1
|
Guo LM, Li J, Qi PP, Wang JB, Ghanem H, Qing L, Zhang HM. The TATA-box binding protein-associated factor TAF12b facilitates the degradation of type B response regulators to negatively regulate cytokinin signaling. PLANT COMMUNICATIONS 2024; 5:101076. [PMID: 39228128 PMCID: PMC11671765 DOI: 10.1016/j.xplc.2024.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/26/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Cytokinins (CKs) are one of the important classes of plant hormones essential for plant growth and development. TATA-box binding protein-associated factor 12b (TAF12b) is involved in CK signaling, but its molecular and biochemical mechanisms are not fully understood. In this study, TAF12b of Nicotiana benthamiana (NbTAF12b) was found to mediate the CK response by directly interacting with type B response regulators (B-RRs), positive regulators of CK signaling, and inhibiting their transcriptional activities. As a transcriptional co-factor, TAF12b specifically facilitated the proteasomal degradation of non-phosphorylated B-RRs by recruiting the KISS ME DEADLY family of F-box proteins. Such interactions between TAF12b and B-RRs also occur in other plant species. Genetic transformation experiments showed that overexpression of NbTAF12b attenuates the CK-hypersensitive phenotype conferred by NbRR1 overexpression. Taken together, these results suggest a conserved mechanism in which TAF12b negatively regulates CK responses by promoting 26S proteasome-mediated B-RR degradation in multiple plant species, providing novel insights into the regulatory network of CK signaling in plants.
Collapse
Affiliation(s)
- Liu-Ming Guo
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Li
- Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Pan-Pan Qi
- Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jie-Bing Wang
- Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Hussein Ghanem
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400716, China; National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China.
| | - Heng-Mu Zhang
- Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 PMCID: PMC12051360 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
3
|
Yang DL, Huang K, Deng D, Zeng Y, Wang Z, Zhang Y. DNA-dependent RNA polymerases in plants. THE PLANT CELL 2023; 35:3641-3661. [PMID: 37453082 PMCID: PMC10533338 DOI: 10.1093/plcell/koad195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/09/2023] [Accepted: 05/29/2023] [Indexed: 07/18/2023]
Abstract
DNA-dependent RNA polymerases (Pols) transfer the genetic information stored in genomic DNA to RNA in all organisms. In eukaryotes, the typical products of nuclear Pol I, Pol II, and Pol III are ribosomal RNAs, mRNAs, and transfer RNAs, respectively. Intriguingly, plants possess two additional Pols, Pol IV and Pol V, which produce small RNAs and long noncoding RNAs, respectively, mainly for silencing transposable elements. The five plant Pols share some subunits, but their distinct functions stem from unique subunits that interact with specific regulatory factors in their transcription cycles. Here, we summarize recent advances in our understanding of plant nucleus-localized Pols, including their evolution, function, structures, and transcription cycles.
Collapse
Affiliation(s)
- Dong-Lei Yang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Huang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| | - Yuan Zeng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenxing Wang
- College of Horticulture, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
4
|
Bardani E, Kallemi P, Tselika M, Katsarou K, Kalantidis K. Spotlight on Plant Bromodomain Proteins. BIOLOGY 2023; 12:1076. [PMID: 37626962 PMCID: PMC10451976 DOI: 10.3390/biology12081076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
Bromodomain-containing proteins (BRD-proteins) are the "readers" of histone lysine acetylation, translating chromatin state into gene expression. They act alone or as components of larger complexes and exhibit diverse functions to regulate gene expression; they participate in chromatin remodeling complexes, mediate histone modifications, serve as scaffolds to recruit transcriptional regulators or act themselves as transcriptional co-activators or repressors. Human BRD-proteins have been extensively studied and have gained interest as potential drug targets for various diseases, whereas in plants, this group of proteins is still not well investigated. In this review, we aimed to concentrate scientific knowledge on these chromatin "readers" with a focus on Arabidopsis. We organized plant BRD-proteins into groups based on their functions and domain architecture and summarized the published work regarding their interactions, activity and diverse functions. Overall, it seems that plant BRD-proteins are indispensable components and fine-tuners of the complex network plants have built to regulate development, flowering, hormone signaling and response to various biotic or abiotic stresses. This work will facilitate the understanding of their roles in plants and highlight BRD-proteins with yet undiscovered functions.
Collapse
Affiliation(s)
- Eirini Bardani
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Paraskevi Kallemi
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
| | - Martha Tselika
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
| | - Konstantina Katsarou
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| |
Collapse
|
5
|
Savinkova LK, Sharypova EB, Kolchanov NA. On the Role of TATA Boxes and TATA-Binding Protein in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:1000. [PMID: 36903861 PMCID: PMC10005294 DOI: 10.3390/plants12051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
For transcription initiation by RNA polymerase II (Pol II), all eukaryotes require assembly of basal transcription machinery on the core promoter, a region located approximately in the locus spanning a transcription start site (-50; +50 bp). Although Pol II is a complex multi-subunit enzyme conserved among all eukaryotes, it cannot initiate transcription without the participation of many other proteins. Transcription initiation on TATA-containing promoters requires the assembly of the preinitiation complex; this process is triggered by an interaction of TATA-binding protein (TBP, a component of the general transcription factor TFIID (transcription factor II D)) with a TATA box. The interaction of TBP with various TATA boxes in plants, in particular Arabidopsis thaliana, has hardly been investigated, except for a few early studies that addressed the role of a TATA box and substitutions in it in plant transcription systems. This is despite the fact that the interaction of TBP with TATA boxes and their variants can be used to regulate transcription. In this review, we examine the roles of some general transcription factors in the assembly of the basal transcription complex, as well as functions of TATA boxes of the model plant A. thaliana. We review examples showing not only the involvement of TATA boxes in the initiation of transcription machinery assembly but also their indirect participation in plant adaptation to environmental conditions in responses to light and other phenomena. Examples of an influence of the expression levels of A. thaliana TBP1 and TBP2 on morphological traits of the plants are also examined. We summarize available functional data on these two early players that trigger the assembly of transcription machinery. This information will deepen the understanding of the mechanisms underlying transcription by Pol II in plants and will help to utilize the functions of the interaction of TBP with TATA boxes in practice.
Collapse
|
6
|
Friis Theisen F, Salladini E, Davidsen R, Jo Rasmussen C, Staby L, Kragelund BB, Skriver K. αα-hub coregulator structure and flexibility determine transcription factor binding and selection in regulatory interactomes. J Biol Chem 2022; 298:101963. [PMID: 35452682 PMCID: PMC9127584 DOI: 10.1016/j.jbc.2022.101963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Formation of transcription factor (TF)-coregulator complexes is a key step in transcriptional regulation, with coregulators having essential functions as hub nodes in molecular networks. How specificity and selectivity are maintained in these nodes remain open questions. In this work, we addressed specificity in transcriptional networks using complexes formed between TFs and αα-hubs, which are defined by a common αα-hairpin secondary structure motif, as a model. Using NMR spectroscopy and binding thermodynamics, we analyzed the structure, dynamics, stability, and ligand-binding properties of the Arabidopsis thaliana RST domains from TAF4 and known binding partner RCD1, and the TAFH domain from human TAF4, allowing comparison across species, functions, and architectural contexts. While these αα-hubs shared the αα-hairpin motif, they differed in length and orientation of accessory helices as well as in their thermodynamic profiles of ligand binding. Whereas biologically relevant RCD1-ligand pairs displayed high affinity driven by enthalpy, TAF4-ligand interactions were entropy driven and exhibited less binding-induced structuring. We in addition identified a thermal unfolding state with a structured core for all three domains, although the temperature sensitivity differed. Thermal stability studies suggested that initial unfolding of the RCD1-RST domain localized around helix 1, lending this region structural malleability, while effects in TAF4-RST were more stochastic, suggesting variability in structural adaptability upon binding. Collectively, our results support a model in which hub structure, flexibility, and binding thermodynamics contribute to αα-hub-TF binding specificity, a finding of general relevance to the understanding of coregulator-ligand interactions and interactome sizes.
Collapse
Affiliation(s)
- Frederik Friis Theisen
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Edoardo Salladini
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Davidsen
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Christina Jo Rasmussen
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Staby
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Karen Skriver
- REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Abstract
Plants have an extraordinary diversity of transcription machineries, including five nuclear DNA-dependent RNA polymerases. Four of these enzymes are dedicated to the production of long noncoding RNAs (lncRNAs), which are ribonucleic acids with functions independent of their protein-coding potential. lncRNAs display a broad range of lengths and structures, but they are distinct from the small RNA guides of RNA interference (RNAi) pathways. lncRNAs frequently serve as structural, catalytic, or regulatory molecules for gene expression. They can affect all elements of genes, including promoters, untranslated regions, exons, introns, and terminators, controlling gene expression at various levels, including modifying chromatin accessibility, transcription, splicing, and translation. Certain lncRNAs protect genome integrity, while others respond to environmental cues like temperature, drought, nutrients, and pathogens. In this review, we explain the challenge of defining lncRNAs, introduce the machineries responsible for their production, and organize this knowledge by viewing the functions of lncRNAs throughout the structure of a typical plant gene.
Collapse
Affiliation(s)
- Andrzej T Wierzbicki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Todd Blevins
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, F-67084 Strasbourg, France;
| | - Szymon Swiezewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
8
|
Gumpinger AC, Rieck B, Grimm DG, Borgwardt K. Network-guided search for genetic heterogeneity between gene pairs. Bioinformatics 2021; 37:57-65. [PMID: 32573681 PMCID: PMC8034561 DOI: 10.1093/bioinformatics/btaa581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/19/2020] [Accepted: 06/15/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Correlating genetic loci with a disease phenotype is a common approach to improve our understanding of the genetics underlying complex diseases. Standard analyses mostly ignore two aspects, namely genetic heterogeneity and interactions between loci. Genetic heterogeneity, the phenomenon that genetic variants at different loci lead to the same phenotype, promises to increase statistical power by aggregating low-signal variants. Incorporating interactions between loci results in a computational and statistical bottleneck due to the vast amount of candidate interactions. RESULTS We propose a novel method SiNIMin that addresses these two aspects by finding pairs of interacting genes that are, upon combination, associated with a phenotype of interest under a model of genetic heterogeneity. We guide the interaction search using biological prior knowledge in the form of protein-protein interaction networks. Our method controls type I error and outperforms state-of-the-art methods with respect to statistical power. Additionally, we find novel associations for multiple Arabidopsis thaliana phenotypes, and, with an adapted variant of SiNIMin, for a study of rare variants in migraine patients. AVAILABILITY AND IMPLEMENTATION Code available at https://github.com/BorgwardtLab/SiNIMin. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Anja C Gumpinger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Bastian Rieck
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Dominik G Grimm
- Technical University of Munich, TUM Campus Straubing for Biotechnology and Sustainability, Bioinformatics, Straubing 94315, Germany.,Weihenstephan-Triesdorf University of Applied Sciences, Bioinformatics, Straubing 94315, Germany
| | | | - Karsten Borgwardt
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| |
Collapse
|
9
|
Knockdown of a Novel Gene OsTBP2.2 Increases Sensitivity to Drought Stress in Rice. Genes (Basel) 2020; 11:genes11060629. [PMID: 32521717 PMCID: PMC7349065 DOI: 10.3390/genes11060629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Drought stress is a major environmental stress, which adversely affects the biological and molecular processes of plants, thereby impairing their growth and development. In the present study, we found that the expression level of OsTBP2.2 which encodes for a nucleus-localized protein member belonging to transcription factor IID (TFIID) family, was significantly induced by polyethylene glycol (PEG) treatment. Therefore, knockdown mutants of OsTBP2.2 gene were generated to investigate the role of OsTBP2.2 in rice response to drought stress. Under the condition of drought stress, the photosynthetic rate, transpiration rate, water use efficiency, and stomatal conductance were significantly reduced in ostbp2.2 lines compared with wild type, Dongjin (WT-DJ). Furthermore, the RNA-seq results showed that several main pathways involved in "MAPK (mitogen-activated protein kinase) signaling pathway", "phenylpropanoid biosynthesis", "defense response" and "ADP (adenosine diphosphate) binding" were altered significantly in ostbp2.2. We also found that OsPIP2;6, OsPAO and OsRCCR1 genes were down-regulated in ostbp2.2 compared with WT-DJ, which may be one of the reasons that inhibit photosynthesis. Our findings suggest that OsTBP2.2 may play a key role in rice growth and the regulation of photosynthesis under drought stress and it may possess high potential usefulness in molecular breeding of drought-tolerant rice.
Collapse
|
10
|
Thanasomboon R, Kalapanulak S, Netrphan S, Saithong T. Exploring dynamic protein-protein interactions in cassava through the integrative interactome network. Sci Rep 2020; 10:6510. [PMID: 32300157 PMCID: PMC7162878 DOI: 10.1038/s41598-020-63536-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 04/01/2020] [Indexed: 01/01/2023] Open
Abstract
Protein-protein interactions (PPIs) play an essential role in cellular regulatory processes. Despite, in-depth studies to uncover the mystery of PPI-mediated regulations are still lacking. Here, an integrative interactome network (MePPI-Ux) was obtained by incorporating expression data into the improved genome-scale interactome network of cassava (MePPI-U). The MePPI-U, constructed by both interolog- and domain-based approaches, contained 3,638,916 interactions and 24,590 proteins (59% of proteins in the cassava AM560 genome version 6). After incorporating expression data as information of state, the MePPI-U rewired to represent condition-dependent PPIs (MePPI-Ux), enabling us to envisage dynamic PPIs (DPINs) that occur at specific conditions. The MePPI-Ux was exploited to demonstrate timely PPIs of cassava under various conditions, namely drought stress, brown streak virus (CBSV) infection, and starch biosynthesis in leaf/root tissues. MePPI-Uxdrought and MePPI-UxCBSV suggested involved PPIs in response to stress. MePPI-UxSB,leaf and MePPI-UxSB,root suggested the involvement of interactions among transcription factor proteins in modulating how leaf or root starch is synthesized. These findings deepened our knowledge of the regulatory roles of PPIs in cassava and would undeniably assist targeted breeding efforts to improve starch quality and quantity.
Collapse
Affiliation(s)
- Ratana Thanasomboon
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.,Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
| | - Saowalak Kalapanulak
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.,Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
| | - Supatcharee Netrphan
- National Center for Genetic Engineering and Biotechnology, Pathum Thani, 12120, Thailand
| | - Treenut Saithong
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand. .,Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
| |
Collapse
|
11
|
Antonova SV, Boeren J, Timmers HTM, Snel B. Epigenetics and transcription regulation during eukaryotic diversification: the saga of TFIID. Genes Dev 2019; 33:888-902. [PMID: 31123066 PMCID: PMC6672047 DOI: 10.1101/gad.300475.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this perspective, Antonova et al. determine the evolutionary history of all TFIID subunits and place them in a functional context to understand their diversification. This analysis of TFIID evolution exemplifies how phylogenetic protein interrogation aids in uncovering existing structures, drawing parallels between related complexes and challenges offered by genome expansions that can be countered by exploiting chromatin modifications. The basal transcription factor TFIID is central for RNA polymerase II-dependent transcription. Human TFIID is endowed with chromatin reader and DNA-binding domains and protein interaction surfaces. Fourteen TFIID TATA-binding protein (TBP)-associated factor (TAF) subunits assemble into the holocomplex, which shares subunits with the Spt–Ada–Gcn5–acetyltransferase (SAGA) coactivator. Here, we discuss the structural and functional evolution of TFIID and its divergence from SAGA. Our orthologous tree and domain analyses reveal dynamic gains and losses of epigenetic readers, plant-specific functions of TAF1 and TAF4, the HEAT2-like repeat in TAF2, and, importantly, the pre-LECA origin of TFIID and SAGA. TFIID evolution exemplifies the dynamic plasticity in transcription complexes in the eukaryotic lineage.
Collapse
Affiliation(s)
- Simona V Antonova
- Molecular Cancer Research and Regenerative Medicine, University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
| | - Jeffrey Boeren
- Department of Developmental Biology, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | - H T Marc Timmers
- Molecular Cancer Research and Regenerative Medicine, University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands.,Department of Urology, Medical Centre-University of Freiburg, 79106 Freiburg, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK) Standort Freiburg, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
12
|
Avendaño-Borromeo B, Narayanasamy RK, García-Rivera G, Labra-Barrios ML, Lagunes-Guillén AE, Munguía-Chávez B, Castañón-Sánchez CA, Orozco E, Luna-Arias JP. Identification of the gene encoding the TATA box-binding protein-associated factor 1 (TAF1) and its putative role in the heat shock response in the protozoan parasite Entamoeba histolytica. Parasitol Res 2018; 118:517-538. [PMID: 30552577 DOI: 10.1007/s00436-018-6170-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/29/2018] [Indexed: 11/26/2022]
Abstract
Transcription factor IID (TFIID) is a cornerstone in the transcription initiation in eukaryotes. It is composed of TBP and approximately 14 different subunits named TBP-associated factors (TAFs). TFIID has a key role in transcription of many genes involved in cell proliferation, cell growth, cell cycle, cell cycle checkpoint, and various other processes as well. Entamoeba histolytica, the protozoan parasite responsible for human amoebiasis, represents a major global health concern. Our research group has previously reported the genes coding the TATA box-binding protein (EhTBP) and TBP-related factor 1 (EhTRF1), which displayed different mRNA levels in trophozoites under different stress conditions. In this work, we identified the TBP-associated factor 1 (Ehtaf1) gene in the E. histolytica genome, which possess a well-conserved DUF domain and a Bromo domain located in the middle and C-terminus of the protein, respectively. The EhTAF1-DUF domain tertiary structure is similar to the corresponding HsTAF1 DUF domain. RT-qPCR experiments with RNA isolated from trophozoites harvested at different time points of the growth curve and under different stress conditions revealed that the Ehtaf1 gene was found slightly upregulated in the death phase of growth curve, but under heat shock stress, it was found upregulated 10 times, suggesting that Ehtaf1 might have an important role in the heat shock stress response. We also found that EhTAF1 is expressed in the nucleus and cytoplasm at 37 °C, but under heat shock stress, it is overexpressed in both the nucleus and cytoplasm, and partially colocalized with EhHSP70 in cytoplasm.
Collapse
Affiliation(s)
- Bartolo Avendaño-Borromeo
- Departamento de Biología Celular, Cinvestav-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, Ciudad de México, Mexico
| | - Ravi Kumar Narayanasamy
- Departamento de Biología Celular, Cinvestav-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, Ciudad de México, Mexico
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, Ciudad de México, Mexico
| | - María Luisa Labra-Barrios
- Departamento de Biología Celular, Cinvestav-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, Ciudad de México, Mexico
| | - Anel E Lagunes-Guillén
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, Ciudad de México, Mexico
| | - Bibiana Munguía-Chávez
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, Ciudad de México, Mexico
| | - Carlos Alberto Castañón-Sánchez
- Laboratorio de Investigación Biomédica, Subdirección de Enseñanza e Investigación, Hospital Regional de Alta Especialidad de Oaxaca, Aldama S/N, San Bartolo Coyotepec, 71256, Oaxaca, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, Ciudad de México, Mexico
| | - Juan Pedro Luna-Arias
- Departamento de Biología Celular, Cinvestav-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360, Ciudad de México, Mexico.
| |
Collapse
|
13
|
Pfab A, Bruckmann A, Nazet J, Merkl R, Grasser KD. The Adaptor Protein ENY2 Is a Component of the Deubiquitination Module of the Arabidopsis SAGA Transcriptional Co-activator Complex but not of the TREX-2 Complex. J Mol Biol 2018; 430:1479-1494. [PMID: 29588169 DOI: 10.1016/j.jmb.2018.03.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/26/2022]
Abstract
The conserved nuclear protein ENY2 (Sus1 in yeast) is involved in coupling transcription and mRNA export in yeast and metazoa, as it is a component both of the transcriptional co-activator complex SAGA and of the mRNA export complex TREX-2. Arabidopsis thaliana ENY2 is widely expressed in the plant and it localizes to the nucleoplasm, but unlike its yeast/metazoan orthologs, it is not enriched in the nuclear envelope. Affinity purification of ENY2 in combination with mass spectrometry revealed that it co-purified with SAGA components, but not with the nuclear pore-associated TREX-2. In addition, further targeted proteomics analyses by reciprocal tagging established the composition of the Arabidopsis SAGA complex consisting of the four modules HATm, SPTm, TAFm and DUBm, and that several SAGA subunits occur in alternative variants. While the HATm, SPTm and TAFm robustly co-purified with each other, the deubiquitination module (DUBm) appears to associate with the other SAGA modules more weakly/dynamically. Consistent with a homology model of the Arabidopsis DUBm, the SGF11 protein interacts directly with ENY2 and UBP22. Plants depleted in the DUBm components, SGF11 or ENY2, are phenotypically only mildly affected, but they contain increased levels of ubiquitinated histone H2B, indicating that the SAGA-DUBm has histone deubiquitination activity in plants. In addition to transcription-related proteins (i.e., transcript elongation factors, Mediator), many splicing factors were found to associate with SAGA, linking the SAGA complex and ongoing transcription with mRNA processing.
Collapse
Affiliation(s)
- Alexander Pfab
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Astrid Bruckmann
- Department for Biochemistry I, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Julian Nazet
- Department for Biochemistry II, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Rainer Merkl
- Department for Biochemistry II, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Klaus D Grasser
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany.
| |
Collapse
|
14
|
A Genetic Screen for Pre-mRNA Splicing Mutants of Arabidopsis thaliana Identifies Putative U1 snRNP Components RBM25 and PRP39a. Genetics 2017; 207:1347-1359. [PMID: 28971960 PMCID: PMC5714452 DOI: 10.1534/genetics.117.300149] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/27/2017] [Indexed: 01/01/2023] Open
Abstract
In a genetic screen for mutants showing modified splicing of an alternatively spliced GFP reporter gene in Arabidopsis thaliana, we identified mutations in genes encoding the putative U1 small nuclear ribonucleoprotein (snRNP) factors RBM25 and PRP39a. The latter has not yet been studied for its role in pre-messenger RNA (pre-mRNA) splicing in plants. Both proteins contain predicted RNA-binding domains and have been implicated in 5′ splice site selection in yeast and metazoan cells. In rbm25 mutants, splicing efficiency of GFP pre-mRNA was reduced and GFP protein levels lowered relative to wild-type plants. By contrast, prp39a mutants exhibited preferential splicing of a U2-type AT-AC intron in GFP pre-mRNA and elevated levels of GFP protein. These opposing findings indicate that impaired function of either RBM25 or PRP39a can differentially affect the same pre-mRNA substrate. Given a prior genome-wide analysis of alternative splicing in rbm25 mutants, we focused on examining the alternative splicing landscape in prp39a mutants. RNA-seq experiments performed using two independent prp39a alleles revealed hundreds of common genes undergoing changes in alternative splicing, including PRP39a itself, a second putative U1 snRNP component PRP40b, and genes encoding a number of general transcription-related proteins. The prp39a mutants displayed somewhat delayed flowering, shorter stature, and reduced seed set but no other obvious common defects under normal conditions. Mutations in PRP39b, the paralog of PRP39a, did not visibly alter GFP expression, indicating the paralogs are not functionally equivalent in this system. Our study provides new information on the contribution of PRP39a to alternative splicing and expands knowledge of plant splicing factors.
Collapse
|
15
|
|
16
|
Waterworth WM, Drury GE, Blundell-Hunter G, West CE. Arabidopsis TAF1 is an MRE11-interacting protein required for resistance to genotoxic stress and viability of the male gametophyte. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:545-57. [PMID: 26358508 PMCID: PMC4949998 DOI: 10.1111/tpj.13020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 05/07/2023]
Abstract
Repair of DNA double-strand breaks (DSBs) by recombination pathways is essential for plant growth and fertility. The recombination endonuclease MRE11 plays important roles in sensing and repair of DNA DSBs. Here we demonstrate protein interaction between Arabidopsis MRE11 and the histone acetyltransferase TAF1, a TATA-binding protein Associated Factor (TAF) of the RNA polymerase II transcription initiation factor complex TFIID. Arabidopsis has two TAF1 homologues termed TAF1 and TAF1b and mutant taf1b lines are viable and fertile. In contrast, taf1 null mutations are lethal, demonstrating that TAF1 is an essential gene. Heterozygous taf1+/- plants display abnormal segregation of the mutant allele resulting from defects in pollen tube development, indicating that TAF1 is important for gamete viability. Characterization of an allelic series of taf1 lines revealed that hypomorphic mutants are viable but display developmental defects and reduced plant fertility. Hypersensitivity of taf1 mutants lacking the C-terminal bromodomain to X-rays and mitomycin C, but not to other forms of abiotic stress, established a specific role for TAF1 in plant DNA repair processes. Collectively these studies reveal a function for TAF1 in plant resistance to genotoxic stress, providing further insight into the molecular mechanisms of the DNA damage response in plants.
Collapse
Affiliation(s)
- Wanda M Waterworth
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Georgina E Drury
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | | | - Christopher E West
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
17
|
Moraga F, Aquea F. Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:865. [PMID: 26528322 PMCID: PMC4604261 DOI: 10.3389/fpls.2015.00865] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/30/2015] [Indexed: 05/07/2023]
Abstract
Protein complexes involved in epigenetic regulation of transcription have evolved as molecular strategies to face environmental stress in plants. SAGA (Spt-Ada-Gcn5 Acetyltransferase) is a transcriptional co-activator complex that regulates numerous cellular processes through the coordination of multiple post-translational histone modifications, including acetylation, deubiquitination, and chromatin recognition. The diverse functions of the SAGA complex involve distinct modules that are highly conserved between yeast, flies, and mammals. In this review, the composition of the SAGA complex in plants is described and its role in gene expression regulation under stress conditions summarized. Some of these proteins are likely involved in the regulation of the inducible expression of genes under light, cold, drought, salt, and iron stress, although the functions of several of its components remain unknown.
Collapse
Affiliation(s)
- Felipe Moraga
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
| | - Felipe Aquea
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo IbáñezSantiago, Chile
- Center for Applied Ecology and SustainabilitySantiago, Chile
- *Correspondence: Felipe Aquea
| |
Collapse
|
18
|
Fromm M, Avramova Z. ATX1/AtCOMPASS and the H3K4me3 marks: how do they activate Arabidopsis genes? CURRENT OPINION IN PLANT BIOLOGY 2014; 21:75-82. [PMID: 25047977 DOI: 10.1016/j.pbi.2014.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/26/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
Despite the proven correlation between gene transcriptional activity and the levels of tri-methyl marks on histone 3 lysine4 (H3K4me3) of their nucleosomes, whether H3K4me3 contributes to, or 'registers', activated transcription is still controversial. Other questions of broad relevance are whether histone-modifying proteins are involved in the recruitment of Pol II and the general transcription machinery and whether they have roles other than their enzyme activities. We address these questions as well as the roles of the ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1), of the COMPASS-related (AtCOMPASS) protein complex, and of their product, H3K4me3, at ATX1-dependent genes. We suggest that the ambiguity about the role of H3K4me3 as an activating mark is due to the unknown duality of the ATX1/AtCOMPASS to facilitate PIC assembly and to generate H3K4me3, which is essential for activating transcriptional elongation.
Collapse
Affiliation(s)
- Michael Fromm
- Department of Agronomy and Plant Science Innovation, UNL, Lincoln, NE 68588-6008, USA
| | - Zoya Avramova
- School of Biological Science, UNL, Lincoln, NE 68588-6008, USA.
| |
Collapse
|
19
|
Lindner M, Simonini S, Kooiker M, Gagliardini V, Somssich M, Hohenstatt M, Simon R, Grossniklaus U, Kater MM. TAF13 interacts with PRC2 members and is essential for Arabidopsis seed development. Dev Biol 2013; 379:28-37. [PMID: 23506837 DOI: 10.1016/j.ydbio.2013.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 11/24/2022]
Abstract
TBP-Associated Factors (TAFs) are components of complexes like TFIID, TFTC, SAGA/STAGA and SMAT that are important for the activation of transcription, either by establishing the basic transcription machinery or by facilitating histone acetylation. However, in Drosophila embryos several TAFs were shown to be associated with the Polycomb Repressive Complex 1 (PRC1), even though the role of this interaction remains unclear. Here we show that in Arabidopsis TAF13 interacts with MEDEA and SWINGER, both members of a plant variant of Polycomb Repressive Complex 2 (PRC2). PRC2 variants play important roles during the plant life cycle, including seed development. The taf13 mutation causes seed defects, showing embryo arrest at the 8-16 cell stage and over-proliferation of the endosperm in the chalazal region, which is typical for Arabidopsis PRC2 mutants. Our data suggest that TAF13 functions together with PRC2 in transcriptional regulation during seed development.
Collapse
Affiliation(s)
- Matias Lindner
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ding Y, Ndamukong I, Xu Z, Lapko H, Fromm M, Avramova Z. ATX1-generated H3K4me3 is required for efficient elongation of transcription, not initiation, at ATX1-regulated genes. PLoS Genet 2012; 8:e1003111. [PMID: 23284292 PMCID: PMC3527332 DOI: 10.1371/journal.pgen.1003111] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/08/2012] [Indexed: 01/26/2023] Open
Abstract
Tri-methylated H3 lysine 4 (H3K4me3) is associated with transcriptionally active genes, but its function in the transcription process is still unclear. Point mutations in the catalytic domain of ATX1 (ARABIDOPSIS TRITHORAX1), a H3K4 methyltransferase, and RNAi knockdowns of subunits of the AtCOMPASS–like (Arabidopsis Complex Proteins Associated with Set) were used to address this question. We demonstrate that both ATX1 and AtCOMPASS–like are required for high level accumulation of TBP (TATA-binding protein) and Pol II at promoters and that this requirement is independent of the catalytic histone modifying activity. However, the catalytic function is critically required for transcription as H3K4me3 levels determine the efficiency of transcription elongation. The roles of H3K4me3, ATX1, and AtCOMPASS–like may be of a general relevance for transcription of Trithorax-activated eukaryotic genes. We provide a definitive answer to the question regarding the role of histone H3 lysine 4 tri-methylation marks in the transcription of two ATX1-regulated genes. Despite the proven correlation between the gene transcriptional activity and the level of H3K4me3 modification on the nucleosomes, whether H3K4me3 contributes to, or simply “registers,” active transcription has remained unclear. Another broader-relevance question is whether histone-modifying proteins are required for recruitment of the general transcription machinery, thus playing roles beyond their catalytic activity. Using a combination of gene deletion and specific point mutation analyses, we untangle overlapping effects and reveal that H3K4me3 is not required for TBP/Pol II recruitment to promoters but is critical as an activating mark for transcription elongation. The existing hitherto ambiguity about the role of H3K4me3 as an activating mark has been largely due to the unknown duality of the ATX1/AtCOMPASS functions: facilitating PIC assembly and producing H3K4me3 as an activating mark for transcription elongation.
Collapse
Affiliation(s)
- Yong Ding
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- School of Biological Sciences, University of Nebraska at Lincoln, Lincoln, Nebraska, United States of America
| | - Ivan Ndamukong
- School of Biological Sciences, University of Nebraska at Lincoln, Lincoln, Nebraska, United States of America
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Zaoshi Xu
- School of Biological Sciences, University of Nebraska at Lincoln, Lincoln, Nebraska, United States of America
| | - Hanna Lapko
- School of Biological Sciences, University of Nebraska at Lincoln, Lincoln, Nebraska, United States of America
| | - Michael Fromm
- University of Nebraska Center for Biotechnology, Lincoln, Nebraska, United States of America
- Center for Plant Science Innovation, Lincoln, Nebraska, United States of America
- * E-mail: (MF); (ZA)
| | - Zoya Avramova
- School of Biological Sciences, University of Nebraska at Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (MF); (ZA)
| |
Collapse
|
21
|
Vaahtera L, Brosché M. More than the sum of its parts--how to achieve a specific transcriptional response to abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:421-30. [PMID: 21421388 DOI: 10.1016/j.plantsci.2010.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 11/17/2010] [Accepted: 11/19/2010] [Indexed: 05/08/2023]
Abstract
A rapid and appropriate response to stress is key to survival. A major part of plant adaptation to abiotic stresses is regulated at the level of gene expression. The regulatory steps involved in accurate expression of stress related genes need to be tailored to the specific stress for optimal plant performance. Accumulating evidence suggests that there are several processes contributing to signalling specificity: post-translational activation and selective nuclear import of transcription factors, regulation of DNA accessibility by chromatin modifying and remodelling enzymes, and cooperation between two or more response elements in a stress-responsive promoter. These mechanisms should not be viewed as independent events, instead the nuclear DNA is in a complex landscape where many proteins interact, compete, and regulate each other. Hence future studies should consider an integrated view of gene regulation composed of numerous chromatin associated proteins in addition to transcription factors. Although most studies have focused on a single regulatory mechanism, it is more likely the combined actions of several mechanisms that provide a stress specific output. In this review recent progress in abiotic stress signalling is discussed with emphasis on possible mechanisms for generating specific responses.
Collapse
Affiliation(s)
- Lauri Vaahtera
- Division of Plant Biology, Department of Biosciences, University of Helsinki, P.O. Box 65, Viikinkaari 1, FI-00014 Helsinki, Finland
| | | |
Collapse
|
22
|
Ding Y, Avramova Z, Fromm M. Two distinct roles of ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1) at promoters and within transcribed regions of ATX1-regulated genes. THE PLANT CELL 2011; 23:350-63. [PMID: 21266657 PMCID: PMC3051232 DOI: 10.1105/tpc.110.080150] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/15/2010] [Accepted: 12/22/2010] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana trithorax-like protein, ATX1, shares common structural domains, has similar histone methyltransferase (HMT) activity, and belongs in the same phylogenetic subgroup as its animal counterparts. Most of our knowledge of the role of HMTs in trimethylating lysine 4 of histone H3 (H3K4me3) in transcriptional regulation comes from studies of yeast and mammalian homologs. Little is known about the mechanism by which ATX1, or any other HMT of plant origin, affects transcription. Here, we provide insights into how ATX1 influences transcription at regulated genes, playing two distinct roles. At promoters, ATX1 is required for TATA binding protein (TBP) and RNA Polymerase II (Pol II) recruitment. In a subsequent event, ATX1 is recruited by a phosphorylated form of Pol II to the +300-bp region of transcribed sequences, where it trimethylates nucleosomes. In support of this model, inhibition of phosphorylation of the C-terminal domain of Pol II reduced the amounts of H3K4me3 and ATX1 bound at the +300-nucleotide region. Importantly, these changes did not reduce the occupancy of ATX1, TBP, or Pol II at promoters. Our results indicate that ATX1 affects transcription at target genes by a mechanism distinct from its ability to trimethylate H3K4 within genes.
Collapse
Affiliation(s)
- Yong Ding
- University of Nebraska Center for Biotechnology and Center for Plant Science Innovation, Lincoln, Nebraska 68588
- University of Nebraska School of Biological Sciences, Lincoln, Nebraska 68588
| | - Zoya Avramova
- University of Nebraska School of Biological Sciences, Lincoln, Nebraska 68588
| | - Michael Fromm
- University of Nebraska Center for Biotechnology and Center for Plant Science Innovation, Lincoln, Nebraska 68588
- Address correspondence to
| |
Collapse
|