1
|
Garanina A, Vishnevskiy D, Chernysheva A, Malinovskaya J, Lazareva P, Semkina A, Abakumov M, Naumenko V. The Internalization Pathways of Liposomes, PLGA, and Magnetic Nanoparticles in Neutrophils. Biomedicines 2024; 12:2180. [PMID: 39457493 PMCID: PMC11505478 DOI: 10.3390/biomedicines12102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Neutrophils are emerging as promising candidates for cell-based nanodrug delivery to tumors due to their unique biological properties. This study aims to investigate the mechanisms of nanoparticle internalization by neutrophils, specifically focusing on liposomes, poly(lactic-co-glycolic acid) (PLGA), and magnetite nanoparticles. Understanding these mechanisms could enhance the efficiency of neutrophil-based nanodrug delivery for cancer treatment. METHODS Neutrophils were isolated from the peripheral blood of mice bearing 4T1 mammary adenocarcinoma. Confocal microscopy, transmission electron microscopy, and flow cytometry were employed to evaluate the uptake of liposomes, PLGA, and magnetite nanoparticles by neutrophils. The effects of cultivation conditions, such as the presence or absence of plasma in the growth medium, were also examined. Additionally, the roles of immunoglobulins (IgG/IgM) and cell surface receptors (Fc and scavenger receptors) in nanoparticle internalization were explored. RESULTS All types of nanoparticles were successfully internalized by neutrophils, though the mechanisms of uptake varied. Plasma presence in the medium significantly influenced nanoparticle binding, particularly for PLGA nanoparticles. Internalization of PLGA nanoparticles was found to depend on the presence of IgG/IgM in the medium and Fc receptors on neutrophil surfaces, while scavenger receptors were not involved. CONCLUSIONS Understanding the distinct endocytosis pathways for different nanoparticles can improve the efficacy of neutrophil loading with nanodrugs, potentially advancing the development of neutrophil-based cancer therapies. The findings underscore the importance of the extracellular environment in modulating nanoparticle uptake.
Collapse
Affiliation(s)
- Anastasiia Garanina
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology «MISIS», 119049 Moscow, Russia;
| | - Daniil Vishnevskiy
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.V.); (P.L.); (A.S.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.C.); (V.N.)
| | - Anastasia Chernysheva
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.C.); (V.N.)
| | - Julia Malinovskaya
- Drug Delivery Systems Laboratory, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Polina Lazareva
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.V.); (P.L.); (A.S.)
| | - Alevtina Semkina
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.V.); (P.L.); (A.S.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.C.); (V.N.)
| | - Maxim Abakumov
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology «MISIS», 119049 Moscow, Russia;
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.V.); (P.L.); (A.S.)
| | - Victor Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (A.C.); (V.N.)
| |
Collapse
|
2
|
Chen MM, Tang X, Li JJ, Chen FY, Jiang ZT, Fu R, Li HB, Hu XY, Geng WC, Guo DS. Active targeting tumor therapy using host-guest drug delivery system based on biotin functionalized azocalix[4]arene. J Control Release 2024; 368:691-702. [PMID: 38492860 DOI: 10.1016/j.jconrel.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Host-guest drug delivery systems (HGDDSs) provided a facile method for incorporating biomedical functions, including efficient drug-loading, passive targeting, and controlled drug release. However, developing HGDDSs with active targeting is hindered by the difficult functionalization of popular macrocycles. Herein, we report an active targeting HGDDS based on biotin-modified sulfonated azocalix[4]arene (Biotin-SAC4A) to efficiently deliver drug into cancer cells for improving anti-tumor effect. Biotin-SAC4A was synthesized by amide condensation and azo coupling. Biotin-SAC4A demonstrated hypoxia responsive targeting and active targeting through azo and biotin groups, respectively. DOX@Biotin-SAC4A, which was prepared by loading doxorubicin (DOX) in Biotin-SAC4A, was evaluated for tumor targeting and therapy in vitro and in vivo. DOX@Biotin-SAC4A formulation effectively killed cancer cells in vitro and more efficiently delivered DOX to the lesion than the similar formulation without active targeting. Therefore, DOX@Biotin-SAC4A significantly improved the in vivo anti-tumor effect of free DOX. The facilely prepared Biotin-SAC4A offers strong DOX complexation, active targeting, and hypoxia-triggered release, providing a favorable host for effective breast cancer chemotherapy in HGDDSs. Moreover, Biotin-SAC4A also has potential to deliver agents for other therapeutic modalities and diseases.
Collapse
Affiliation(s)
- Meng-Meng Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Xingchen Tang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Juan-Juan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Ze-Tao Jiang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Rong Fu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Hua-Bin Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Xin-Yue Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Wen-Chao Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China.
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
3
|
Gabrielaitis D, Zitkute V, Saveikyte L, Labutyte G, Skapas M, Meskys R, Casaite V, Sasnauskiene A, Neniskyte U. Nanotubes from bacteriophage tail sheath proteins: internalisation by cancer cells and macrophages. NANOSCALE ADVANCES 2023; 5:3705-3716. [PMID: 37441259 PMCID: PMC10334369 DOI: 10.1039/d3na00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/04/2023] [Indexed: 07/15/2023]
Abstract
Bionanoparticles comprised of naturally occurring monomers are gaining interest in the development of novel drug transportation systems. Here we report on the stabilisation, cellular uptake, and macrophage clearance of nanotubes formed from the self-assembling gp053 tail sheath protein of the vB_EcoM_FV3 bacteriophage. To evaluate the potential of the bacteriophage protein-based nanotubes as therapeutic nanocarriers, we investigated their internalisation into colorectal cancer cell lines and professional macrophages that may hinder therapeutic applications by clearing nanotube carriers. We fused the bacteriophage protein with a SNAP-tag self-labelling enzyme and demonstrated that its activity is retained in assembled nanotubes, indicating that such carriers can be applied to deliver therapeutic biomolecules. Under physiological conditions, the stabilisation of the nanotubes by PEGylation was required to prevent aggregation and yield a stable solution with uniform nano-sized structures. Colorectal carcinoma cells from primary and metastatic tumours internalized SNAP-tag-carrying nanotubes with different efficiencies. The nanotubes entered HCT116 cells via dynamin-dependent and SW480 cells - via dynamin- and clathrin-dependent pathways and were accumulated in lysosomes. Meanwhile, peritoneal macrophages phagocytosed the nanotubes in a highly efficient manner through actin-dependent mechanisms. Macrophage clearance of nanotubes was enhanced by inflammatory activation but was dampened in macrophages isolated from aged animals. Altogether, our results demonstrate that gp053 nanotubes retained the cargo's enzymatic activity post-assembly and had the capacity to enter cancer cells. Furthermore, we emphasise the importance of evaluating the nanocarrier clearance by immune cells under conditions mimicking a cancerous environment.
Collapse
Affiliation(s)
- Dovydas Gabrielaitis
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Vilmante Zitkute
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Lina Saveikyte
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Greta Labutyte
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Martynas Skapas
- Institute of Biotechnology, Vilnius University Vilnius Lithuania
| | - Rolandas Meskys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Vida Casaite
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Ausra Sasnauskiene
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
| | - Urte Neniskyte
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University Vilnius Lithuania
- VU-EMBL Partnership Institute, Vilnius University Vilnius Lithuania
| |
Collapse
|
4
|
Jin GW, Choi G, Piao H, Rejinold NS, Asahina S, Choi SJ, Lee HJ, Choy JH. NOAEL cancer therapy: a tumor targetable docetaxel-inorganic polymer nanohybrid prevents drug-induced neutropenia. J Mater Chem B 2023; 11:565-575. [PMID: 36354057 DOI: 10.1039/d2tb02121h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To date, cancer therapies largely consist of five pillars: surgery, radiation, chemotherapy, targeted therapy, and immunotherapy. Still, researchers are trying to innovate the current cancer therapies to pursue an ideal one without side effects. For developing such a therapy, we designed a chemically well-defined route to a PEG- and docetaxel (DTX)-conjugated inorganic polymer, polyphosphazene, named "polytaxel (PTX)" with a prolonged blood circulation time and tumor localization. Here, we conducted the proof-of-concept study of the ideal therapy in orthotopic and xenograft pancreatic cancer models. We found that the average tumor inhibition rates of PTX were similar to those of DTX without any DTX toxicity-related side effects, such as neutropenia and weight loss. In conclusion, PTX met the requirements of an ideal anticancer drug with high anticancer efficacy and 100% survival rate. PTX is expected to replace any existing anticancer therapies in clinical practice.
Collapse
Affiliation(s)
- Geun-Woo Jin
- R&D Center, CnPharm Co., Ltd, Seoul 03759, Republic of Korea
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea. .,College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea.
| | - N Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea.
| | - Shunsuke Asahina
- JEOL Ltd. SM Business Unit, 3-1-2 Musashino, Akishima-shi, Tokyo 196-8558, Japan
| | - Soo-Jin Choi
- Division of Applied Food System, Major of Food Science & Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Hwa Jeong Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea. .,Division of Natural Sciences, The National Academy of Sciences, Seoul 06579, Republic of Korea.,Department of Pre-medical Course, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea.,International Research Frontier Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
5
|
Wu Z. Editorial of Special Issue "Cytoplasmic Delivery of Bioactives". Pharm Res 2022; 39:1031-1034. [PMID: 35606599 PMCID: PMC9126431 DOI: 10.1007/s11095-022-03290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Zimei Wu
- The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
Oncocalyxone A (oncoA) has intrinsic fluorescence? Photodiagnosis Photodyn Ther 2022; 39:102869. [DOI: 10.1016/j.pdpdt.2022.102869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022]
|