1
|
Cui ML, Liu C, Piao CL, Liu CL. A Stable Agrobacterium rhizogenes-Mediated Transformation of Cotton ( Gossypium hirsutum L.) and Plant Regeneration From Transformed Hairy Root via Embryogenesis. FRONTIERS IN PLANT SCIENCE 2020; 11:604255. [PMID: 33381137 PMCID: PMC7767857 DOI: 10.3389/fpls.2020.604255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/18/2020] [Indexed: 06/01/2023]
Abstract
Genetic transformation is a powerful tool to study gene function, secondary metabolism pathways, and molecular breeding in crops. Cotton (Gossypium hirsutum L.) is one of the most important economic crops in the world. Current cotton transformation methods take at least seven to culture and are labor-intensive and limited to some cultivars. In this study, we first time achieved plantlet regeneration of cotton via embryogenesis from transformed hairy roots. We inoculated the cotyledon explants of a commercial cultivar Zhongmian-24 with Agrobacterium rhizogenes strain AR1193, harboring a binary vector pBI-35S::GFP that contained the NPT II (neomycin phosphotransferase) gene and the GFP (green fluorescent protein) gene as a fluorescent marker in the T-DNA region. 82.6% explants produced adventitious roots, of which 53% showed GFP expression after transformation. 82% of transformed hairy roots produced embryonic calli, 12% of which regenerated into stable transformed cotton plants after 7 months of culture. The integration of GFP in the transformed cotton genomes were confirmed by PCR (Polymerase chain reaction) and Southern blot analysis as well as the stable expression of GFP were also detected by semi-quantitative RT-PCR analysis. The resultant transformed plantlets were phenotypically, thus avoiding Ri syndrome. Here we report a stable and reproducible method for A. rhizogenes-mediated transformation of cotton using cotyledon as explants, which provides a useful and reliable platform for gene function analysis of cotton.
Collapse
Affiliation(s)
- Min-Long Cui
- College of Agriculture and Food Sciences, Zhejiang A & F University, Hangzhou, China
| | - Chen Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Chun-Lan Piao
- College of Agriculture and Food Sciences, Zhejiang A & F University, Hangzhou, China
| | - Chuan-Liang Liu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Fan Y, Wang X, Li H, Liu S, Jin L, Lyu Y, Shi M, Liu S, Yang X, Lyu S. Anthocyanin, a novel and user-friendly reporter for convenient, non-destructive, low cost, directly visual selection of transgenic hairy roots in the study of rhizobia-legume symbiosis. PLANT METHODS 2020; 16:94. [PMID: 32647533 PMCID: PMC7339386 DOI: 10.1186/s13007-020-00638-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/03/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Agrobacterium rhizogenes-mediated hairy root transformation provides a powerful tool for investigating the functions of plant genes involved in rhizobia-legume symbiosis. However, in the traditional identification methods of transgenic hairy roots based on reporter genes, an expensive chemical substrate or equipment is required. RESULTS Here, we report a novel, low cost, and robust reporter for convenient, non-destructive, and directly visual selection of transgenic hairy roots by naked eye, which can be used in the study of rhizobia-legume symbiosis. The reporter gene AtMyb75 in Arabidopsis, encoding an R2R3 type MYB transcription factor, was ectopically expressed in hairy roots-mediated by A. rhizogenes, which induced purple/red colored anthocyanin accumulation in crop species like soybean (Glycine max (L.) Merr.) and two model legume species, Lotus japonicas and Medicago truncatula. Transgenic hairy roots of legumes containing anthocyanin can establish effective symbiosis with rhizobia. We also demonstrated the reliability of AtMyb75 as a reporter gene by CRISPR/Cas9-targeted mutagenesis of the soybean resistance to nodulation Rfg1 gene in the soybean PI377578 (Nod-) inoculated with Sinorhizobium fredii USDA193. Without exception, mature nitrogen-fixation nodules, were formed on purple transgenic hairy roots containing anthocyanin. CONCLUSIONS Anthocyanin is a reliable, user-friendly, convenient, non-destructive, low cost, directly visual reporter for studying symbiotic nitrogen-fixing nodule development and could be widely applied in broad leguminous plants.
Collapse
Affiliation(s)
- Yinglun Fan
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Xiuyuan Wang
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Haiyun Li
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Shuang Liu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Liangshen Jin
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Yanyan Lyu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Mengdi Shi
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Sirui Liu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Xinyue Yang
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Shanhua Lyu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| |
Collapse
|
3
|
Manimaran P, Venkata Reddy S, Moin M, Raghurami Reddy M, Yugandhar P, Mohanraj SS, Balachandran SM, Kirti PB. Activation-tagging in indica rice identifies a novel transcription factor subunit, NF-YC13 associated with salt tolerance. Sci Rep 2017; 7:9341. [PMID: 28839256 PMCID: PMC5570948 DOI: 10.1038/s41598-017-10022-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor with three distinct NF-YA, NF-YB and NF-YC subunits. It plays important roles in plant growth, development and stress responses. We have reported earlier on development of gain-of-function mutants in an indica rice cultivar, BPT-5204. Now, we screened 927 seeds from 70 Ac/Ds plants for salinity tolerance and identified one activation-tagged salt tolerant DS plant (DS-16, T3 generation) that showed enhanced expression of a novel 'histone-like transcription factor' belonging to rice NF-Y subfamily C and was named as OsNF-YC13. Localization studies using GFP-fusion showed that the protein is localized to nucleus and cytoplasm. Real time expression analysis confirmed upregulation of transcript levels of OsNF-YC13 during salt treatment in a tissue specific manner. Biochemical and physiological characterization of the DS-16 revealed enhanced K+/Na+ ratio, proline content, chlorophyll content, enzymes with antioxidant activity etc. DS-16 also showed transcriptional up-regulation of genes that are involved in salinity tolerance. In-silico analysis of OsNF-YC13 promoter region evidenced the presence of various key stress-responsive cis-regulatory elements. OsNF-YC13 subunit alone does not appear to have the capacity for direct transcription activation, but appears to interact with the B- subunits in the process of transactivation.
Collapse
Affiliation(s)
- P Manimaran
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India.
| | - S Venkata Reddy
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - Mazahar Moin
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - M Raghurami Reddy
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - Poli Yugandhar
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - S S Mohanraj
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India
| | - S M Balachandran
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 5000046, India.
| |
Collapse
|
4
|
Mehrotra S, Srivastava V, Ur Rahman L, Kukreja AK. Hairy root biotechnology--indicative timeline to understand missing links and future outlook. PROTOPLASMA 2015; 252:1189-201. [PMID: 25626898 DOI: 10.1007/s00709-015-0761-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/12/2015] [Indexed: 05/13/2023]
Abstract
Agrobacterium rhizogenes-mediated hairy roots (HR) were developed in the laboratory to mimic the natural phenomenon of bacterial gene transfer and occurrence of disease syndrome. The timeline analysis revealed that during 90 s, the research expanded to the hairy root-based secondary metabolite production and different yield enhancement strategies like media optimization, up-scaling, metabolic engineering etc. An outlook indicates that much emphasis has been given to the strategies that are helpful in making this technology more practical in terms of high productivity at low cost. However, a sequential analysis of literature shows that this technique is upgraded to a biotechnology platform where different intra- and interdisciplinary work areas were established, progressed, and diverged to provide scientific benefits of various hairy root-based applications like phytoremediation, molecular farming, biotransformation, etc. In the present scenario, this biotechnology research platform includes (a) elemental research like hairy root-mediated secondary metabolite production coupled with productivity enhancement strategies and (b) HR-based functional research. The latter comprised of hairy root-based applied aspects such as generation of agro-economical traits in plants, production of high value as well as less hazardous molecules through biotransformation/farming and remediation, respectively. This review presents an indicative timeline portrayal of hairy root research reflected by a chronology of research outputs. The timeline also reveals a progressive trend in the state-of-art global advances in hairy root biotechnology. Furthermore, the review also discusses ideas to explore missing links and to deal with the challenges in future progression and prospects of research in all related fields of this important area of plant biotechnology.
Collapse
Affiliation(s)
- Shakti Mehrotra
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants, PO: CIMAP, Picnic Spot Road, Lucknow, 226015, India,
| | | | | | | |
Collapse
|
5
|
Hairy root cultures: A suitable biological system for studying secondary metabolic pathways in plants. Eng Life Sci 2012. [DOI: 10.1002/elsc.201200030] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
6
|
Ko SM, Chung HJ, Lee HY. Mass Production of Gain-of-Function Mutants of Hairy Roots in Catharanthus roseus. ACTA ACUST UNITED AC 2011. [DOI: 10.7732/kjpr.2011.24.5.514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Lin MH, Gresshoff PM, Indrasumunar A, Ferguson BJ. pHairyRed: a novel binary vector containing the DsRed2 reporter gene for visual selection of transgenic hairy roots. MOLECULAR PLANT 2011; 4:537-45. [PMID: 21324970 DOI: 10.1093/mp/ssq084] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We developed a new plant transformation vector, pHairyRed, for enabling high throughput, non-destructive selection of Agrobacterium rhizogenes-mediated 'hairy-root' transformation. pHairyRed allows easy in planta visualization of transgenic tissue with minimal disturbance to the plant. The DsRed2 reporter gene, encoding a red fluorescent protein, was cloned to yield pHairyRed (harbouring a multiple cloning site), which was used with the highly efficient K599 A. rhizogenes strain to infect soybean (Glycine max L. Merrill) plants. DsRed2 fluorescence was easily detected in planta for the duration of a 5-week study with negligible levels of background autofluorescence. This enabled visual selection of transformed roots and subsequent excission of non-transformed roots. pHairyRed-transformed roots nodulated normally when inoculated with Bradyrhizobium japonicum. Within the nodule, DsRed2 fluorescence was plant-specific, being absent in the bacteroid-dominated nodule infected zone. To test the reliability of pHairyRed as a high-fidelity binary vector reporter system, the gene encoding the soybean Nod factor receptor, GmNFR1α, was cloned into the vector for use in a complementation study with a non-nodulating nfr1α mutant of soybean. Complementation was achieved and, without exception, DsRed2 fluorescence was detected in all hairy roots that successfully formed nodules (100%, n = 34). We anticipate broad application of this reporter system for the further analysis of root-related events in soybean and related legumes.
Collapse
Affiliation(s)
- Meng-Han Lin
- Australian Research Council Centre of Excellence for Integrative Legume Research, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
8
|
Echium acanthocarpum hairy root cultures, a suitable system for polyunsaturated fatty acid studies and production. BMC Biotechnol 2011; 11:42. [PMID: 21524311 PMCID: PMC3114721 DOI: 10.1186/1472-6750-11-42] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 04/27/2011] [Indexed: 12/01/2022] Open
Abstract
Background The therapeutic and health promoting role of highly unsaturated fatty acids (HUFAs) from fish, i.e. eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) are well known. These same benefits may however be shared by some of their precursors, the polyunsaturated fatty acids (PUFAs), such as stearidonic acid (SDA, 18:4 n-3). In order to obtain alternative sources for the large-scale production of PUFAs, new searches are being conducted focusing on higher plants oils which can contain these n-3 and n-6 C18 precursors, i.e. SDA and GLA (18:3n-6, γ-linolenic acid). Results The establishment of the novel Echium acanthocarpum hairy root cultures represents a powerful tool in order to research the accumulation and metabolism of fatty acids (FAs) in a plant particularly rich in GLA and SDA. Furthermore, this study constitutes the first example of a Boraginaceae species hairy root induction and establishment for FA studies and production. The dominant PUFAs, 18:2n-6 (LA, linoleic acid) and 18:3n-6 (GLA), accounted for about 50% of total FAs obtained, while the n-3 PUFAs, 18:3n-3 (ALA, α-linolenic acid) and 18:4n-3 (SDA), represented approximately 5% of the total. Production of FAs did not parallel hairy root growth, and the optimal productivity was always associated with the highest biomass density during the culture period. Assuming a compromise between FA production and hairy root biomass, it was determined that sampling times 4 and 5 gave the most useful FA yields. Total lipid amounts were in general comparable between the different hairy root lines (29.75 and 60.95 mg/g DW), with the major lipid classes being triacylglycerols. The FAs were chiefly stored in the hairy roots with very minute amounts being released into the liquid nutrient medium. Conclusions The novel results presented here show the utility and high potential of E. acanthocarpum hairy roots. They are capable of biosynthesizing and accumulating a large range of polyunsaturated FAs, including the target GLA and SDA fatty acids in appreciable quantities.
Collapse
|
9
|
Ono NN, Tian L. The multiplicity of hairy root cultures: prolific possibilities. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:439-446. [PMID: 21421390 DOI: 10.1016/j.plantsci.2010.11.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 05/28/2023]
Abstract
Hairy root cultures (HRCs), induced by Agrobacterium rhizogenes infection, have been established from a wide variety of plant species. HRCs accumulate phytochemicals to levels comparable to that of intact plants and are usually stable in their biosynthetic capacity. When optimized for liquid cultures, hairy roots can be grown in industrial-scale bioreactors providing a convenient, abundant and sustainable source of phytochemicals. Due to their ease of propagation and growth in confined environments, HRCs have also been used in recent years in the synthesis of recombinant therapeutic proteins, especially those that have been challenging to express in bacteria, yeast and mammalian expression systems. Although phytochemicals are recognized for their important roles in plant and human health, large gaps still exist in understanding how phytochemicals (in particular, secondary/specialized metabolites) are synthesized in plants. This review presents recent developments and findings in phytochemical and recombinant protein production, as well as new revelations in gene discovery and biochemical pathway elucidation, by the utilization of HRCs. Although many challenges still exist for industrial applications of HRCs, the immediate future of this diverse system, especially for the bench-side scientists, is still found to be promising and abounding in possibilities.
Collapse
Affiliation(s)
- Nadia N Ono
- Department of Plant Sciences, University of California, Davis, CA, USA
| | | |
Collapse
|
10
|
Abstract
Plant genetic engineering has become one of the most important molecular tools in the modern molecular breeding of crops. Over the last decade, significant progress has been made in the development of new and efficient transformation methods in plants. Despite a variety of available DNA delivery methods, Agrobacterium- and biolistic-mediated transformation remain the two predominantly employed approaches. In particular, progress in Agrobacterium-mediated transformation of cereals and other recalcitrant dicot species has been quite remarkable. In the meantime, other transgenic-enabling technologies have emerged, including generation of marker-free transgenics, gene targeting, and chromosomal engineering. Although transformation of some plant species or elite germplasm remains a challenge, further advancement in transformation technology is expected because the mechanisms of governing the regeneration and transformation processes are now better understood and are being creatively applied to designing improved transformation methods or to developing new enabling technologies.
Collapse
|
11
|
Asakura Y, Seki H, Muranaka T, Yamamura Y, Kurosaki F. Enhanced Secretory Activity of Atropa belladonna Hairy Root Culture Over-expressing ADP-Ribosylation Factor Gene. Biol Pharm Bull 2008; 31:1465-8. [DOI: 10.1248/bpb.31.1465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuki Asakura
- Department of Plant Resource Sciences, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | | | | | - Yoshimi Yamamura
- Department of Plant Resource Sciences, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | - Fumiya Kurosaki
- Department of Plant Resource Sciences, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| |
Collapse
|
12
|
|
13
|
Ahn JH, Kim J, Yoo SJ, Yoo SY, Roh H, Choi JH, Choi MS, Chung KS, Han EJ, Hong SM, Jung SH, Kang HJ, Kim BK, Kim MD, Kim YK, Kim YH, Lee H, Park SH, Yang JH, Yang JW, Yoo DH, Yoo SK, Lee JS. Isolation of 151 mutants that have developmental defects from T-DNA tagging. PLANT & CELL PHYSIOLOGY 2007; 48:169-78. [PMID: 17164321 DOI: 10.1093/pcp/pcl052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In order to understand the mechanisms underlying plant development, a necessary first step involves the elucidation of the functions of the genes, via the analysis of mutants that exhibit developmental defects. In this study, an activation tagging mutant library harboring 80,650 independent Arabidopsis transformants was generated in order to screen for developmental mutants. A total of 129 mutants manifesting dominant developmental abnormalities were isolated, and their T-DNA insertion loci were mapped. The activation of one or more genes adjacent to a T-DNA insertion locus was confirmed in eight dominant mutants. A gene adjacent to the right border was usually activated by the 35S enhancers. Interestingly, the transcriptional activation of multiple genes within a broad range was observed in one of the mutants, which raises the possibility that activation by the 35S enhancers was not limited strictly to a single gene. In order to gain a better understanding of sexual reproduction in higher plants, we isolated 22 mutants exhibiting defects in female gametophyte development, and determined their T-DNA insertion loci. We propose that this mutant population may prove useful in the further determination of the functions of genes that play important roles in plant development.
Collapse
Affiliation(s)
- Ji Hoon Ahn
- Plant Signaling Network Research Center, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Guillon S, Trémouillaux-Guiller J, Pati PK, Rideau M, Gantet P. Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol 2006; 24:403-9. [PMID: 16870285 DOI: 10.1016/j.tibtech.2006.07.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 05/23/2006] [Accepted: 07/12/2006] [Indexed: 11/21/2022]
Abstract
In the past two decades, hairy root research for the production of important secondary metabolites has received a lot of attention. The addition of knowledge to overcome the limiting culture parameters of the regulation of the metabolic pathway by specific molecules and the development of novel tools for metabolic engineering now offer new possibilities to improve the hairy root technique for the production of metabolites. Furthermore, engineering hairy roots for the production of animal proteins of therapeutic interest in confined and controlled in vitro conditions is seen as one of the exciting spin-offs of the technology. Recent progress made in the scale-up of the hairy root cultures has paved the way for industrial exploitation of this system. This review highlights some of the significant progress made in the past three years and discusses the potential implications of that research.
Collapse
Affiliation(s)
- Stéphanie Guillon
- UPRES EA 2106 Biomolécules et Biotechnologies Végétales, Université François Rabelais, UFR des Sciences Pharmaceutiques Parc de Grandmont, 37200 Tours, France
| | | | | | | | | |
Collapse
|
15
|
Suzuki M, Xiang T, Ohyama K, Seki H, Saito K, Muranaka T, Hayashi H, Katsube Y, Kushiro T, Shibuya M, Ebizuka Y. Lanosterol Synthase in Dicotyledonous Plants. ACTA ACUST UNITED AC 2006; 47:565-71. [PMID: 16531458 DOI: 10.1093/pcp/pcj031] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sterols are important as structural components of plasma membranes and precursors of steroidal hormones in both animals and plants. Plant sterols show a wide structural variety and significant structural differences from those of animals. To elucidate the origin of structural diversity in plant sterols, their biosynthesis has been extensively studied [Benveniste (2004) Annu. Rev. Plant. Biol. 55: 429, Schaller (2004) Plant Physiol. Biochem. 42: 465]. The differences in the biosynthesis of sterols between plants and animals begin at the step of cyclization of 2,3-oxidosqualene, which is cyclized to lanosterol in animals and to cycloartenol in plants. However, here we show that plants also have the ability to synthesize lanosterol directly from 2,3-oxidosqualene, which may lead to a new pathway to plant sterols. The Arabidopsis gene At3g45130, designated LAS1, encodes a functional lanosterol synthase in plants. A phylogenetic tree showed that LAS1 belongs to the previously uncharacterized branch of oxidosqualene cyclases, which differs from the cycloartenol synthase branch. Panax PNZ on the same branch was also shown to be a lanosterol synthase in a yeast heterologous expression system. The higher diversity of plant sterols may require two biosynthetic routes in steroidal backbone formation.
Collapse
Affiliation(s)
- Masashi Suzuki
- RIKEN Plant Science Center, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|