1
|
Zhang B, Guo W, Chen Z, Chen Y, Zhang R, Liu M, Yang J, Zhang J. Physicochemical Characterization and Oral Bioavailability of Curcumin-Phospholipid Complex Nanosuspensions Prepared Based on Microfluidic System. Pharmaceutics 2025; 17:395. [PMID: 40143058 PMCID: PMC11946702 DOI: 10.3390/pharmaceutics17030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Curcumin has been proved to have promising prospects in the fields of anti-inflammation, antibacterial, anti-oxidation, and neuroprotection. However, its poor water solubility and stability in strong acid, as well as fast metabolism, lead to low bioavailability, making it difficult to develop further. This study aimed to improve the bioavailability of curcumin by using microfluidic preparation technology. Methods: Using a self-built microfluidic system, polyvinylpyrrolidone K30 and sodium dodecyl sulfate were used as stabilizers to further prepare curcumin-phospholipid complex nanoparticles (CPC-NPs) on the basis of curcumin-phospholipid complex (CPC). The CPC-NPs were characterized and evaluated by X-ray powder diffraction (XRD), differential scanning caborimetry (DSC), dynamic light scattering, and transmission electron microscopy (TEM). Blood samples were collected from rats after oral administration of curcumin, CPC, curcumin nanoparticles (CUR-NPs), and CPC-NPs, respectively. The pharmacokinetics were analyzed by enzymatic digestion and HPLC. Results: The optimized CPC-NPs had a particle size of 71.19 ± 1.37 nm, a PDI of 0.226 ± 0.047, and a zeta potential of -38.23 ± 0.89 mV, which showed a spherical structure under TEM and good stability within 5 days at 4 °C and 25 °C. It was successfully characterized by XRD combined with DSC, indicating the integrational state of curcumin-soy lecithin and conversion to an amorphous form. The results of the pharmacokinetic study showed that the Cmax of curcumin, CUR-NPs, CPC, and CPC-NPs were 133.60 ± 28.10, 270.23 ± 125.42, 1894.43 ± 672.65, and 2163.87 ± 777.36 ng/mL, respectively; the AUC0-t of curcumin, CUR-NPs, CPC, and CPC-NPs were 936.99 ± 201.83, 1155.46 ± 340.38, 5888.79 ± 1073.32, and 9494.28 ± 1863.64 ng/mL/h. Conclusions: CPC-NPs prepared by microfluidic technology had more controllable quality than that of traditional preparation and showed superior bioavailability compared with free drug, CPC, and CUR-NPs. Pharmacodynamic evaluation of anti-inflammatory, anti-oxidation, and neuroprotection needs to be confirmed in follow-up studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Yang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (B.Z.); (W.G.); (Z.C.); (Y.C.); (R.Z.); (M.L.)
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (B.Z.); (W.G.); (Z.C.); (Y.C.); (R.Z.); (M.L.)
| |
Collapse
|
2
|
Maheshwari S, Singh A, Ansari VA, Mahmood T, Wasim R, Akhtar J, Verma A. Navigating the dementia landscape: Biomarkers and emerging therapies. Ageing Res Rev 2024; 94:102193. [PMID: 38215913 DOI: 10.1016/j.arr.2024.102193] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
The field of dementia research has witnessed significant developments in our understanding of neurodegenerative disorders, with a particular focus on Alzheimer's disease (AD) and Frontotemporal Dementia (FTD). Dementia, a collection of symptoms arising from the degeneration of brain cells, presents a significant healthcare challenge, especially as its prevalence escalates with age. This abstract delves into the complexities of these disorders, the role of biomarkers in their diagnosis and monitoring, as well as emerging neurophysiological insights. In the context of AD, anti-amyloid therapy has gained prominence, aiming to reduce the accumulation of amyloid-beta (Aβ) plaques in the brain, a hallmark of the disease. Notably, Leqembi recently received full FDA approval, marking a significant breakthrough in AD treatment. Additionally, ongoing phase 3 clinical trials are investigating novel therapies, including Masitinib and NE3107, focusing on cognitive and functional improvements in AD patients. In the realm of FTD, research has unveiled distinct neuropathological features, including the involvement of proteins like TDP-43 and progranulin, providing valuable insights into the diagnosis and management of this heterogeneous condition. Biomarkers, including neurofilaments and various tau fragments, have shown promise in enhancing diagnostic accuracy. Neurophysiological techniques, such as transcranial magnetic stimulation (TMS), have contributed to our understanding of AD and FTD. TMS has uncovered unique neurophysiological signatures, highlighting impaired plasticity, hyperexcitability, and altered connectivity in AD, while FTD displays differences in neurotransmitter systems, particularly GABAergic and glutamatergic circuits. Lastly, ongoing clinical trials in anti-amyloid therapy for AD, such as Simufilam, Solanezumab, Gantenerumab, and Remternetug, offer hope for individuals affected by this devastating disease, with the potential to alter the course of cognitive decline. These advancements collectively illuminate the evolving landscape of dementia research and the pursuit of effective treatments for these challenging conditions.
Collapse
Affiliation(s)
- Shubhrat Maheshwari
- Faculty of Pharmaceutical Sciences Rama University Mandhana, Bithoor Road, Kanpur, Uttar Pradesh 209217, India; Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 21107, U.P., India.
| | - Aditya Singh
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Vaseem Ahamad Ansari
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Tarique Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Rufaida Wasim
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Juber Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Amita Verma
- Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 21107, U.P., India.
| |
Collapse
|
3
|
Scomoroscenco C, Teodorescu M, Nistor CL, Gifu IC, Petcu C, Banciu DD, Banciu A, Cinteza LO. Preparation and In Vitro Characterization of Alkyl Polyglucoside-Based Microemulsion for Topical Administration of Curcumin. Pharmaceutics 2023; 15:pharmaceutics15051420. [PMID: 37242662 DOI: 10.3390/pharmaceutics15051420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The skin is a complex and selective system from the perspective of permeability to substances from the external environment. Microemulsion systems have demonstrated a high performance in encapsulating, protecting and transporting active substances through the skin. Due to the low viscosity of microemulsion systems and the importance of a texture that is easy to apply in the cosmetic and pharmaceutical fields, gel microemulsions are increasingly gaining more interest. The aim of this study was to develop new microemulsion systems for topical use; to identify a suitable water-soluble polymer in order to obtain gel microemulsions; and to study the efficacy of the developed microemulsion and gel microemulsion systems in the delivery of a model active ingredient, namely curcumin, into the skin. A pseudo-ternary phase diagram was developed using AKYPO® SOFT 100 BVC, PLANTACARE® 2000 UP Solution and ethanol as a surfactant mix; caprylic/capric triglycerides, obtained from coconut oil, as the oily phase; and distilled water. To obtain gel microemulsions, sodium hyaluronate salt was used. All these ingredients are safe for the skin and are biodegradable. The selected microemulsions and gel microemulsions were physicochemically characterized by means of dynamic light scattering, electrical conductivity, polarized microscopy and rheometric measurements. To evaluate the efficiency of the selected microemulsion and gel microemulsion to deliver the encapsulated curcumin, an in vitro permeation study was performed.
Collapse
Affiliation(s)
- Cristina Scomoroscenco
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Mircea Teodorescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Cristina Lavinia Nistor
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Ioana Catalina Gifu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Cristian Petcu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Daniel Dumitru Banciu
- Department of Biomaterials and Medical Devices, Faculty of Medical Engineering, Politehnica University of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Adela Banciu
- Department of Biomaterials and Medical Devices, Faculty of Medical Engineering, Politehnica University of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Ludmila Otilia Cinteza
- Physical Chemistry Department, University of Bucharest, 4-12 Blv. Regina Elisabeta, 030018 Bucharest, Romania
| |
Collapse
|
4
|
Eissa ESH, Alaidaroos BA, Jastaniah SD, Munir MB, Shafi ME, Abd El-Aziz YM, Bazina WK, Ibrahim SB, Eissa MEH, Paolucci M, Alaryani FS, El-Hamed NNBA, El-Hack MEA, Saadony S. Dietary Effects of Nano Curcumin on Growth Performances, Body Composition, Blood Parameters and Histopathological Alternation in Red Tilapia (Oreochromis sp.) Challenged with Aspergillus flavus. FISHES 2023; 8:208. [DOI: 10.3390/fishes8040208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This research examined the role of nano curcumin (NC) on growth performances, body composition, and blood parameters of red tilapia (Oreochromis sp.) challenged with Aspergillus flavus. Fish (5.0 g ± 0.30) were randomly distributed in four equal groups (20 fish per pond in triplicates) and fed various concentrations of NC fortified with 0 (Control), 40 mg/kg (NC1), 50 mg/kg (NC2), and 60 mg/kg diet (NC3) of nano curcumin. After eight weeks of the feeding trial, the fish were challenged with A. flavus for 15 days, and the cumulative mortality was recorded. Fish fed with different concentrations of NC improved significantly (p < 0.05) the growth performances, feed utilization, and survival rate. There was no significant (p > 0.05) difference between NC2 and NC3 treatments. However, NC3 exhibited higher performances. Fish feed supplemented with NC decreased the mortality rate when challenged with A. flavus. Hence, dietary supplementation of NC enhanced the growth and health status of Oreochromis sp. and protected it from A. flavus infection. This study suggests the optimum inclusion level of NC is a 50–60 mg/kg diet.
Collapse
Affiliation(s)
| | - Bothaina A. Alaidaroos
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University Kingdom of Saudi Arabia, Jeddah 22233, Saudi Arabia
| | - Samyah D. Jastaniah
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University Kingdom of Saudi Arabia, Jeddah 22233, Saudi Arabia
| | - Mohammad Bodrul Munir
- Aquatic Science Program, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
- Faculty of Agriculture, Universiti Islam Sultan Sharif Ali, Gadong BE1310, Brunei
| | - Manal E. Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yasmin M. Abd El-Aziz
- Zoology Department, Faculty of Science, Port Said University, Port Said 42526, Egypt
| | - Walaa K. Bazina
- Fish Rearing and Aquaculture Department, National Institute of Oceanography and Fisheries, Alexandria 21500, Egypt
| | | | - Moaheda E. H. Eissa
- Aquaculture Department, Faculty of Fish & Fisheries Technology, Aswan University, Aswan 81511, Egypt
- Biotechnology Department, Fish Farming and Technology Institute, Suez Canal University, Ismailia 41522, Egypt
| | - Marina Paolucci
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Fatima S. Alaryani
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | | | | | - Saadea Saadony
- Department of Animal Production and Fish Resources, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|