1
|
Sharma K, Gupta S, Thokchom SD, Jangir P, Kapoor R. Arbuscular Mycorrhiza-Mediated Regulation of Polyamines and Aquaporins During Abiotic Stress: Deep Insights on the Recondite Players. FRONTIERS IN PLANT SCIENCE 2021; 12:642101. [PMID: 34220878 PMCID: PMC8247573 DOI: 10.3389/fpls.2021.642101] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/11/2021] [Indexed: 05/27/2023]
Abstract
Environmental stresses of (a)biotic origin induce the production of multitudinous compounds (metabolites and proteins) as protective defense mechanisms in plants. On account of the regulation of some of these compounds, arbuscular mycorrhizal fungi (AMF) reinforce the inherent tolerance of plants toward the stress of different origins and kind. This article reviews two specific fundamental mechanisms that are categorically associated with mycorrhiza in alleviating major abiotic stresses, salt, drought, and heavy metal (HM) toxicity. It puts emphasis on aquaporins (AQPs), the conduits of water and stress signals; and polyamines (PAs), the primordial stress molecules, which are regulated by AMF to assure water, nutrient, ion, and redox homeostasis. Under stressful conditions, AMF-mediated host AQP responses register distinct patterns: an upregulation to encourage water and nutrient uptake; a downregulation to restrict water loss and HM uptake; or no alterations. The patterns thereof are apparently an integrative outcome of the duration, intensity, and type of stress, AMF species, the interaction of fungal AQPs with that of plants, and the host type. However, the cellular and molecular bases of mycorrhizal influence on host AQPs are largely unexplored. The roles of PAs in augmenting the antioxidant defense system and improving the tolerance against oxidative stress are well-evident. However, the precise mechanism by which mycorrhiza accords stress tolerance by influencing the PA metabolism per se is abstruse and broadly variable under different stresses and plant species. This review comprehensively analyzes the current state-of-art of the involvement of AMF in "PA and AQP modulation" under abiotic stress and identifies the lesser-explored landscapes, gaps in understanding, and the accompanying challenges. Finally, this review outlines the prospects of AMF in realizing sustainable agriculture and provides insights into potential thrust areas of research on AMF and abiotic stress.
Collapse
Affiliation(s)
| | | | | | | | - Rupam Kapoor
- Department of Botany, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Khatabi B, Gharechahi J, Ghaffari MR, Liu D, Haynes PA, McKay MJ, Mirzaei M, Salekdeh GH. Plant-Microbe Symbiosis: What Has Proteomics Taught Us? Proteomics 2020; 19:e1800105. [PMID: 31218790 DOI: 10.1002/pmic.201800105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/04/2019] [Indexed: 11/08/2022]
Abstract
Beneficial microbes have a positive impact on the productivity and fitness of the host plant. A better understanding of the biological impacts and underlying mechanisms by which the host derives these benefits will help to address concerns around global food production and security. The recent development of omics-based technologies has broadened our understanding of the molecular aspects of beneficial plant-microbe symbiosis. Specifically, proteomics has led to the identification and characterization of several novel symbiosis-specific and symbiosis-related proteins and post-translational modifications that play a critical role in mediating symbiotic plant-microbe interactions and have helped assess the underlying molecular aspects of the symbiotic relationship. Integration of proteomic data with other "omics" data can provide valuable information to assess hypotheses regarding the underlying mechanism of symbiosis and help define the factors affecting the outcome of symbiosis. Herein, an update is provided on the current and potential applications of symbiosis-based "omic" approaches to dissect different aspects of symbiotic plant interactions. The application of proteomics, metaproteomics, and secretomics as enabling approaches for the functional analysis of plant-associated microbial communities is also discussed.
Collapse
Affiliation(s)
- Behnam Khatabi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Javad Gharechahi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Dilin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, P. R. China
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Matthew J McKay
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
3
|
Recchia GH, Konzen ER, Cassieri F, Caldas DGG, Tsai SM. Arbuscular Mycorrhizal Symbiosis Leads to Differential Regulation of Drought-Responsive Genes in Tissue-Specific Root Cells of Common Bean. Front Microbiol 2018; 9:1339. [PMID: 30013521 PMCID: PMC6036286 DOI: 10.3389/fmicb.2018.01339] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/31/2018] [Indexed: 11/13/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) colonization in plants promotes both local and systemic changes in the gene expression profiles of the host that might be relevant for drought-stress perception and response. Drought-tolerant common bean plants (cv. BAT 477), colonized by a mixture of AMF (Glomus clarum, Acaulospora scrobiculata, and Gigaspora rosea), were exposed to a water deprivation regime of 96 h during pre-flowering. Root transcriptomes were accessed through RNA-Seq revealing a set of 9,965 transcripts with significant differential regulation in inoculated plants during a water deficit event, and 10,569 in non-inoculated. These data include 1,589 transcripts that are exclusively regulated by AMF-inoculation, and 2,313 under non-inoculation conditions. Relative gene expression analyses of nine aquaporin-related transcripts were performed in roots and leaves of plants harvested at initial stages of treatment. Significant shifts in gene expression were detected in AM water deficit-treated roots, in relation to non-inoculated, between 48 and 72 h. Leaves also showed significant mycorrhizal influence in gene expression, especially after 96 h. Root cortical cells, harboring or not arbuscules, were collected from both inoculation treatments through a laser microdissection-based technique. This allowed the identification of transcripts, such as the aquaporin PvPIP2;3 and Glucan 1,3 β-Glucosidase, that are unique to arbuscule-containing cells. During the water deficit treatment, AMF colonization exerted a fine-tune regulation in the expression of genes in the host. That seemed to initiate in arbuscule-containing cells and, as the stressful condition persisted, propagated to the whole-plant through secondary signaling events. Collectively, these results demonstrate that arbuscular mycorrhization leads to shifts in common bean's transcriptome that could potentially impact its adaptation capacity during water deficit events.
Collapse
Affiliation(s)
- Gustavo H. Recchia
- Laboratory of Molecular and Cellular Biology, Center of Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | | | | | | |
Collapse
|
4
|
Proteomic approach to understand the molecular physiology of symbiotic interaction between Piriformospora indica and Brassica napus. Sci Rep 2018; 8:5773. [PMID: 29636503 PMCID: PMC5893561 DOI: 10.1038/s41598-018-23994-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/15/2018] [Indexed: 01/18/2023] Open
Abstract
Many studies have been now focused on the promising approach of fungal endophytes to protect the plant from nutrient deficiency and environmental stresses along with better development and productivity. Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we used integrated in-depth proteome analyses to characterize the relationship between endophyte Piriformospora indica and Brassica napus plant highlighting its potential involvement in symbiosis and overall growth and development of the plant. An LC-MS/MS based label-free quantitative technique was used to evaluate the differential proteomics under P. indica treatment vs. control plants. In this study, 8,123 proteins were assessed, of which 46 showed significant abundance (34 downregulated and 12 upregulated) under high confidence conditions (p-value ≤ 0.05, fold change ≥2, confidence level 95%). Mapping of identified differentially expressed proteins with bioinformatics tools such as GO and KEGG pathway analysis showed significant enrichment of gene sets involves in metabolic processes, symbiotic signaling, stress/defense responses, energy production, nutrient acquisition, biosynthesis of essential metabolites. These proteins are responsible for root's architectural modification, cell remodeling, and cellular homeostasis during the symbiotic growth phase of plant's life. We tried to enhance our knowledge that how the biological pathways modulate during symbiosis?
Collapse
|
5
|
Aloui A, Recorbet G, Lemaître-Guillier C, Mounier A, Balliau T, Zivy M, Wipf D, Dumas-Gaudot E. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis. MYCORRHIZA 2018; 28:1-16. [PMID: 28725961 DOI: 10.1007/s00572-017-0789-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
In arbuscular mycorrhizal (AM) roots, the plasma membrane (PM) of the host plant is involved in all developmental stages of the symbiotic interaction, from initial recognition to intracellular accommodation of intra-radical hyphae and arbuscules. Although the role of the PM as the agent for cellular morphogenesis and nutrient exchange is especially accentuated in endosymbiosis, very little is known regarding the PM protein composition of mycorrhizal roots. To obtain a global overview at the proteome level of the host PM proteins as modified by symbiosis, we performed a comparative protein profiling of PM fractions from Medicago truncatula roots either inoculated or not with the AM fungus Rhizophagus irregularis. PM proteins were isolated from root microsomes using an optimized discontinuous sucrose gradient; their subsequent analysis by liquid chromatography followed by mass spectrometry (MS) identified 674 proteins. Cross-species sequence homology searches combined with MS-based quantification clearly confirmed enrichment in PM-associated proteins and depletion of major microsomal contaminants. Changes in protein amounts between the PM proteomes of mycorrhizal and non-mycorrhizal roots were monitored further by spectral counting. This workflow identified a set of 82 mycorrhiza-responsive proteins that provided insights into the plant PM response to mycorrhizal symbiosis. Among them, the association of one third of the mycorrhiza-responsive proteins with detergent-resistant membranes pointed at partitioning to PM microdomains. The PM-associated proteins responsive to mycorrhization also supported host plant control of sugar uptake to limit fungal colonization, and lipid turnover events in the PM fraction of symbiotic roots. Because of the depletion upon symbiosis of proteins mediating the replacement of phospholipids by phosphorus-free lipids in the plasmalemma, we propose a role of phosphate nutrition in the PM composition of mycorrhizal roots.
Collapse
Affiliation(s)
- Achref Aloui
- UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050, Hammam-lif, Tunisia
| | - Ghislaine Recorbet
- UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France.
| | - Christelle Lemaître-Guillier
- UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France
| | - Arnaud Mounier
- UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France
| | - Thierry Balliau
- UMR de Génétique végétale, PAPPSO, Ferme du Moulon, 91190, Gif sur Yvette, France
| | - Michel Zivy
- UMR de Génétique végétale, PAPPSO, Ferme du Moulon, 91190, Gif sur Yvette, France
| | - Daniel Wipf
- UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France
| | - Eliane Dumas-Gaudot
- UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France
| |
Collapse
|
6
|
Bernardo L, Morcia C, Carletti P, Ghizzoni R, Badeck FW, Rizza F, Lucini L, Terzi V. Proteomic insight into the mitigation of wheat root drought stress by arbuscular mycorrhizae. J Proteomics 2017; 169:21-32. [PMID: 28366879 DOI: 10.1016/j.jprot.2017.03.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) are plant growth promoters that ameliorate plant-water relations and the nutrient uptake of wheat. In this work, two cultivars of Triticum spp., a bread and a durum wheat, grown under drought stress and inoculated or not by AMF, are evaluated through a shotgun proteomic approach. The AMF association had beneficial effects as compared to non-mycorrhizal roots, in both bread and durum wheat. The beneficial symbiosis was confirmed by measuring morphological and physiological traits. In our work, we identified 50 statistically differential proteins in the bread wheat cultivar and 66 differential proteins in the durum wheat cultivar. The findings highlighted a modulation of proteins related to sugar metabolism, cell wall rearrangement, cytoskeletal organization and sulphur-containing proteins, as well as proteins related to plant stress responses. Among differentially expressed proteins both cultivars evidenced a decrease in sucrose:fructan 6-fructosyltransferas. In durum wheat oxylipin signalling pathway was involved with two proteins: increased 12-oxo-phytodienoic acid reductase and decreased jasmonate-induced protein, both related to the biosynthesis of jasmonic acid. Interactome analysis highlighted the possible involvement of ubiquitin although not evidenced among differentially expressed proteins. The AMF association helps wheat roots reducing the osmotic stress and maintaining cellular integrity. BIOLOGICAL SIGNIFICANCE Drought is one of the major constraints that plants must face in some areas of the world, associated to climate change, negatively affecting the worldwide plant productivity. The adoption of innovative agronomic protocols may represent a winning strategy in facing this challenge. The arbuscular mycorrhizal fungi (AMF) inoculation may represent a natural and sustainable way to mitigate the negative effects due to drought in several crop, ameliorating plant growth and development. Studies on the proteomic responses specific to AMF in drought-stressed plants will help clarify how mycorrhization elicits plant growth, nutrient uptake, and stress-tolerance responses. Such studies also offer the potential to find biological markers and genetic targets to be used during breeding for new drought-resistant varieties.
Collapse
Affiliation(s)
- Letizia Bernardo
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, I-29017 Fiorenzuola d'Arda, PC, Italy.
| | - Caterina Morcia
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, I-29017 Fiorenzuola d'Arda, PC, Italy
| | - Paolo Carletti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale dell'Università, 16, I-35020 Legnaro, PD, Italy
| | - Roberta Ghizzoni
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, I-29017 Fiorenzuola d'Arda, PC, Italy
| | - Franz W Badeck
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, I-29017 Fiorenzuola d'Arda, PC, Italy
| | - Fulvia Rizza
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, I-29017 Fiorenzuola d'Arda, PC, Italy
| | - Luigi Lucini
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, I-29122 PC, Italy
| | - Valeria Terzi
- Genomics Research Centre (CREA-GPG), Council for Agricultural Research and Economics, Via San Protaso 302, I-29017 Fiorenzuola d'Arda, PC, Italy
| |
Collapse
|
7
|
Sebastiana M, Martins J, Figueiredo A, Monteiro F, Sardans J, Peñuelas J, Silva A, Roepstorff P, Pais MS, Coelho AV. Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus. MYCORRHIZA 2017; 27:109-128. [PMID: 27714470 DOI: 10.1007/s00572-016-0734-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
An increased knowledge on the real impacts of ectomycorrhizal symbiosis in forest species is needed to optimize forest sustainable productivity and thus to improve forest services and their capacity to act as carbon sinks. In this study, we investigated the response of an oak species to ectomycorrhizae formation using a proteomics approach complemented by biochemical analysis of carbohydrate levels. Comparative proteome analysis between mycorrhizal and nonmycorrhizal cork oak plants revealed no differences at the foliar level. However, the protein profile of 34 unique oak proteins was altered in the roots. Consistent with the results of the biochemical analysis, the proteome analysis of the mycorrhizal roots suggests a decreasing utilization of sucrose for the metabolic activity of mycorrhizal roots which is consistent with an increased allocation of carbohydrates from the plant to the fungus in order to sustain the symbiosis. In addition, a promotion of protein unfolding mechanisms, attenuation of defense reactions, increased nutrient mobilization from the plant-fungus interface (N and P), as well as cytoskeleton rearrangements and induction of plant cell wall loosening for fungal root accommodation in colonized roots are also suggested by the results. The suggested improvement in root capacity to take up nutrients accompanied by an increase of root biomass without apparent changes in aboveground biomass strongly re-enforces the potential of mycorrhizal inoculation to improve cork oak forest resistance capacity to cope with coming climate change.
Collapse
Affiliation(s)
- Mónica Sebastiana
- Plant Functional Genomics Unit, Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, Lisbon University, Campo Grande, Edificio C2, piso 4, 1749-016, Lisbon, Portugal.
| | - Joana Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da Republica, 2780-s157, Oeiras, Portugal
| | - Andreia Figueiredo
- Plant Functional Genomics Unit, Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, Lisbon University, Campo Grande, Edificio C2, piso 4, 1749-016, Lisbon, Portugal
| | - Filipa Monteiro
- Plant Functional Genomics Unit, Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, Lisbon University, Campo Grande, Edificio C2, piso 4, 1749-016, Lisbon, Portugal
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193, Catalonia, Spain
| | - Anabela Silva
- Plant Functional Genomics Unit, Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, Lisbon University, Campo Grande, Edificio C2, piso 4, 1749-016, Lisbon, Portugal
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Maria Salomé Pais
- Plant Functional Genomics Unit, Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, Lisbon University, Campo Grande, Edificio C2, piso 4, 1749-016, Lisbon, Portugal
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da Republica, 2780-s157, Oeiras, Portugal
| |
Collapse
|
8
|
Peinado-Guevara LI, López-Meyer M, López-Valenzuela JA, Maldonado-Mendoza IE, Galindo-Flores H, Campista-León S, Medina-Godoy S. Comparative proteomic analysis of leaf tissue from tomato plants colonized with Rhizophagus irregularis. Symbiosis 2017. [DOI: 10.1007/s13199-016-0470-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Rathi D, Gayen D, Gayali S, Chakraborty S, Chakraborty N. Legume proteomics: Progress, prospects, and challenges. Proteomics 2015; 16:310-27. [DOI: 10.1002/pmic.201500257] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/19/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Dipak Gayen
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Saurabh Gayali
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| |
Collapse
|
10
|
Abdallah C, Valot B, Guillier C, Mounier A, Balliau T, Zivy M, van Tuinen D, Renaut J, Wipf D, Dumas-Gaudot E, Recorbet G. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis. J Proteomics 2014; 108:354-68. [PMID: 24925269 DOI: 10.1016/j.jprot.2014.05.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/07/2014] [Accepted: 05/12/2014] [Indexed: 11/25/2022]
Abstract
UNLABELLED Arbuscular mycorrhizal (AM) symbiosis that associates roots of most land plants with soil-borne fungi (Glomeromycota), is characterized by reciprocal nutritional benefits. Fungal colonization of plant roots induces massive changes in cortical cells where the fungus differentiates an arbuscule, which drives proliferation of the plasma membrane. Despite the recognized importance of membrane proteins in sustaining AM symbiosis, the root microsomal proteome elicited upon mycorrhiza still remains to be explored. In this study, we first examined the qualitative composition of the root membrane proteome of Medicago truncatula after microsome enrichment and subsequent in depth analysis by GeLC-MS/MS. The results obtained highlighted the identification of 1226 root membrane protein candidates whose cellular and functional classifications predispose plastids and protein synthesis as prevalent organelle and function, respectively. Changes at the protein abundance level between the membrane proteomes of mycorrhizal and nonmycorrhizal roots were further monitored by spectral counting, which retrieved a total of 96 proteins that displayed a differential accumulation upon AM symbiosis. Besides the canonical markers of the periarbuscular membrane, new candidates supporting the importance of membrane trafficking events during mycorrhiza establishment/functioning were identified, including flotillin-like proteins. The data have been deposited to the ProteomeXchange with identifier PXD000875. BIOLOGICAL SIGNIFICANCE During arbuscular mycorrhizal symbiosis, one of the most widespread mutualistic associations in nature, the endomembrane system of plant roots is believed to undergo qualitative and quantitative changes in order to sustain both the accommodation process of the AM fungus within cortical cells and the exchange of nutrients between symbionts. Large-scale GeLC-MS/MS proteomic analysis of the membrane fractions from mycorrhizal and nonmycorrhizal roots of M. truncatula coupled to spectral counting retrieved around one hundred proteins that displayed changes in abundance upon mycorrhizal establishment. The symbiosis-related membrane proteins that were identified mostly function in signaling/membrane trafficking and nutrient uptake regulation. Besides extending the coverage of the root membrane proteome of M. truncatula, new candidates involved in the symbiotic program emerged from the current study, which pointed out a dynamic reorganization of microsomal proteins during the accommodation of AM fungi within cortical cells.
Collapse
Affiliation(s)
- Cosette Abdallah
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France; Environmental and Agro-Biotechnologies Department, Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, Belvaux L-4422, Luxembourg.
| | - Benoit Valot
- UMR de Génétique Végétale, PAPPSO, Ferme du Moulon, 91190 Gif sur Yvette, France.
| | - Christelle Guillier
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.
| | - Arnaud Mounier
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.
| | - Thierry Balliau
- UMR de Génétique Végétale, PAPPSO, Ferme du Moulon, 91190 Gif sur Yvette, France.
| | - Michel Zivy
- UMR de Génétique Végétale, PAPPSO, Ferme du Moulon, 91190 Gif sur Yvette, France.
| | - Diederik van Tuinen
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.
| | - Jenny Renaut
- Environmental and Agro-Biotechnologies Department, Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, Belvaux L-4422, Luxembourg.
| | - Daniel Wipf
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.
| | - Eliane Dumas-Gaudot
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.
| | - Ghislaine Recorbet
- Environmental and Agro-Biotechnologies Department, Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, Belvaux L-4422, Luxembourg.
| |
Collapse
|
11
|
Rich MK, Schorderet M, Reinhardt D. The role of the cell wall compartment in mutualistic symbioses of plants. FRONTIERS IN PLANT SCIENCE 2014; 5:238. [PMID: 24917869 PMCID: PMC4041022 DOI: 10.3389/fpls.2014.00238] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/12/2014] [Indexed: 05/18/2023]
Abstract
Plants engage in mutualistic interactions with microbes that improve their mineral nutrient supply. The most wide-spread symbiotic association is arbuscular mycorrhiza (AM), in which fungi of the order Glomeromycota invade roots and colonize the cellular lumen of cortical cells. The establishment of this interaction requires a dedicated molecular-genetic program and a cellular machinery of the plant host. This program is partially shared with the root nodule symbiosis (RNS), which involves prokaryotic partners collectively referred to as rhizobia. Both, AM and RNS are endosymbioses that involve intracellular accommodation of the microbial partner in the cells of the plant host. Since plant cells are surrounded by sturdy cell walls, root penetration and cell invasion requires mechanisms to overcome this barrier while maintaining the cytoplasm of the two partners separate during development of the symbiotic association. Here, we discuss the diverse functions of the cell wall compartment in establishment and functioning of plant symbioses with the emphasis on AM and RNS, and we describe the stages of the AM association between the model organisms Petunia hybrida and Rhizophagus irregularis.
Collapse
Affiliation(s)
| | | | - Didier Reinhardt
- Department of Biology, University of FribourgFribourg, Switzerland
| |
Collapse
|
12
|
Recorbet G, Abdallah C, Renaut J, Wipf D, Dumas-Gaudot E. Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence. THE NEW PHYTOLOGIST 2013; 199:26-40. [PMID: 23638913 DOI: 10.1111/nph.12287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/14/2013] [Indexed: 05/24/2023]
Abstract
The roots of most land plants can enter a relationship with soil-borne fungi belonging to the phylum Glomeromycota. This symbiosis with arbuscular mycorrhizal (AM) fungi belongs to the so-called biotrophic interactions, involving the intracellular accommodation of a microorganism by a living plant cell without causing the death of the host. Although profiling technologies have generated an increasing depository of plant and fungal proteins eligible for sustaining AM accommodation and functioning, a bottleneck exists for their functional analysis as these experiments are difficult to carry out with mycorrhiza. Nonetheless, the expansion of gene-to-phenotype reverse genetic tools, including RNA interference and transposon silencing, have recently succeeded in elucidating some of the plant-related protein candidates. Likewise, despite the ongoing absence of transformation tools for AM fungi, host-induced gene silencing has allowed knockdown of fungal gene expression in planta for the first time, thus unlocking a technological limitation in deciphering the functional pertinence of glomeromycotan proteins during mycorrhizal establishment. This review is thus intended to draw a picture of our current knowledge about the plant and fungal protein actors that have been demonstrated to be functionally implicated in sustaining AM symbiosis mostly on the basis of silencing approaches.
Collapse
Affiliation(s)
- Ghislaine Recorbet
- UMR Agroécologie INRA 1347/Agrosup, Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065, Dijon Cedex, France
| | - Cosette Abdallah
- UMR Agroécologie INRA 1347/Agrosup, Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065, Dijon Cedex, France
- Environmental and Agro-Biotechnologies Department, Centre de Recherche Public- Gabriel Lippmann, 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Jenny Renaut
- Environmental and Agro-Biotechnologies Department, Centre de Recherche Public- Gabriel Lippmann, 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Daniel Wipf
- UMR Agroécologie INRA 1347/Agrosup, Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065, Dijon Cedex, France
| | - Eliane Dumas-Gaudot
- UMR Agroécologie INRA 1347/Agrosup, Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065, Dijon Cedex, France
| |
Collapse
|
13
|
Cangahuala-Inocente GC, Da Silva MF, Johnson JM, Manga A, van Tuinen D, Henry C, Lovato PE, Dumas-Gaudot E. Arbuscular mycorrhizal symbiosis elicits proteome responses opposite of P-starvation in SO4 grapevine rootstock upon root colonisation with two Glomus species. MYCORRHIZA 2011; 21:473-493. [PMID: 21210159 DOI: 10.1007/s00572-010-0352-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 12/09/2010] [Indexed: 05/08/2023]
Abstract
Although plant biotisation with arbuscular mycorrhizal fungi (AMF) is a promising strategy for improving plant health, a better knowledge regarding the molecular mechanisms involved is required. In this context, we sought to analyse the root proteome of grapevine rootstock Selection Oppenheim 4 (SO4) upon colonisation with two AMF. As expected, AMF colonisation stimulates plant biomass. At the proteome level, changes in protein amounts due to AMF colonisation resulted in 39 differentially accumulated two-dimensional electrophoresis spots in AMF roots relative to control. Out of them, 25 were co-identified in SO4 roots upon colonisation by Glomus irregulare and Glomus mosseae supporting the existence of conserved plant responses to AM symbiosis in a woody perennial species. Among the 18 proteins whose amount was reduced in AMF-colonised roots were proteins involved in glycolysis, protein synthesis and fate, defence and cell rescue, ethylene biosynthesis and purine and pyrimidine salvage degradation. The six co-identified proteins whose amount was increased had functions in energy production, signalling, protein synthesis and fate including proteases. Altogether these data confirmed that a part of the accommodation program of AMF previously characterized in annual plants is maintained within roots of the SO4 rootstock cuttings. Nonetheless, particular responses also occurred involving proteins of carbon metabolism, development and root architecture, defence and cell rescue, anthocyanin biosynthesis and P remobilization, previously reported as induced upon P-starvation. This suggests the occurrence of P reprioritization upon AMF colonization in a woody perennial plant species with agronomical interest.
Collapse
Affiliation(s)
- Gabriela Claudia Cangahuala-Inocente
- Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga 1346, Itacorubi, Caixa Postal 476, CEP 88034-001, Florianópolis, Santa Catarina, Brazil
| | - Maguida Fabiana Da Silva
- Embrapa-Centro de Pesquisa Agroflorestal do Amapá, Code Postal 10, CEP 68902-280, Macapá, Amapá, Brazil
| | - Jean-Martial Johnson
- UMR INRA 1088, CNRS 5184, U. Bourgogne, PME, INRA, BP 86510, 21065, Dijon Cedex, France
| | - Anicet Manga
- Laboratoire de Biotechnologies des Champignons, Département de Biologie Végétale, Université Cheikh Anta Diop de Dakar, BP 5005, Dakar, Sénégal
| | - Diederik van Tuinen
- UMR INRA 1088, CNRS 5184, U. Bourgogne, PME, INRA, BP 86510, 21065, Dijon Cedex, France
| | | | - Paulo Emílio Lovato
- Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga 1346, Itacorubi, Caixa Postal 476, CEP 88034-001, Florianópolis, Santa Catarina, Brazil.
| | - Eliane Dumas-Gaudot
- UMR INRA 1088, CNRS 5184, U. Bourgogne, PME, INRA, BP 86510, 21065, Dijon Cedex, France
| |
Collapse
|
14
|
Vertommen A, Panis B, Swennen R, Carpentier SC. Challenges and solutions for the identification of membrane proteins in non-model plants. J Proteomics 2011; 74:1165-81. [PMID: 21354347 DOI: 10.1016/j.jprot.2011.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/04/2011] [Accepted: 02/16/2011] [Indexed: 01/27/2023]
Abstract
The workhorse for proteomics in non-model plants is classical two-dimensional electrophoresis, a combination of iso-electric focusing and SDS-PAGE. However, membrane proteins with multiple membrane spanning domains are hardly detected on classical 2-DE gels because of their low abundance and poor solubility in aqueous media. In the current review, solutions that have been proposed to handle these two problems in non-model plants are discussed. An overview of alternative techniques developed for membrane proteomics is provided together with a comparison of their strong and weak points. Subsequently, strengths and weaknesses of the different techniques and methods to evaluate the identification of membrane proteins are discussed. Finally, an overview of recent plant membrane proteome studies is provided with the used separation technique and the number of identified membrane proteins listed.
Collapse
Affiliation(s)
- A Vertommen
- Laboratory of Tropical Crop Improvement, Department of Biosystems, K.U. Leuven, Kasteelpark Arenberg 13, B-3001 Heverlee, Belgium
| | | | | | | |
Collapse
|
15
|
Vera-Estrella R, Bohnert HJ. Physiological Roles for the PIP Family of Plant Aquaporins. THE PLANT PLASMA MEMBRANE 2011. [DOI: 10.1007/978-3-642-13431-9_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Colditz F, Braun HP. Medicago truncatula proteomics. J Proteomics 2010; 73:1974-85. [PMID: 20621211 DOI: 10.1016/j.jprot.2010.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 06/28/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
Abstract
Legumes (Fabaceae) are unique in their ability to enter into an elaborate symbiosis with nitrogen-fixing rhizobial bacteria. Rhizobia-legume (RL) symbiosis represents one of the most productive nitrogen-fixing systems and effectively renders the host plants to be more or less independent of other nitrogen sources. Due to high protein content, legumes are among the most economically important crop families. Beyond that, legumes consist of over 16,000 species assigned to 650 genera. In most cases, the genomes of legumes are large and polyploid, which originally did not predestine these plants as genetic model systems. It was not until the early 1990 th that Medicago truncatula was selected as the model plant for studying Fabaceae biology. M. truncatula is closely related to many economically important legumes and therefore its investigation is of high relevance for agriculture. Recently, quite a number of studies were published focussing on in depth characterizations of the M. truncatula proteome. The present review aims to summarize these studies, especially those which focus on the root system and its dynamic changes induced upon symbiotic or pathogenic interactions with microbes.
Collapse
Affiliation(s)
- Frank Colditz
- Leibniz University of Hannover, Institute for Plant Genetics, Dept. III, Plant Molecular Biology, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| | | |
Collapse
|
17
|
Recorbet G, Valot B, Robert F, Gianinazzi-Pearson V, Dumas-Gaudot E. Identification of in planta-expressed arbuscular mycorrhizal fungal proteins upon comparison of the root proteomes of Medicago truncatula colonised with two Glomus species. Fungal Genet Biol 2010; 47:608-18. [DOI: 10.1016/j.fgb.2010.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/26/2010] [Accepted: 03/08/2010] [Indexed: 11/27/2022]
|
18
|
Ruiz-Lozano JM, Aroca R. Modulation of Aquaporin Genes by the Arbuscular Mycorrhizal Symbiosis in Relation to Osmotic Stress Tolerance. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2010. [DOI: 10.1007/978-90-481-9449-0_17] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
De Hoff PL, Brill LM, Hirsch AM. Plant lectins: the ties that bind in root symbiosis and plant defense. Mol Genet Genomics 2009; 282:1-15. [PMID: 19488786 PMCID: PMC2695554 DOI: 10.1007/s00438-009-0460-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 05/10/2009] [Indexed: 12/12/2022]
Abstract
Lectins are a diverse group of carbohydrate-binding proteins that are found within and associated with organisms from all kingdoms of life. Several different classes of plant lectins serve a diverse array of functions. The most prominent of these include participation in plant defense against predators and pathogens and involvement in symbiotic interactions between host plants and symbiotic microbes, including mycorrhizal fungi and nitrogen-fixing rhizobia. Extensive biological, biochemical, and molecular studies have shed light on the functions of plant lectins, and a plethora of uncharacterized lectin genes are being revealed at the genomic scale, suggesting unexplored and novel diversity in plant lectin structure and function. Integration of the results from these different types of research is beginning to yield a more detailed understanding of the function of lectins in symbiosis, defense, and plant biology in general.
Collapse
Affiliation(s)
- Peter L De Hoff
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
20
|
Mathesius U. Comparative proteomic studies of root–microbe interactions. J Proteomics 2009; 72:353-66. [DOI: 10.1016/j.jprot.2008.12.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/11/2008] [Accepted: 12/12/2008] [Indexed: 01/19/2023]
|
21
|
Ramos AC, Martins MA, Okorokova-Façanha AL, Olivares FL, Okorokov LA, Sepúlveda N, Feijó JA, Façanha AR. Arbuscular mycorrhizal fungi induce differential activation of the plasma membrane and vacuolar H+ pumps in maize roots. MYCORRHIZA 2009; 19:69-80. [PMID: 18841397 DOI: 10.1007/s00572-008-0204-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 09/16/2008] [Indexed: 05/21/2023]
Abstract
Roots undergo multiple changes as a consequence of arbuscular mycorrhizal (AM) interactions. One of the major alterations expected is the induction of membrane transport systems, including proton pumps. In this work, we investigated the changes in the activities of vacuolar and plasma membrane (PM) H(+) pumps from maize roots (Zea mays L.) in response to colonization by two species of AM fungi, Gigaspora margarita and Glomus clarum. Both the vacuolar and PM H(+)-ATPase activities were inhibited, while a concomitant strong stimulation of the vacuolar H(+)-PPase was found in the early stages of root colonization by G. clarum (30 days after inoculation), localized in the younger root regions. In contrast, roots colonized by G. margarita exhibited only stimulation of these enzymatic activities, suggesting a species-specific phenomenon. However, when the root surface H(+) effluxes were recorded using a noninvasive vibrating probe technique, a striking activation of the PM H(+)-ATPases was revealed specifically in the elongation zone of roots colonized with G. clarum. The data provide evidences for a coordinated regulation of the H(+) pumps, which depicts a mechanism underlying an activation of the root H(+)-PPase activity as an adaptative response to the energetic changes faced by the host root during the early stages of the AM interaction.
Collapse
Affiliation(s)
- Alessandro C Ramos
- Developmental Biology Center, Instituto Gulbenkian de Ciência, Pt-2780-156, Oeiras, Portugal
| | - Marco A Martins
- Centro de Ciências e Tecnologia Agropecuária, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-600, Brazil
| | - Anna L Okorokova-Façanha
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28015-620, Brazil
| | - Fábio Lopes Olivares
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28015-620, Brazil
| | - Lev A Okorokov
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28015-620, Brazil
| | - Nuno Sepúlveda
- Centro de Estatística e Aplicações da Universidade de Lisboa, Campo Grande Ed C6, 1749-016, Lisbon, Portugal
- Theoretical Immunology Group, Instituto Gulbenkian de Ciência, Pt-2780-156, Oeiras, Portugal
| | - José A Feijó
- Developmental Biology Center, Instituto Gulbenkian de Ciência, Pt-2780-156, Oeiras, Portugal
- Faculdade de Ciências, Universidade de Lisboa, DBV, Campo Grande Ed. C2, 1749-016, Lisbon, Portugal
| | - Arnoldo R Façanha
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28015-620, Brazil.
| |
Collapse
|
22
|
Recorbet G, Rogniaux H, Gianinazzi-Pearson V, DumasGaudot E. Fungal proteins in the extra-radical phase of arbuscular mycorrhiza: a shotgun proteomic picture. THE NEW PHYTOLOGIST 2009; 181:248-260. [PMID: 19121027 DOI: 10.1111/j.1469-8137.2008.02659.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Ghislaine Recorbet
- Unité Mixte de Recherche Plante-Microbe-Environnement INRA 1088/CNRS 5184/Université de Bourgogne. INRA-CMSE. BP 86510. 21065 Dijon Cedex, France;Unité de Recherche 1268 Biopolymères- Interactions-Assemblages, Spectrométrie de Masse, INRA, rue de la Géraudière. BP 71627, 44316 Nantes Cedex 3, France
| | - Hélène Rogniaux
- Unité Mixte de Recherche Plante-Microbe-Environnement INRA 1088/CNRS 5184/Université de Bourgogne. INRA-CMSE. BP 86510. 21065 Dijon Cedex, France;Unité de Recherche 1268 Biopolymères- Interactions-Assemblages, Spectrométrie de Masse, INRA, rue de la Géraudière. BP 71627, 44316 Nantes Cedex 3, France
| | - Vivienne Gianinazzi-Pearson
- Unité Mixte de Recherche Plante-Microbe-Environnement INRA 1088/CNRS 5184/Université de Bourgogne. INRA-CMSE. BP 86510. 21065 Dijon Cedex, France;Unité de Recherche 1268 Biopolymères- Interactions-Assemblages, Spectrométrie de Masse, INRA, rue de la Géraudière. BP 71627, 44316 Nantes Cedex 3, France
| | - Eliane DumasGaudot
- Unité Mixte de Recherche Plante-Microbe-Environnement INRA 1088/CNRS 5184/Université de Bourgogne. INRA-CMSE. BP 86510. 21065 Dijon Cedex, France;Unité de Recherche 1268 Biopolymères- Interactions-Assemblages, Spectrométrie de Masse, INRA, rue de la Géraudière. BP 71627, 44316 Nantes Cedex 3, France
| |
Collapse
|
23
|
Ané JM, Zhu H, Frugoli J. Recent Advances in Medicago truncatula Genomics. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2008; 2008:256597. [PMID: 18288239 PMCID: PMC2216067 DOI: 10.1155/2008/256597] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 09/14/2007] [Indexed: 05/23/2023]
Abstract
Legume rotation has allowed a consistent increase in crop yield and consequently in human population since the antiquity. Legumes will also be instrumental in our ability to maintain the sustainability of our agriculture while facing the challenges of increasing food and biofuel demand. Medicago truncatula and Lotus japonicus have emerged during the last decade as two major model systems for legume biology. Initially developed to dissect plant-microbe symbiotic interactions and especially legume nodulation, these two models are now widely used in a variety of biological fields from plant physiology and development to population genetics and structural genomics. This review highlights the genetic and genomic tools available to the M. truncatula community. Comparative genomic approaches to transfer biological information between model systems and legume crops are also discussed.
Collapse
Affiliation(s)
- Jean-Michel Ané
- Department of Agronomy,
University of Wisconsin,
Madison, WI 53706,
USA
| | - Hongyan Zhu
- Department of Plant and Soil Sciences,
University of Kentucky, Lexington, KY 40546,
USA
| | - Julia Frugoli
- Department of Genetics and Biochemistry,
Clemson University,
100 Jordan Hall,
Clemson, SC 29634,
USA
| |
Collapse
|
24
|
Schliemann W, Ammer C, Strack D. Metabolite profiling of mycorrhizal roots of Medicago truncatula. PHYTOCHEMISTRY 2008; 69:112-46. [PMID: 17706732 DOI: 10.1016/j.phytochem.2007.06.032] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 04/27/2007] [Accepted: 06/22/2007] [Indexed: 05/16/2023]
Abstract
Metabolite profiling of soluble primary and secondary metabolites, as well as cell wall-bound phenolic compounds from roots of barrel medic (Medicago truncatula) was carried out by GC-MS, HPLC and LC-MS. These analyses revealed a number of metabolic characteristics over 56 days of symbiotic interaction with the arbuscular mycorrhizal (AM) fungus Glomus intraradices, when compared to the controls, i.e. nonmycorrhizal roots supplied with low and high amounts of phosphate. During the most active stages of overall root mycorrhization, elevated levels of certain amino acids (Glu, Asp, Asn) were observed accompanied by increases in amounts of some fatty acids (palmitic and oleic acids), indicating a mycorrhiza-specific activation of plastidial metabolism. In addition, some accumulating fungus-specific fatty acids (palmitvaccenic and vaccenic acids) were assigned that may be used as markers of fungal root colonization. Stimulation of the biosynthesis of some constitutive isoflavonoids (daidzein, ononin and malonylononin) occurred, however, only at late stages of root mycorrhization. Increase of the levels of saponins correlated AM-independently with plant growth. Only in AM roots was the accumulation of apocarotenoids (cyclohexenone and mycorradicin derivatives) observed. The structures of the unknown cyclohexenone derivatives were identified by spectroscopic methods as glucosides of blumenol C and 13-hydroxyblumenol C and their corresponding malonyl conjugates. During mycorrhization, the levels of typical cell wall-bound phenolics (e.g. 4-hydroxybenzaldehyde, vanillin, ferulic acid) did not change; however, high amounts of cell wall-bound tyrosol were exclusively detected in AM roots. Principal component analyses of nonpolar primary and secondary metabolites clearly separated AM roots from those of the controls, which was confirmed by an hierarchical cluster analysis. Circular networks of primary nonpolar metabolites showed stronger and more frequent correlations between metabolites in the mycorrhizal roots. The same trend, but to a lesser extent, was observed in nonmycorrhizal roots supplied with high amounts of phosphate. These results indicate a tighter control of primary metabolism in AM roots compared to control plants. Network correlation analyses revealed distinct clusters of amino acids and sugars/aliphatic acids with strong metabolic correlations among one another in all plants analyzed; however, mycorrhizal symbiosis reduced the cluster separation and enlarged the sugar cluster size. The amino acid clusters represent groups of metabolites with strong correlations among one another (cliques) that are differently composed in mycorrhizal and nonmycorrhizal roots. In conclusion, the present work shows for the first time that there are clear differences in development- and symbiosis-dependent primary and secondary metabolism of M. truncatula roots.
Collapse
Affiliation(s)
- Willibald Schliemann
- Department of Secondary Metabolism, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany.
| | | | | |
Collapse
|
25
|
Aroca R, Porcel R, Ruiz-Lozano JM. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? THE NEW PHYTOLOGIST 2007; 173:808-816. [PMID: 17286829 DOI: 10.1111/j.1469-8137.2006.01961.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Here, we evaluated how the arbuscular mycorrhizal (AM) symbiosis regulates root hydraulic properties and root plasma membrane aquaporins (PIP) under different stresses sharing a common osmotic component. Phaseolus vulgaris plants were inoculated or not with the AM fungus Glomus intraradices, and subjected to drought, cold or salinity. Stress effects on root hydraulic conductance (L), PIP gene expression and protein abundance were evaluated. Under control conditions, L in AM plants was about half that in nonAM plants. However, L was decreased as a result of the three stresses in nonAM plants, while it was almost unchanged in AM plants. At the same time, PIP2 protein abundance and phosphorylation state presented the same trend as L. Finally, the expression of each PIP gene responded differently to each stress and was dependent on the AM fungal presence. Differential expression of the PIP genes studied under each stress depending on the AM fungal presence may indicate a specific function and regulation by the AM symbiosis of each gene under the specific conditions of each stress tested.
Collapse
Affiliation(s)
- Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C/Profesor Alabareda 1, 18008, Granada, Spain
| | - Rosa Porcel
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C/Profesor Alabareda 1, 18008, Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C/Profesor Alabareda 1, 18008, Granada, Spain
| |
Collapse
|