delivery. Herein, we have summarized the delivery strategies for oral delivery RNAi and recent advancement towards the preclinical stages.
Collapse
Affiliation(s)
- Humayra Afrin
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
| | - Renu Geetha Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56/1, 51006, Tartu, Estonia
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
| | - Sheikh Shafin Ahmad
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX, 79965, USA
| | - Sandeep K Agarwal
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA.
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX, 79965, USA.
- Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA.
| |
Collapse
|
4
|
Gao J, Xia Z, Vohidova D, Joseph J, Luo JN, Joshi N. Progress in non-viral localized delivery of siRNA therapeutics for pulmonary diseases. Acta Pharm Sin B 2022; 13:1400-1428. [PMID: 37139423 PMCID: PMC10150162 DOI: 10.1016/j.apsb.2022.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/01/2022] Open
Abstract
Emerging therapies based on localized delivery of siRNA to lungs have opened up exciting possibilities for treatment of different lung diseases. Localized delivery of siRNA to lungs has shown to result in severalfold higher lung accumulation than systemic route, while minimizing non-specific distribution in other organs. However, to date, only 2 clinical trials have explored localized delivery of siRNA for pulmonary diseases. Here we systematically reviewed recent advances in the field of pulmonary delivery of siRNA using non-viral approaches. We firstly introduce the routes of local administration and analyze the anatomical and physiological barriers towards effective local delivery of siRNA in lungs. We then discuss current progress in pulmonary delivery of siRNA for respiratory tract infections, chronic obstructive pulmonary diseases, acute lung injury, and lung cancer, list outstanding questions, and highlight directions for future research. We expect this review to provide a comprehensive understanding of current advances in pulmonary delivery of siRNA.
Collapse
|
5
|
Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021; 174:140-167. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The global market of pharmaceutical biologics has expanded significantly during the last few decades. Currently, pharmaceutical biologic products constitute an indispensable part of the modern medicines. Most pharmaceutical biologic products are injections either in the forms of solutions or lyophilized powders because of their low oral bioavailability. There are certain pharmaceutical biologic entities formulated into particulate delivery systems for the administration via non-invasive routes or to achieve prolonged pharmaceutical actions to reduce the frequency of injections. It has been well documented that the design of nano- and microparticles via various particle engineering technologies could render pharmaceutical biologics with certain benefits including improved stability, enhanced intracellular uptake, prolonged pharmacological effect, enhanced bioavailability, reduced side effects, and improved patient compliance. Herein, we review the principles of the particle engineering technologies based on bottom-up approach and present the important formulation and process parameters that influence the critical quality attributes with some mathematical models. Subsequently, various nano- and microparticle engineering technologies used to formulate or process pharmaceutical biologic entities are reviewed. Lastly, an array of commercialized products of pharmaceutical biologics accomplished based on various particle engineering technologies are presented and the challenges in the development of particulate delivery systems for pharmaceutical biologics are discussed.
Collapse
Affiliation(s)
- Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
6
|
Kumar V, Yadavilli S, Kannan R. A review on RNAi therapy for NSCLC: Opportunities and challenges. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1677. [PMID: 33174364 DOI: 10.1002/wnan.1677] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the primary cause of cancer death worldwide. Despite developments in chemotherapy and targeted therapies, the 5-year survival rate has remained at approximately 16% for the last four decades. NSCLC is a heterogeneous group of tumors that, through mutations and drivers, also demonstrate intra-tumor heterogeneity. Thus, current treatment approaches revolve around targeting these oncogenes, often using small molecule inhibitors and chemotherapeutics. However, the efficacy of these therapies has been crippled by acquired and inherent drug-resistance in the tumor, accompanied by increased therapeutic dosages and subsequent devastating off-target effects for patients. Evidently, there is a critical need for developing treatment methodologies more effective than the current standard of care. Fortunately, RNA interference, particularly small interfering RNA (siRNA), presents an alternative of silencing specific oncogenes to control tumor growth. Although siRNA therapy is subject to rapid degradation and poor internalization in vivo, nanoparticles can serve as nontoxic and efficient delivery vehicles, even introducing combinational delivery of multiple therapeutic agents. Indeed, siRNA-nanoconstructs possess extraordinary potential as an innovative modality to address clinical needs. This state-of-the-art review summarizes the recent advancements in the development of novel nanosystems for delivering siRNA to NSCLC tumors and analyzes the efficacy of representative examples. By illuminating the most promising biomarkers for silencing, we hope to streamline current therapeutic efforts and highlight powerful translational opportunities to combat NSCLC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Vignesh Kumar
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| | - Sairam Yadavilli
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| | - Raghuraman Kannan
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
7
|
García-Fernández C, Fornaguera C, Borrós S. Nanomedicine in Non-Small Cell Lung Cancer: From Conventional Treatments to Immunotherapy. Cancers (Basel) 2020; 12:E1609. [PMID: 32570729 PMCID: PMC7352459 DOI: 10.3390/cancers12061609] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the most common cause of cancer-related mortality. The heterogeneous nature of this disease hinders its diagnosis and treatment, requiring continuous advances in research aiming to understand its intricate nature. Consequently, the retrospective analysis of conventional therapies has allowed the introduction of novel tools provided by nanotechnology, leading to considerable improvements in clinical outcomes. Furthermore, the development of novel immunotherapies based on the recently understood interaction of the immune system with the tumor highlights the real possibility of definitively treating NSCLC from its early stages. Novel engineering approaches in nanomedicine will enable to overcome the intrinsic limits of conventional and emerging therapies regarding off-site cytotoxicity, specificity, resistance mechanisms, and administration issues. The convergence point of these therapies with nanotechnology lays the foundation for achieving currently unmet needs.
Collapse
Affiliation(s)
- Coral García-Fernández
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08022 Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08022 Barcelona, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08022 Barcelona, Spain
| |
Collapse
|
8
|
Dua K, Wadhwa R, Singhvi G, Rapalli V, Shukla SD, Shastri MD, Gupta G, Satija S, Mehta M, Khurana N, Awasthi R, Maurya PK, Thangavelu L, S R, Tambuwala MM, Collet T, Hansbro PM, Chellappan DK. The potential of siRNA based drug delivery in respiratory disorders: Recent advances and progress. Drug Dev Res 2019; 80:714-730. [DOI: 10.1002/ddr.21571] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/11/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology Sydney Ultimo New South Wales Australia
- Centenary InstituteRoyal Prince Alfred Hospital Camperdown New South Wales Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and PharmacyUniversity of Newcastle Callaghan New South Wales Australia
| | - Ridhima Wadhwa
- Faculty of Life Sciences and BiotechnologySouth Asian University New Delhi India
| | - Gautam Singhvi
- Department of PharmacyBirla Institute of Technology and Science (BITS) Pilani India
| | | | - Shakti Dhar Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and PharmacyUniversity of Newcastle Callaghan New South Wales Australia
| | - Madhur D. Shastri
- School of Health Sciences, College of Health and MedicineUniversity of Tasmania Launceston Australia
| | - Gaurav Gupta
- School of PharmacySuresh Gyan Vihar University Jaipur India
| | - Saurabh Satija
- School of Pharmaceutical SciencesLovely Professional University Phagwara Punjab India
| | - Meenu Mehta
- School of Pharmaceutical SciencesLovely Professional University Phagwara Punjab India
| | - Navneet Khurana
- School of Pharmaceutical SciencesLovely Professional University Phagwara Punjab India
| | - Rajendra Awasthi
- Amity Institute of PharmacyAmity University Noida Uttar Pradesh India
| | - Pawan Kumar Maurya
- Department of BiochemistryCentral University of Haryana Mahendergarh Haryana India
| | - Lakshmi Thangavelu
- Nanobiomedicine Lab, Department of Pharmacology, Saveetha Dental CollegeSaveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| | - Rajeshkumar S
- Nanobiomedicine Lab, Department of Pharmacology, Saveetha Dental CollegeSaveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical SciencesUlster University, Coleraine London United Kingdom of Great Britain and Northern Ireland
| | - Trudi Collet
- Inovative Medicines Group, Institute of Health and Biomedical InnovationQueensland University of Technology Brisbane Queensland Australia
| | - Philip M. Hansbro
- Centenary InstituteRoyal Prince Alfred Hospital Camperdown New South Wales Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and PharmacyUniversity of Newcastle Callaghan New South Wales Australia
- School of Life SciencesUniversity of Technology Sydney Sydney New South Wales Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of PharmacyInternational Medical University Kuala Lumpur Malaysia
| |
Collapse
|