1
|
Clark EG, Vijayan A. How I prescribe prolonged intermittent renal replacement therapy. Crit Care 2023; 27:88. [PMID: 36882851 PMCID: PMC9992907 DOI: 10.1186/s13054-023-04389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Prolonged Intermittent Renal Replacement Therapy (PIRRT) is the term used to define 'hybrid' forms of renal replacement therapy. PIRRT can be provided using an intermittent hemodialysis machine or a continuous renal replacement therapy (CRRT) machine. Treatments are provided for a longer duration than typical intermittent hemodialysis treatments (6-12 h vs. 3-4 h, respectively) but not 24 h per day as is done for continuous renal replacement therapy (CRRT). Usually, PIRRT treatments are provided 4 to 7 times per week. PIRRT is a cost-effective and flexible modality with which to safely provide RRT for critically ill patients. We present a brief review on the use of PIRRT in the ICU with a focus on how we prescribe it in that setting.
Collapse
Affiliation(s)
- Edward G Clark
- Division of Nephrology, Department of Medicine, University of Ottawa, Ottawa, Canada.
| | - Anitha Vijayan
- Division of Nephrology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Abstract
Prolonged Intermittent Renal Replacement Therapy (PIRRT) is the term used to define 'hybrid' forms of renal replacement therapy. PIRRT can be provided using an intermittent hemodialysis machine or a continuous renal replacement therapy (CRRT) machine. Treatments are provided for a longer duration than typical intermittent hemodialysis treatments (6-12 h vs. 3-4 h, respectively) but not 24 h per day as is done for continuous renal replacement therapy (CRRT). Usually, PIRRT treatments are provided 4 to 7 times per week. PIRRT is a cost-effective and flexible modality with which to safely provide RRT for critically ill patients. We present a brief review on the use of PIRRT in the ICU with a focus on how we prescribe it in that setting.
Collapse
Affiliation(s)
- Edward G Clark
- Division of Nephrology, Department of Medicine, University of Ottawa, Ottawa, Canada.
| | - Anitha Vijayan
- Division of Nephrology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Liebchen U, Paal M, Bucher V, Vogeser M, Irlbeck M, Schroeder I, Zoller M, Scharf C. Trough concentrations of meropenem and piperacillin during slow extended dialysis in critically ill patients with intermittent and continuous infusion: A prospective observational study. J Crit Care 2021; 67:26-32. [PMID: 34628123 DOI: 10.1016/j.jcrc.2021.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022]
Abstract
Beta-lactam dosing is challenging in critically ill patients with slow extended daily dialysis (SLEDD). This prospective observational study aimed to investigate meropenem and piperacillin concentrations and half-lives during SLEDD and in SLEDD-free intervals. Critically ill patients with SLEDD-therapy and meropenem or piperacillin therapy were included. Breakpoints of target attainment were defined as 2 and 20.8 mg/L for meropenem and piperacillin, respectively. Daily TDM was performed and therapies were adapted based on the measured concentrations. Elimination rate constants were determined by using nonlinear regression analysis. Seventeen patients were included (48 SLEDD intervals; median SLEDD-duration: 7.25 h). The median antibiotic trough concentrations and half-lives were significantly (p < 0.001) lower during and after the SLEDD-therapy compared to SLEDD-free intervals (median meropenem: 22.3 (IQR: 12.8, 25.6) vs. 28.3 mg/L (IQR: 16.9, 37.4); median piperacillin: 55.8 (IQR: 45.1, 84.9) vs. 130 mg/L (IQR: 91.5, 154.5); relative change: -48.0% each, IQR meropenem: -33.3, -58.5%; IQR piperacillin: -36.3, -52.1%). However, none of the measured trough concentrations were subtherapeutic during SLEDD. SLEDD leads to a reduction in meropenem and piperacillin concentrations of approximately 50% independently of the initial concentration. If the concentration is twice as high as the breakpoint of target attainment before SLEDD-therapy, subtherapeutic levels can be avoided.
Collapse
Affiliation(s)
- Uwe Liebchen
- Department of Anesthesiology, University Hospital, LMU Munich, Germany
| | - Michael Paal
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| | - Veronika Bucher
- Department of Anesthesiology, University Hospital, LMU Munich, Germany
| | - Michael Vogeser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| | - Michael Irlbeck
- Department of Anesthesiology, University Hospital, LMU Munich, Germany
| | - Ines Schroeder
- Department of Anesthesiology, University Hospital, LMU Munich, Germany
| | - Michael Zoller
- Department of Anesthesiology, University Hospital, LMU Munich, Germany
| | - Christina Scharf
- Department of Anesthesiology, University Hospital, LMU Munich, Germany.
| |
Collapse
|
4
|
Vangala C, Shah M, Dave NN, Attar LA, Navaneethan SD, Ramanathan V, Crowley S, Winkelmayer WC. The landscape of renal replacement therapy in Veterans Affairs Medical Center intensive care units. Ren Fail 2021; 43:1146-1154. [PMID: 34261420 PMCID: PMC8280999 DOI: 10.1080/0886022x.2021.1949347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Outpatient dialysis is standardized with several evidence-based measures of adequacy and quality that providers aim to meet while providing treatment. By contrast, in the intensive care unit (ICU) there are different types of prolonged and continuous renal replacement therapies (PIRRT and CRRT, respectively) with varied strategies for addressing patient care and a dearth of nationally accepted quality parameters. To eventually describe appropriate quality measures for ICU-related renal replacement therapy (RRT), we first aimed to capture the variety and prevalence of basic strategies and equipment utilized in the ICUs of Veteran Affairs (VA) medical facilities with inpatient hemodialysis capabilities. Methods Via email to the dialysis directors of all VA facilities that provided inpatient hemodialysis during 2018, we requested survey participation regarding aspects of RRT in VA ICUs. Questions centered around the mode of therapy, equipment, solutions, prescription authority, nursing, anticoagulation, antimicrobial dosing, and access. Results Seventy-six centers completed the questionnaire, achieving a response rate of 87.4%. Fifty-five centers reported using PIRRT or CRRT in addition to intermittent hemodialysis. Of these centers, 42 reported being specifically CRRT-capable. Over half of respondents had the capabilities to perform PIRRT. Twelve centers (21.8%) were equipped to use slow low efficient dialysis (SLED) alone. Therapy was largely prescribed by nephrologists (94.4% of centers). Conclusions Within the VA system, ICU-related RRT practice is quite varied. Variation in processes of care, prescription authority, nursing care coordination, medication management, and safety practices present opportunities for developing cross-cutting measures of quality of intensive care RRT that are agnostic of modality choice.
Collapse
Affiliation(s)
- Chandan Vangala
- Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.,Houston Center for Innovations in Quality, Effectiveness, and Safety (IQuESt), Houston, TX, USA
| | - Maulin Shah
- Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Natasha N Dave
- Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | | | - Sankar D Navaneethan
- Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Venkat Ramanathan
- Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Susan Crowley
- Yale School of Medicine, New Haven, CT, USA.,Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | | |
Collapse
|
5
|
Lin SY, Shen LJ, Wu VC, Ko WJ, Wu CC, Wu FLL. Pharmacokinetics and dosing of vancomycin in patients undergoing sustained low efficiency daily diafiltration (SLEDD-f): A prospective study. J Formos Med Assoc 2020; 120:737-743. [PMID: 32855036 DOI: 10.1016/j.jfma.2020.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND/PURPOSE The pharmacokinetics of vancomycin in patients who undergo sustained low efficiency daily diafiltration (SLEDD-f) is not clear. This study aimed to determine the appropriate vancomycin dosage regimen for patients receiving SLEDD-f. METHODS This prospectively observational study enrolled critically ill patients older than 18 years old that used SLEDD-f as renal replacement therapy and received vancomycin treatment. An 8-h SLEDD-f was performed with FX-60 (high-flux helixone membrane, 1.4 m2). Serial blood samples were collected before, during, and after SLEDD-f to analyse vancomycin serum concentrations. Effluent fluid samples (a mixture of dialysate and ultrafiltrate) were also collected to determine the amount of vancomycin removal. RESULTS Seventeen patients were enrolled, and 10 completed the study. The amount of vancomycin removal was 447.4 ± 88.8 mg (about 78.4 ± 18.4% of the dose administered before SLEDD-f). The vancomycin concentration was reduced by 57.5 ± 14.9% during SLEDD-f, and this reduction was followed by a rebound with duration of one to three hours. The elimination half-life of vancomycin decreased from 64.1 ± 35.7 h before SLEDD-f to 7.0 ± 3.0 h during SLEDD-f. CONCLUSION Significant amount of vancomycin removed during SLEDD-f. Despite the existence of post-dialysis rebound, a sufficient supplemental dose is necessary to maintain therapeutic range.
Collapse
Affiliation(s)
- Shin-Yi Lin
- Department of Pharmacy, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Taipei, Taiwan; Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Rd., Taipei, Taiwan; School of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen South Road, Taipei, Taiwan
| | - Li-Jiuan Shen
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Rd., Taipei, Taiwan; School of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen South Road, Taipei, Taiwan
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Taipei, Taiwan
| | - Wen-Je Ko
- Department of Traumatology, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Taipei, Taiwan
| | - Chien-Chih Wu
- Department of Pharmacy, National Taiwan University Hospital, No. 7, Zhongshan S. Rd., Taipei, Taiwan; Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Rd., Taipei, Taiwan; School of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen South Road, Taipei, Taiwan
| | - Fe-Lin Lin Wu
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Rd., Taipei, Taiwan; School of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen South Road, Taipei, Taiwan; Department of Pharmacy, National Taiwan University Cancer Centre, College of Medicine, National Taiwan University, No. 57, Ln. 155, Sec. 3, Keelung Rd., Taipei, Taiwan.
| |
Collapse
|
6
|
Abstract
OBJECTIVES The incidence of acute kidney injury in critically ill patients is increasing steeply. Acute kidney injury in this setting is associated with high morbidity and mortality. There is no doubt that renal replacement therapy for the most severe forms of acute kidney injury can be life saving, but there are a number of uncertainties about the optimal application of renal replacement therapy for patients with acute kidney injury. The objective of this synthetic review is to present current evidence supporting best practices in renal replacement therapy for critically ill patients with acute kidney injury. DATA SOURCES We reviewed literature regarding timing of initiation of renal replacement therapy, optimal vascular access for renal replacement therapy in acute kidney injury, modality selection and dose or intensity of renal replacement therapy, and anticoagulation during renal replacement therapy, using the following databases: MEDLINE and PubMed. We also reviewed bibliographic citations of retrieved articles. STUDY SELECTION We reviewed only English language articles. CONCLUSIONS Current evidence sheds light on many areas of controversy regarding renal replacement therapy in acute kidney injury, providing a foundation for best practices. Nonetheless, important questions remain to be answered by ongoing and future investigation.
Collapse
|
7
|
Drug Dosing Considerations in Critically Ill Patients Receiving Continuous Renal Replacement Therapy. PHARMACY 2020; 8:pharmacy8010018. [PMID: 32046092 PMCID: PMC7151686 DOI: 10.3390/pharmacy8010018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury is very common in critically ill patients requiring renal replacement therapy. Despite the advancement in medicine, the mortality rate from septic shock can be as high as 60%. This manuscript describes drug-dosing considerations and challenges for clinicians. For instance, drugs’ pharmacokinetic changes (e.g., decreased protein binding and increased volume of distribution) and drug property changes in critical illness affecting solute or drug clearance during renal replacement therapy. Moreover, different types of renal replacement therapy (intermittent hemodialysis, prolonged intermittent renal replacement therapy or sustained low-efficiency dialysis, and continuous renal replacement therapy) are discussed to describe how to optimize the drug administration strategies. With updated literature, pharmacodynamic targets and empirical dosing recommendations for commonly used antibiotics in critically ill patients receiving continuous renal replacement therapy are outlined. It is vital to utilize local epidemiology and resistance patterns to select appropriate antibiotics to optimize clinical outcomes. Therapeutic drug monitoring should be used, when possible. This review should be used as a guide to develop a patient-specific antibiotic therapy plan.
Collapse
|
8
|
Hoff BM, Maker JH, Dager WE, Heintz BH. Antibiotic Dosing for Critically Ill Adult Patients Receiving Intermittent Hemodialysis, Prolonged Intermittent Renal Replacement Therapy, and Continuous Renal Replacement Therapy: An Update. Ann Pharmacother 2019; 54:43-55. [PMID: 31342772 DOI: 10.1177/1060028019865873] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Objective: To summarize current antibiotic dosing recommendations in critically ill patients receiving intermittent hemodialysis (IHD), prolonged intermittent renal replacement therapy (PIRRT), and continuous renal replacement therapy (CRRT), including considerations for individualizing therapy. Data Sources: A literature search of PubMed from January 2008 to May 2019 was performed to identify English-language literature in which dosing recommendations were proposed for antibiotics commonly used in critically ill patients receiving IHD, PIRRT, or CRRT. Study Selection and Data Extraction: All pertinent reviews, selected studies, and references were evaluated to ensure appropriateness for inclusion. Data Synthesis: Updated empirical dosing considerations are proposed for antibiotics in critically ill patients receiving IHD, PIRRT, and CRRT with recommendations for individualizing therapy. Relevance to Patient Care and Clinical Practice: This review defines principles for assessing renal function, identifies RRT system properties affecting drug clearance and drug properties affecting clearance during RRT, outlines pharmacokinetic and pharmacodynamic dosing considerations, reviews pertinent updates in the literature, develops updated empirical dosing recommendations, and highlights important factors for individualizing therapy in critically ill patients. Conclusions: Appropriate antimicrobial selection and dosing are vital to improve clinical outcomes. Dosing recommendations should be applied cautiously with efforts to consider local epidemiology and resistance patterns, antibiotic dosing and infusion strategies, renal replacement modalities, patient-specific considerations, severity of illness, residual renal function, comorbidities, and patient response to therapy. Recommendations provided herein are intended to serve as a guide in developing and revising therapy plans individualized to meet a patient's needs.
Collapse
Affiliation(s)
- Brian M Hoff
- Northwestern Memorial Hospital, Chicago, IL, USA
| | - Jenana H Maker
- University of the Pacific Thomas J. Long School of Pharmacy and Health Sciences, Stockton, CA, USA.,University of California Davis Medical Center, Sacramento, CA, USA
| | - William E Dager
- University of California Davis Medical Center, Sacramento, CA, USA
| | - Brett H Heintz
- University of Iowa College of Pharmacy, Iowa City, IA, USA.,Iowa City Veterans Affairs (VA) Health Care System, Iowa City, IA, USA
| |
Collapse
|
9
|
Sethi SK, Krishnappa V, Nangethu N, Nemer P, Frazee LA, Raina R. Antibiotic Dosing in Sustained Low-Efficiency Dialysis in Critically Ill Patients. Can J Kidney Health Dis 2018; 5:2054358118792229. [PMID: 30116545 PMCID: PMC6088477 DOI: 10.1177/2054358118792229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022] Open
Abstract
Purpose of review Sustained low-efficiency dialysis (SLED) is increasingly used as a renal replacement modality in critically ill patients with acute kidney injury (AKI) and hemodynamic instability. There is, therefore, a greater need for the understanding of the antibiotic dosage and pharmacokinetics in these patients, to provide them with optimal therapy. Sources of information PubMed/Medline, Embase, and Google Scholar. Methods PubMed/Medline, Embase, and Google Scholar databases were searched using a combination of key words: dialysis, end stage renal disease, renal failure, sustained low efficiency dialysis, extended daily dialysis, prolonged intermittent renal replacement therapy (PIRRT), and antibiotic dosing. Studies that investigated antibiotic dosing and pharmacokinetics during SLED/extended daily dialysis/PIRRT were selected for this review. Key findings Eleven studies met inclusion criteria and selected for data extraction. The data with regard to dialysis specifications, type of antibiotic including dosages, drug clearances, and dosage recommendations are summarized in Table 1. It is a challenge to find therapeutic doses for antibiotics during SLED therapy because, in general, only aminoglycosides and vancomycin can be assayed in clinical laboratories. Limitations Although current studies on antibiotic dosing in SLED are limited due to diverse and undersized patient populations, antibiotic dosage adjustments for patients receiving SLED discussed here will serve as a valuable guide. Future large-scale research should focus on establishing guidelines for antibiotic dosage in SLED. Implications Pharmacokinetic principles should be taken into consideration for the appropriate dosing of drugs during SLED, yet it is vital to monitor response to drug to make sure therapeutic goals are achieved. Antibiotic dosing and timing relative to the initiation of SLED may be important to maximize either the time above the minimum inhibitory concentration (MIC) (time-dependent) or the peak to MIC ratio (concentration-dependent), balancing efficacy and toxicity concerns. Critical care physicians should liaise with nephrologists to make decisions regarding appropriate antibiotic dosing in patients undergoing SLED.
Collapse
Affiliation(s)
- Sidharth Kumar Sethi
- Pediatric Nephrology, Kidney Institute, Medanta the Medicity, Gurgaon, Haryana, India
| | - Vinod Krishnappa
- Cleveland Clinic Akron General/Akron Nephrology Associates, OH, USA.,Northeast Ohio Medical University, Rootstown, OH, USA
| | - Nisha Nangethu
- Cleveland Clinic Akron General/Akron Nephrology Associates, OH, USA
| | - Paul Nemer
- Cleveland Clinic Akron General/Akron Nephrology Associates, OH, USA
| | | | - Rupesh Raina
- Cleveland Clinic Akron General/Akron Nephrology Associates, OH, USA.,Department of Nephrology, Cleveland Clinic Akron General and Akron Children's Hospital, OH, USA
| |
Collapse
|
10
|
Sinha R, Sethi SK, Bunchman T, Lobo V, Raina R. Prolonged intermittent renal replacement therapy in children. Pediatr Nephrol 2018; 33:1283-1296. [PMID: 28721515 DOI: 10.1007/s00467-017-3732-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/22/2017] [Accepted: 05/31/2017] [Indexed: 12/15/2022]
Abstract
Wide ranges of age and weight in pediatric patients makes renal replacement therapy (RRT) in acute kidney injury (AKI) challenging, particularly in the pediatric intensive care unit (PICU), wherein children are often hemodynamically unstable. Standard hemodialysis (HD) is difficult in this group of children and continuous veno-venous hemofiltration/dialysis (CVVH/D) has been the accepted modality in the developed world. Unfortunately, due to cost constraints, CVVH/D is often not available and peritoneal dialysis (PD) remains the common mode of RRT in resource-poor facilities. Acute PD has its drawbacks, and intermittent HD (IHD) done slowly over a prolonged period has been explored as an alternative. Various modes of slow sustained IHD have been described in the literature with the recently introduced term prolonged intermittent RRT (PIRRT) serving as an umbrella terminology for all of these modes. PIRRT has been widely accepted in adults with studies showing it to be as effective as CVVH/D but with an added advantage of being more cost-effective. Pediatric data, though scanty, has been promising. In this current review, we elaborate on the practical aspects of undertaking PIRRT in children as well as summarize its current status.
Collapse
Affiliation(s)
- Rajiv Sinha
- Institute of Child Health and AMRI Hospital, 37, G Bondel Road, Kolkata, West Bengal, 700019, India.
| | - Sidharth Kumar Sethi
- Pediatric Nephrology, Kidney Institute, Medanta, The Medicity, Gurgaon, Haryana, India
| | - Timothy Bunchman
- Pediatric Nephrology, Children's Hospital of Richmond at VCU, Richmond, VA, USA
| | - Valentine Lobo
- Department of Nephrology, KEM Hospital, Pune, Maharashtra, India
| | - Rupesh Raina
- Pediatric Nephrology, Akron Children's Hospital, Cleveland, OH, USA
| |
Collapse
|
11
|
Keough LA, Krauss A, Hudson JQ. Inadequate antibiotic dosing in patients receiving sustained low efficiency dialysis. Int J Clin Pharm 2018; 40:1250-1256. [PMID: 30051232 DOI: 10.1007/s11096-018-0697-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/17/2018] [Indexed: 01/25/2023]
Abstract
Background Patients requiring SLED are often critically ill and/or hemodynamically unstable, and often need antibiotic therapy for life-threatening infections. Antibiotic dosing recommendations for intermittent hemodialysis and continuous renal replacement therapy are not appropriate for SLED and there is substantial concern for under dosing. Objective To characterize the adequacy of antibiotic dosing during SLED. Setting: Inpatient adult acute care hospital. Methods A retrospective chart review was performed for the period of October 2010 to August 2013 to identify patients who received SLED and at least one of the selected antibiotics: cefepime, daptomycin, piperacillin/tazobactam, meropenem, and vancomycin. Dosing regimens were evaluated each day the patient was receiving one of these antibiotics concurrently with SLED. The administered antibiotic dosing regimens were defined as "adequate" or "inadequate" based on recommendations available in the literature. Main outcome measure The percentage of adequate antibiotic days for each antibiotic. Results Antibiotic regimens were evaluated for a total of 51 patients: 35 (69%) with acute kidney injury, 16 (31%) with end-stage renal disease, mean SLED duration 9.3 ± 1.7 h. The total percent of adequate antibiotic days were: vancomycin 86%, cefepime 62%, daptomycin 58%, meropenem 35%, and piperacillin/tazobactam 20%. Under dosing accounted for 63% of the days antibiotic dosing was considered inadequate. Conclusion: Antibiotic dosing was frequently inadequate, especially for antibiotics requiring more frequent dosing, suggesting a high potential for subtherapeutic levels during the majority of time critically ill patients are requiring SLED.
Collapse
Affiliation(s)
- Leigh Anne Keough
- Department of Pharmacy, Veterans Affairs Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA
| | - Amy Krauss
- Department of Pharmacy, Gritman Medical Center, 700 S. Main St., Moscow, ID, 83843, USA
| | - Joanna Q Hudson
- Department of Clinical Pharmacy and Translational Science, University of Tennessee College of Pharmacy, 881 Madison Ave., Room 334, Memphis, TN, 38163, USA. .,Department of Medicine (Nephrology), The University of Tennessee Health Science Center, 881 Madison Ave., Rm 334, Memphis, TN, 38163, USA.
| |
Collapse
|
12
|
Jang SM, Gharibian KN, Lewis SJ, Fissell WH, Tolwani AJ, Mueller BA. A Monte Carlo Simulation Approach for Beta-Lactam Dosing in Critically Ill Patients Receiving Prolonged Intermittent Renal Replacement Therapy. J Clin Pharmacol 2018; 58:1254-1265. [PMID: 29746711 DOI: 10.1002/jcph.1137] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/23/2018] [Indexed: 11/05/2022]
Abstract
Cefepime, ceftazidime, and piperacillin/tazobactam are commonly used beta-lactam antibiotics in the critical care setting. For critically ill patients receiving prolonged intermittent renal replacement therapy (PIRRT), limited pharmacokinetic data are available to inform clinicians on the dosing of these agents. Monte Carlo simulations (MCS) can be used to guide drug dosing when pharmacokinetic trials are not feasible. For each antibiotic, MCS using previously published pharmacokinetic data derived from critically ill patients was used to evaluate multiple dosing regimens in 4 different prolonged intermittent renal replacement therapy effluent rates and prolonged intermittent renal replacement therapy duration combinations (4 L/h × 10 hours or 5 L/h × 8 hours in hemodialysis and hemofiltration modes). Antibiotic regimens were also modeled depending on whether drugs were administered during or well before prolonged intermittent renal replacement therapy therapy commenced. The probability of target attainment (PTA) was calculated using each antibiotic's pharmacodynamic target during the first 48 hours of therapy. Optimal doses were defined as the smallest daily dose achieving ≥90% probability of target attainment in all prolonged intermittent renal replacement therapy effluent and duration combinations. Cefepime 1 g every 6 hours following a 2 g loading dose, ceftazidime 2 g every 12 hours, and piperacillin/tazobactam 4.5 g every 6 hours attained the desired pharmacodynamic target in ≥90% of modeled prolonged intermittent renal replacement therapy patients. Alternatively, if an every 6-hours cefepime regimen is not desired, the cefepime 2 g pre-prolonged intermittent renal replacement therapy and 3 g post-prolonged intermittent renal replacement therapy regimen also met targets. For ceftazidime, 1 g every 6 hours or 3 g continuous infusion following a 2 g loading dose also met targets. These recommended doses provide simple regimens that are likely to achieve the pharmacodynamics target while yielding the least overall drug exposure, which should result in lower toxicity rates. These findings should be validated in the clinical setting.
Collapse
Affiliation(s)
- Soo Min Jang
- Department of Pharmacy Practice, Loma Linda School of Pharmacy, Loma Linda, CA, USA
| | - Katherine N Gharibian
- Department of Clinical Sciences, Medical College of Wisconsin School of Pharmacy, Milwaukee, WI, USA
| | - Susan J Lewis
- Department of Pharmacy Practice, University of Findlay College of Pharmacy, Findlay, OH, USA
| | - William H Fissell
- Nephrology and Hypertension Division, Vanderbilt University, School of Medicine and School of Engineering, Nashville, TN, USA
| | - Ashita J Tolwani
- Division of Nephrology, University of Alabama-Birmingham, School of Medicine, Birmingham, AL, USA
| | - Bruce A Mueller
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Pharmacokinetics of meropenem in septic patients on sustained low-efficiency dialysis: a population pharmacokinetic study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:25. [PMID: 29382394 PMCID: PMC5791175 DOI: 10.1186/s13054-018-1940-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 01/02/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND The aim of the study was to describe the population pharmacokinetics (PK) of meropenem in critically ill patients receiving sustained low-efficiency dialysis (SLED). METHODS Prospective population PK study on 19 septic patients treated with meropenem and receiving SLED for acute kidney injury. Serial blood samples for determination of meropenem concentrations were taken before, during and after SLED in up to three sessions per patient. Nonparametric population PK analysis with Monte Carlo simulations were used. Pharmacodynamic (PD) targets of 40% and 100% time above the minimal inhibitory concentration (f T > MIC) were used for probability of target attainment (PTA) and fractional target attainment (FTA) against Pseudomonas aeruginosa. RESULTS A two-compartment linear population PK model was most appropriate with residual diuresis supported as significant covariate affecting meropenem clearance. In patients without residual diuresis the PTA for both targets (40% and 100% f T > MIC) and susceptible P. aeruginosa (MIC ≤ 2 mg/L) was > 95% for a dose of 0.5 g 8-hourly. In patients with a residual diuresis of 300 mL/d 1 g 12-hourly and 2 g 8-hourly would be required to achieve a PTA of > 95% and 93% for targets of 40% f T > MIC and 100% f T > MIC, respectively. A dose of 2 g 8-hourly would be able to achieve a FTA of 97% for 100% f T > MIC in patients with residual diuresis. CONCLUSIONS We found a relevant PK variability for meropenem in patients on SLED, which was significantly influenced by the degree of residual diuresis. As a result dosing recommendations for meropenem in patients on SLED to achieve adequate PD targets greatly vary. Therapeutic drug monitoring may help to further optimise individual dosing. TRIAL REGISTRATION Clincialtrials.gov, NCT02287493 .
Collapse
|
14
|
Lewis SJ, Chaijamorn W, Shaw AR, Mueller BA. In silico trials using Monte Carlo simulation to evaluate ciprofloxacin and levofloxacin dosing in critically ill patients receiving prolonged intermittent renal replacement therapy. RENAL REPLACEMENT THERAPY 2016. [DOI: 10.1186/s41100-016-0055-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Edrees F, Li T, Vijayan A. Prolonged Intermittent Renal Replacement Therapy. Adv Chronic Kidney Dis 2016; 23:195-202. [PMID: 27113696 DOI: 10.1053/j.ackd.2016.03.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/29/2022]
Abstract
Prolonged intermittent renal replacement therapy (PIRRT) is becoming an increasingly popular alternative to continuous renal replacement therapy in critically ill patients with acute kidney injury. There are significant practice variations in the provision of PIRRT across institutions, with respect to prescription, technology, and delivery of therapy. Clinical trials have generally demonstrated that PIRRT is non-inferior to continuous renal replacement therapy regarding patient outcomes. PIRRT offers cost-effective renal replacement therapy along with other advantages such as early patient mobilization and decreased nursing time. However, due to lack of standardization of the procedure, PIRRT still poses significant challenges, especially pertaining to appropriate drug dosing. Future guidelines and clinical trials should work toward developing consensus definitions for PIRRT and ensure optimal delivery of therapy.
Collapse
|
16
|
Lewis SJ, Kays MB, Mueller BA. Use of Monte Carlo Simulations to Determine Optimal Carbapenem Dosing in Critically Ill Patients Receiving Prolonged Intermittent Renal Replacement Therapy. J Clin Pharmacol 2016; 56:1277-87. [DOI: 10.1002/jcph.727] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Susan J. Lewis
- Department of Clinical Pharmacy; University of Michigan College of Pharmacy; Ann Arbor MI USA
| | - Michael B. Kays
- Department of Pharmacy Practice; Purdue University College of Pharmacy; West Lafayette IN USA
| | - Bruce A. Mueller
- Department of Clinical Pharmacy; University of Michigan College of Pharmacy; Ann Arbor MI USA
| |
Collapse
|