1
|
Zhao Y, Kim JY, Karan R, Jung JH, Pathak B, Williamson B, Kannan B, Wang D, Fan C, Yu W, Dong S, Srivastava V, Altpeter F. Generation of a selectable marker free, highly expressed single copy locus as landing pad for transgene stacking in sugarcane. PLANT MOLECULAR BIOLOGY 2019; 100:247-263. [PMID: 30919152 DOI: 10.1007/s11103-019-00856-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/15/2019] [Indexed: 05/23/2023]
Abstract
A selectable marker free, highly expressed single copy locus flanked by insulators was created as landing pad for transgene stacking in sugarcane. These events displayed superior transgene expression compared to single-copy transgenic lines lacking insulators. Excision of the selectable marker gene from transgenic sugarcane lines was supported by FLPe/FRT site-specific recombination. Sugarcane, a tropical C4 grass in the genus Saccharum (Poaceae), accounts for nearly 80% of sugar produced worldwide and is also an important feedstock for biofuel production. Generating transgenic sugarcane with predictable and stable transgene expression is critical for crop improvement. In this study, we generated a highly expressed single copy locus as landing pad for transgene stacking. Transgenic sugarcane lines with stable integration of a single copy nptII expression cassette flanked by insulators supported higher transgene expression along with reduced line to line variation when compared to single copy events without insulators by NPTII ELISA analysis. Subsequently, the nptII selectable marker gene was efficiently excised from the sugarcane genome by the FLPe/FRT site-specific recombination system to create selectable marker free plants. This study provides valuable resources for future gene stacking using site-specific recombination or genome editing tools.
Collapse
Affiliation(s)
- Yang Zhao
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Jae Y Kim
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea
| | - Ratna Karan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Je H Jung
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- Smart Farm Research Center, Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangwon-do, 25451, Republic of Korea
| | - Bhuvan Pathak
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Bruce Williamson
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Baskaran Kannan
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Duoduo Wang
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida - IFAS, Gainesville, FL, 32611, USA
| | - Chunyang Fan
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Wenjin Yu
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Shujie Dong
- Syngenta Crop Protection, LLC, Research Triangle Park, NC, 27709, USA
| | - Vibha Srivastava
- Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida - IFAS, Gainesville, FL, 32611, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Florida - IFAS, Gainesville, FL, 32611, USA.
| |
Collapse
|
2
|
Yao X, Chen T, Shen X, Zhao Y, Wang M, Rao X, Yin S, Wang J, Gong Y, Lu S, Le S, Tan Y, Tang J, Fuquan H, Li M. The chromosomal SezAT toxin-antitoxin system promotes the maintenance of the SsPI-1 pathogenicity island in epidemic Streptococcus suis. Mol Microbiol 2015; 98:243-57. [PMID: 26138696 DOI: 10.1111/mmi.13116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 01/15/2023]
Abstract
Streptococcus suis has emerged as a causative agent of human meningitis and streptococcal toxic shock syndrome over the last years. The high pathogenicity of S. suis may be due in part to a laterally acquired pathogenicity island (renamed SsPI-1), which can spontaneously excise and transfer to recipients. Cells harboring excised SsPI-1 can potentially lose this island if cell division occurs prior to its reintegration; however, attempts to cure SsPI-1 from the host cells have been unsuccessful. Here, we report that an SsPI-1-borne Epsilon/Zeta toxin-antitoxin system (designated SezAT) promotes SsPI-1 stability in bacterial populations. The sezAT locus consists of two closely linked sezT and sezA genes encoding a toxin and its cognate antitoxin, respectively. Overproduction of SezT induces a bactericidal effect that can be neutralized by co-expression of SezA, but not by its later action. When devoid of a functional SezAT system, large-scale deletion of SsPI-1 is straightforward. Thus, SezAT serves to ensure inheritance of SsPI-1 during cell division, which may explain the persistence of epidemic S. suis. This report presents the first functional characterization of TA loci in S. suis, and the first biochemical evidence for the adaptive significance of the Epsilon/Zeta system in the evolution of pathogen virulence.
Collapse
Affiliation(s)
- Xinyue Yao
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Tian Chen
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaodong Shen
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yan Zhao
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Min Wang
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Xiancai Rao
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Supeng Yin
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Jing Wang
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Yali Gong
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Shuguang Lu
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Shuai Le
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Yinling Tan
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Jiaqi Tang
- PLA Research Institute of Clinical Laboratory Medicine, Nanjing General Hospital of Nanjing Military Command, Nanjing, 210002, China
| | - Hu Fuquan
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Ming Li
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
3
|
A new variant of self-excising β-recombinase/six cassette for repetitive gene deletion and homokaryon purification in Neurospora crassa. J Microbiol Methods 2014; 100:17-23. [DOI: 10.1016/j.mimet.2014.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/12/2014] [Accepted: 02/12/2014] [Indexed: 11/16/2022]
|
4
|
Genetic surgery in fungi: employing site-specific recombinases for genome manipulation. Appl Microbiol Biotechnol 2014; 98:1971-82. [DOI: 10.1007/s00253-013-5480-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 12/21/2022]
|
5
|
Efficient sequential repetitive gene deletions in Neurospora crassa employing a self-excising β-recombinase/six cassette. J Microbiol Methods 2012; 92:236-43. [PMID: 23246910 DOI: 10.1016/j.mimet.2012.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/07/2012] [Accepted: 12/07/2012] [Indexed: 11/20/2022]
Abstract
Despite its long-standing history as a model organism, Neurospora crassa has limited tools for repetitive gene deletions utilizing recyclable self-excising marker systems. Here we describe, for the first time, the functionality of a bacterial recombination system employing β-recombinase acting on six recognition sequences (β-rec/six) in N. crassa, which allowed repetitive site-specific gene deletion and marker recycling. We report generating the mus-51 deletion strain using this system, recycling the marker cassette, and subsequently deleting the global transcriptional regulator gene cre-1.
Collapse
|
6
|
Kapusi E, Kempe K, Rubtsova M, Kumlehn J, Gils M. phiC31 integrase-mediated site-specific recombination in barley. PLoS One 2012; 7:e45353. [PMID: 23024817 PMCID: PMC3443236 DOI: 10.1371/journal.pone.0045353] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 08/17/2012] [Indexed: 12/28/2022] Open
Abstract
The Streptomyces phage phiC31 integrase was tested for its feasibility in excising transgenes from the barley genome through site-specific recombination. We produced transgenic barley plants expressing an active phiC31 integrase and crossed them with transgenic barley plants carrying a target locus for recombination. The target sequence involves a reporter gene encoding green fluorescent protein (GFP), which is flanked by the attB and attP recognition sites for the phiC31 integrase. This sequence disruptively separates a gusA coding sequence from an upstream rice actin promoter. We succeeded in producing site-specific recombination events in the hybrid progeny of 11 independent barley plants carrying the above target sequence after crossing with plants carrying a phiC31 expression cassette. Some of the hybrids displayed fully executed recombination. Excision of the GFP gene fostered activation of the gusA gene, as visualized in tissue of hybrid plants by histochemical staining. The recombinant loci were detected in progeny of selfed F(1), even in individuals lacking the phiC31 transgene, which provides evidence of stability and generative transmission of the recombination events. In several plants that displayed incomplete recombination, extrachromosomal excision circles were identified. Besides the technical advance achieved in this study, the generated phiC31 integrase-expressing barley plants provide foundational stock material for use in future approaches to barley genetic improvement, such as the production of marker-free transgenic plants or switching transgene activity.
Collapse
Affiliation(s)
- Eszter Kapusi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Katja Kempe
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Myroslava Rubtsova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Mario Gils
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
- * E-mail:
| |
Collapse
|
7
|
Tuteja N, Verma S, Sahoo RK, Raveendar S, Reddy INBL. Recent advances in development of marker-free transgenic plants: Regulation and biosafety concern. J Biosci 2012; 37:167-97. [PMID: 22357214 DOI: 10.1007/s12038-012-9187-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| | | | | | | | | |
Collapse
|
8
|
Nandy S, Srivastava V. Site-specific gene integration in rice genome mediated by the FLP-FRT recombination system. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:713-21. [PMID: 21083801 DOI: 10.1111/j.1467-7652.2010.00577.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant transformation based on random integration of foreign DNA often generates complex integration structures. Precision in the integration process is necessary to ensure the formation of full-length, single-copy integration. Site-specific recombination systems are versatile tools for precise genomic manipulations such as DNA excision, inversion or integration. The yeast FLP-FRT recombination system has been widely used for DNA excision in higher plants. Here, we report the use of FLP-FRT system for efficient targeting of foreign gene into the engineered genomic site in rice. The transgene vector containing a pair of directly oriented FRT sites was introduced by particle bombardment into the cells containing the target locus. FLP activity generated by the co-bombarded FLP gene efficiently separated the transgene construct from the vector-backbone and integrated the backbone-free construct into the target site. Strong FLP activity, derived from the enhanced FLP protein, FLPe, was important for the successful site-specific integration (SSI). The majority of the transgenic events contained a precise integration and expressed the transgene. Interestingly, each transgenic event lacked the co-bombarded FLPe gene, suggesting reversion of the integration structure in the presence of the constitutive FLPe expression. Progeny of the precise transgenic lines inherited the stable SSI locus and expressed the transgene. This work demonstrates the application of FLP-FRT system for site-specific gene integration in plants using rice as a model.
Collapse
Affiliation(s)
- Soumen Nandy
- Department of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
9
|
Validation of a self-excising marker in the human pathogen Aspergillus fumigatus by employing the beta-rec/six site-specific recombination system. Appl Environ Microbiol 2010; 76:6313-7. [PMID: 20656854 DOI: 10.1128/aem.00882-10] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recyclable markers based on site-specific recombination allow repetitive gene targeting in filamentous fungi. Here we describe for the first time functionality of the bacterial recombination system employing beta serine recombinase acting on six recognition sequences (beta-rec/six) in a fungal host, the human pathogen Aspergillus fumigatus, and its use in establishing a self-excising resistance marker cassette for serial gene replacement.
Collapse
|
10
|
Kempe K, Rubtsova M, Berger C, Kumlehn J, Schollmeier C, Gils M. Transgene excision from wheat chromosomes by phage phiC31 integrase. PLANT MOLECULAR BIOLOGY 2010; 72:673-687. [PMID: 20127141 DOI: 10.1007/s11103-010-9606-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 01/17/2010] [Indexed: 05/28/2023]
Abstract
The Streptomyces phage phiC31 integrase was tested for its ability to excise transgenic DNA from the wheat genome by site-specific recombination. Plants that stably express phiC31 integrase were crossed to plants carrying a target construct bearing the phiC31 recognition sites, attP and attB. In the progeny, phiC31 recombinase mediates recombination between the att sites of the target locus, which results in excision of the intervening DNA. Recombination events could be identified in 34 independent wheat lines by PCR and Southern blot analysis and by sequencing of the excision footprints. Recombinant loci were inherited to the subsequent generation. The results presented here establish the integrase-att system as a tool for catalysing the precise elimination of DNA sequences from wheat chromosomes.
Collapse
Affiliation(s)
- Katja Kempe
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstr. 3, 06466, Gatersleben, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Thomson JG, Chan R, Thilmony R, Yau YY, Ow DW. PhiC31 recombination system demonstrates heritable germinal transmission of site-specific excision from the Arabidopsis genome. BMC Biotechnol 2010; 10:17. [PMID: 20178628 PMCID: PMC2837860 DOI: 10.1186/1472-6750-10-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background The large serine recombinase phiC31 from broad host range Streptomyces temperate phage, catalyzes the site-specific recombination of two recognition sites that differ in sequence, typically known as attachment sites attB and attP. Previously, we characterized the phiC31 catalytic activity and modes of action in the fission yeast Schizosaccharomyces pombe. Results In this work, the phiC31 recombinase gene was placed under the control of the Arabidopsis OXS3 promoter and introduced into Arabidopsis harboring a chromosomally integrated attB and attP-flanked target sequence. The phiC31 recombinase excised the attB and attP-flanked DNA, and the excision event was detected in subsequent generations in the absence of the phiC31 gene, indicating germinal transmission was possible. We further verified that the genomic excision was conservative and that introduction of a functional recombinase can be achieved through secondary transformation as well as manual crossing. Conclusion The phiC31 system performs site-specific recombination in germinal tissue, a prerequisite for generating stable lines with unwanted DNA removed. The precise site-specific deletion by phiC31 in planta demonstrates that the recombinase can be used to remove selectable markers or other introduced transgenes that are no longer desired and therefore can be a useful tool for genome engineering in plants.
Collapse
Affiliation(s)
- James G Thomson
- Crop Improvement and Utilization Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA.
| | | | | | | | | |
Collapse
|
12
|
Grasser M, Kane CM, Merkle T, Melzer M, Emmersen J, Grasser KD. Transcript elongation factor TFIIS is involved in arabidopsis seed dormancy. J Mol Biol 2009; 386:598-611. [PMID: 19150360 DOI: 10.1016/j.jmb.2008.12.066] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/13/2008] [Accepted: 12/22/2008] [Indexed: 01/12/2023]
Abstract
Transcript elongation factor TFIIS promotes efficient transcription by RNA polymerase II, since it assists in bypassing blocks during mRNA synthesis. While yeast cells lacking TFIIS are viable, inactivation of mouse TFIIS causes embryonic lethality. Here, we have identified a protein encoded in the Arabidopsis genome that displays a marked sequence similarity to TFIIS of other organisms, primarily within domains II and III in the C-terminal part of the protein. TFIIS is widely expressed in Arabidopsis, and a green fluorescent protein-TFIIS fusion protein localises specifically to the cell nucleus. When expressed in yeast cells lacking the endogenous TFIIS, Arabidopsis TFIIS partially complements the sensitivity of mutant cells to the nucleotide analog 6-azauridine, which is a typical characteristic of transcript elongation factors. We have characterised Arabidopsis lines harbouring T-DNA insertions in the coding sequence of TFIIS. Plants homozygous for T-DNA insertions are viable, and genomewide transcript profiling revealed that compared to control plants, a relatively small number of genes are differentially expressed in mutant plants. TFIIS(-/-) plants display essentially normal development, but they flower slightly earlier than control plants and show clearly reduced seed dormancy. Plants with RNAi-mediated knockdown of TFIIS expression also are affected in seed dormancy. Therefore, TFIIS plays a critical role in Arabidopsis seed development.
Collapse
Affiliation(s)
- Marion Grasser
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
The prokaryotic β serine recombinase (β-rec) catalyzes site-specific recombination between two directly oriented six sites (93 bp) in mammalian cells, both in episomal and in chromosomally integrated substrates. The β-rec/six exclusive intramolecular site-specific recombination (SSR) system has been proposed as a suitable approach when several independently controlled recombination events are needed in a single cell. Here we explored the use of the β-rec/six system for selective induction of genome-targeted modifications. We generated and analyzed mouse transgenic lines (Tgβ) expressing β-rec under the control of the Lck promoter. β-rec activity was demonstrated, and there was no evidence of alterations to thymic or peripheral T cell development. We developed two transgenic mouse lines harboring different target sequences (Tgrec and KOsix) and analyzed the effect of β-rec expression on these animals. The results indicate that the β-rec/six SSR system is functional for in vivo gene-targeting applications.
Collapse
|
14
|
Mouw KW, Rowland SJ, Gajjar MM, Boocock MR, Stark WM, Rice PA. Architecture of a serine recombinase-DNA regulatory complex. Mol Cell 2008; 30:145-55. [PMID: 18439894 PMCID: PMC2428073 DOI: 10.1016/j.molcel.2008.02.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/12/2008] [Accepted: 02/28/2008] [Indexed: 01/07/2023]
Abstract
An essential feature of many site-specific recombination systems is their ability to regulate the direction and topology of recombination. Resolvases from the serine recombinase family assemble an interwound synaptic complex that harnesses negative supercoiling to drive the forward reaction and promote recombination between properly oriented sites. To better understand the interplay of catalytic and regulatory functions within these synaptic complexes, we have solved the structure of the regulatory site synapse in the Sin resolvase system. It reveals an unexpected synaptic interface between helix-turn-helix DNA-binding domains that is also highlighted in a screen for synapsis mutants. The tetramer defined by this interface provides the foundation for a robust model of the synaptic complex, assembled entirely from available crystal structures, that gives insight into how the catalytic activity of Sin and other serine recombinases may be regulated.
Collapse
Affiliation(s)
- Kent W. Mouw
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sally-J. Rowland
- Division of Molecular Genetics, FBLS, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Mark M. Gajjar
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Martin R. Boocock
- Division of Molecular Genetics, FBLS, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - W. Marshall Stark
- Division of Molecular Genetics, FBLS, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Phoebe A. Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Corresponding author
| |
Collapse
|
15
|
Furner I, Ellis L, Bakht S, Mirza B, Sheikh M. CAUT lines: a novel resource for studies of cell autonomy in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:645-660. [PMID: 18269574 DOI: 10.1111/j.1365-313x.2007.03321.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant development is critically dependent on the interactions between clonally unrelated cell layers. The cross-talk between layers can be addressed by studies of cell autonomy. Cell autonomy is a property of genetic mosaics composed of cells of differing genotypes. Broadly, if the phenotype of a mutant tissue reflects only its genotype and is unaffected by the presence of wild-type tissue, the trait is cell-autonomous. Conversely, if the phenotype of a mutant tissue reflects that of wild-type tissue in the mosaic, the trait is non-autonomous. Here we report a novel, versatile and robust method for studies of cell autonomy in Arabidopsis. Cell autonomy (CAUT) lines consist of a collection of homozygous stocks, each containing one of 76 mapped T-DNA inserts, each of which corrects the yellow ch-42 mutant to green (CH-42) by complementation. This has the effect of translocating the colour marker to 76 new locations around the genome. X-irradiation of heterozygous CAUT line seeds results in yellow sectors, with loss of the CH-42 transgene and adjacent wild-type genes. This property can be used to remove the wild-type copy of developmental genes in appropriate heterozygotes, resulting in yellow (ch-42) sectors that are hemizygous for the trait of interest. Such sectors can provide insight into cell autonomy. Experiments using the ap1, ap3, ag and clv1 mutants show that CAUT lines are useful in the study of cell autonomy.
Collapse
Affiliation(s)
- Ian Furner
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| | | | | | | | | |
Collapse
|