1
|
LaManna L, Chou CH, Lei H, Barton ER, Maliga P. Chloroplast transformation for bioencapsulation and oral delivery using the immunoglobulin G fragment crystallizable (Fc) domain. Sci Rep 2023; 13:18916. [PMID: 37919321 PMCID: PMC10622566 DOI: 10.1038/s41598-023-45698-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Proinsulin Like Growth Factor I (prolGF-I) and myostatin (Mstn) regulate muscle regeneration and mass when intravenously delivered. We tested if chloroplast bioencapsulated forms of these proteins may serve as a non-invasive means of drug delivery through the digestive system. We created tobacco (Nicotiana tabacum) plants carrying GFP-Fc1, proIGF-I-Fc1, and Mstn-Fc1 fusion genes, in which fusion with the immunoglobulin G Fc domain improved both protein stability and absorption in the small intestine. No transplastomic plants were obtained with the Mstn-Fc1 gene, suggesting that the protein is toxic to plant cells. proIGF-I-Fc1 protein levels were too low to enable in vivo testing. However, GFP-Fc1 accumulated at a high level, enabling evaluation of chloroplast-made Fc fusion proteins for oral delivery. Tobacco leaves were lyophilized for testing in a mouse system. We report that the orally administered GFP-Fc1 fusion protein (5.45 µg/g GFP-Fc1) has been taken up by the intestinal epithelium cells, evidenced by confocal microscopy. GFP-Fc1 subsequently entered the circulation where it was detected by ELISA. Data reported here confirm that chloroplast expression and oral administration of lyophilized leaves is a potential delivery system of therapeutic proteins fused with Fc1, with the advantage that the proteins may be stored at room temperature.
Collapse
Affiliation(s)
- Lisa LaManna
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Chih-Hsuan Chou
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611, USA
| | - Hanqin Lei
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611, USA
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611, USA.
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA.
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
2
|
Manning T, Birch R, Stevenson T, Nugent G, Whitney S. Bacterial Form II Rubisco can support wild-type growth and productivity in Solanum tuberosum cv. Desiree (potato) under elevated CO 2. PNAS NEXUS 2023; 2:pgac305. [PMID: 36743474 PMCID: PMC9896143 DOI: 10.1093/pnasnexus/pgac305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/22/2022] [Indexed: 02/05/2023]
Abstract
The last decade has seen significant advances in the development of approaches for improving both the light harvesting and carbon fixation pathways of photosynthesis by nuclear transformation, many involving multigene synthetic biology approaches. As efforts to replicate these accomplishments from tobacco into crops gather momentum, similar diversification is needed in the range of transgenic options available, including capabilities to modify crop photosynthesis by chloroplast transformation. To address this need, here we describe the first transplastomic modification of photosynthesis in a crop by replacing the native Rubisco in potato with the faster, but lower CO2-affinity and poorer CO2/O2 specificity Rubisco from the bacterium Rhodospirillum rubrum. High level production of R. rubrum Rubisco in the potRr genotype (8 to 10 µmol catalytic sites m2) allowed it to attain wild-type levels of productivity, including tuber yield, in air containing 0.5% (v/v) CO2. Under controlled environment growth at 25°C and 350 µmol photons m2 PAR, the productivity and leaf biochemistry of wild-type potato at 0.06%, 0.5%, or 1.5% (v/v) CO2 and potRr at 0.5% or 1.5% (v/v) CO2 were largely indistinguishable. These findings suggest that increasing the scope for enhancing productivity gains in potato by improving photosynthate production will necessitate improvement to its sink-potential, consistent with current evidence productivity gains by eCO2 fertilization for this crop hit a ceiling around 560 to 600 ppm CO2.
Collapse
Affiliation(s)
- Tahnee Manning
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Rosemary Birch
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 0200, Australia
| | - Trevor Stevenson
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Gregory Nugent
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Spencer Whitney
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 0200, Australia
| |
Collapse
|
3
|
Lin MT, Orr DJ, Worrall D, Parry MAJ, Carmo-Silva E, Hanson MR. A procedure to introduce point mutations into the Rubisco large subunit gene in wild-type plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:876-887. [PMID: 33576096 DOI: 10.1111/tpj.15196] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 01/22/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic inefficiencies limit the productivity and sustainability of crop production and the resilience of agriculture to future societal and environmental challenges. Rubisco is a key target for improvement as it plays a central role in carbon fixation during photosynthesis and is remarkably inefficient. Introduction of mutations to the chloroplast-encoded Rubisco large subunit rbcL is of particular interest for improving the catalytic activity and efficiency of the enzyme. However, manipulation of rbcL is hampered by its location in the plastome, with many species recalcitrant to plastome transformation, and by the plastid's efficient repair system, which can prevent effective maintenance of mutations introduced with homologous recombination. Here we present a system where the introduction of a number of silent mutations into rbcL within the model plant Nicotiana tabacum facilitates simplified screening via additional restriction enzyme sites. This system was used to successfully generate a range of transplastomic lines from wild-type N. tabacum with stable point mutations within rbcL in 40% of the transformants, allowing assessment of the effect of these mutations on Rubisco assembly and activity. With further optimization the approach offers a viable way forward for mutagenic testing of Rubisco function in planta within tobacco and modification of rbcL in other crops where chloroplast transformation is feasible. The transformation strategy could also be applied to introduce point mutations in other chloroplast-encoded genes.
Collapse
Affiliation(s)
- Myat T Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Dawn Worrall
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Elizabete Carmo-Silva
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
4
|
Maliga P, Tungsuchat-Huang T, Lutz KA. Transformation of the Plastid Genome in Tobacco: The Model System for Chloroplast Genome Engineering. Methods Mol Biol 2021; 2317:135-153. [PMID: 34028766 DOI: 10.1007/978-1-0716-1472-3_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The protocol we report here is based on biolistic delivery of transforming DNA to tobacco leaves, selection of transplastomic clones by spectinomycin or kanamycin resistance and regeneration of plants with uniformly transformed plastid genomes. Because the plastid genome of Nicotiana tabacum derives from Nicotiana sylvestris, and the two genomes are highly conserved, vectors developed for N. tabacum can be used in N. sylvestris. The tissue culture responses of N. tabacum cv. Petit Havana and N. sylvestris accession TW137 are similar. Plastid transformation in a subset of N. tabacum cultivars and in Nicotiana benthamiana requires adjustment of the tissue culture protocol. We describe updated vectors targeting insertions in the unique and repeated regions of the plastid genome, vectors suitable for regulated gene expression by the engineered PPR10 RNA binding protein as well as systems for marker gene excision.
Collapse
Affiliation(s)
- Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA.
| | | | - Kerry Ann Lutz
- Biology Department, Farmingdale State College, Farmingdale, NY, USA
| |
Collapse
|
5
|
Ji D, Manavski N, Meurer J, Zhang L, Chi W. Regulated chloroplast transcription termination. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:69-77. [PMID: 30414934 DOI: 10.1016/j.bbabio.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022]
Abstract
Transcription termination by the RNA polymerase (RNAP) is a fundamental step of gene expression that involves the release of the nascent transcript and dissociation of the RNAP from the DNA template. However, the functional importance of termination extends beyond the mere definition of the gene borders. Chloroplasts originate from cyanobacteria and possess their own gene expression system. Plastids have a unique hybrid transcription system consisting of two different types of RNAPs of dissimilar phylogenetic origin together with several additional nuclear encoded components. Although the basic components involved in chloroplast transcription have been identified, little attention has been paid to the chloroplast transcription termination. Recent identification and functional characterization of novel factors in regulating transcription termination in Arabidopsis chloroplasts via genetic and biochemical approaches have provided insights into the mechanisms and significance of transcription termination in chloroplast gene expression. This review provides an overview of the current knowledge of the transcription termination in chloroplasts.
Collapse
Affiliation(s)
- Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Nikolay Manavski
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moleculaire des Plantes, 12 rue du General Zimmer, 67084 Strasbourg, France
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
6
|
Ahmad N, Michoux F, Lössl AG, Nixon PJ. Challenges and perspectives in commercializing plastid transformation technology. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5945-5960. [PMID: 27697788 DOI: 10.1093/jxb/erw360] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plastid transformation has emerged as an alternative platform to generate transgenic plants. Attractive features of this technology include specific integration of transgenes-either individually or as operons-into the plastid genome through homologous recombination, the potential for high-level protein expression, and transgene containment because of the maternal inheritance of plastids. Several issues associated with nuclear transformation such as gene silencing, variable gene expression due to the Mendelian laws of inheritance, and epigenetic regulation have not been observed in the plastid genome. Plastid transformation has been successfully used for the production of therapeutics, vaccines, antigens, and commercial enzymes, and for engineering various agronomic traits including resistance to biotic and abiotic stresses. However, these demonstrations have usually focused on model systems such as tobacco, and the technology per se has not yet reached the market. Technical factors limiting this technology include the lack of efficient protocols for the transformation of cereals, poor transgene expression in non-green plastids, a limited number of selection markers, and the lengthy procedures required to recover fully segregated plants. This article discusses the technology of transforming the plastid genome, the positive and negative features compared with nuclear transformation, and the current challenges that need to be addressed for successful commercialization.
Collapse
Affiliation(s)
- Niaz Ahmad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Franck Michoux
- Alkion Biopharma SAS, 4 rue Pierre Fontaine, 91058 Evry, France
| | - Andreas G Lössl
- Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
7
|
Strategies and Methodologies for the Co-expression of Multiple Proteins in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:263-85. [DOI: 10.1007/978-3-319-27216-0_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Espinoza-Sánchez EA, Álvarez-Hernández MH, Torres-Castillo JA, Rascón-Cruz Q, Gutiérrez-Díez A, Zavala-García F, Sinagawa-García SR. Stable expression and characterization of a fungal pectinase and bacterial peroxidase genes in tobacco chloroplast. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
9
|
Chi W, He B, Manavski N, Mao J, Ji D, Lu C, Rochaix JD, Meurer J, Zhang L. RHON1 mediates a Rho-like activity for transcription termination in plastids of Arabidopsis thaliana. THE PLANT CELL 2014; 26:4918-32. [PMID: 25480370 PMCID: PMC4311204 DOI: 10.1105/tpc.114.132118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/02/2014] [Accepted: 11/15/2014] [Indexed: 05/20/2023]
Abstract
Although transcription termination is essential to generate functional RNAs, its underlying molecular mechanisms are still poorly understood in plastids of vascular plants. Here, we show that the RNA binding protein RHON1 participates in transcriptional termination of rbcL (encoding large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase) in Arabidopsis thaliana. Inactivation of RHON1 leads to enhanced rbcL read-through transcription and to aberrant accD (encoding β-subunit of the acetyl-CoA carboxylase) transcriptional initiation, which may result from inefficient transcription termination of rbcL. RHON1 can bind to the mRNA as well as to single-stranded DNA of rbcL, displays an RNA-dependent ATPase activity, and terminates transcription of rbcL in vitro. These results suggest that RHON1 terminates rbcL transcription using an ATP-driven mechanism similar to that of Rho of Escherichia coli. This RHON1-dependent transcription termination occurs in Arabidopsis but not in rice (Oryza sativa) and appears to reflect a fundamental difference between plastomes of dicotyledonous and monocotyledonous plants. Our results point to the importance and significance of plastid transcription termination and provide insights into its machinery in an evolutionary context.
Collapse
Affiliation(s)
- Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Baoye He
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nikolay Manavski
- Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology/Botany, 82152 Planegg-Martinsried, Germany
| | - Juan Mao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jean David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Jörg Meurer
- Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology/Botany, 82152 Planegg-Martinsried, Germany
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
10
|
Vafaee Y, Staniek A, Mancheno-Solano M, Warzecha H. A modular cloning toolbox for the generation of chloroplast transformation vectors. PLoS One 2014; 9:e110222. [PMID: 25302695 PMCID: PMC4193872 DOI: 10.1371/journal.pone.0110222] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
Plastid transformation is a powerful tool for basic research, but also for the generation of stable genetically engineered plants producing recombinant proteins at high levels or for metabolic engineering purposes. However, due to the genetic makeup of plastids and the distinct features of the transformation process, vector design, and the use of specific genetic elements, a large set of basic transformation vectors is required, making cloning a tedious and time-consuming effort. Here, we describe the adoption of standardized modular cloning (GoldenBraid) to the design and assembly of the full spectrum of plastid transformation vectors. The modular design of genetic elements allows straightforward and time-efficient build-up of transcriptional units as well as construction of vectors targeting any homologous recombination site of choice. In a three-level assembly process, we established a vector fostering gene expression and formation of griffithsin, a potential viral entry inhibitor and HIV prophylactic, in the plastids of tobacco. Successful transformation as well as transcript and protein production could be shown. In concert with the aforesaid endeavor, a set of modules facilitating plastid transformation was generated, thus augmenting the GoldenBraid toolbox. In short, the work presented in this study enables efficient application of synthetic biology methods to plastid transformation in plants.
Collapse
Affiliation(s)
- Yavar Vafaee
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Darmstadt, Germany
| | - Agata Staniek
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Darmstadt, Germany
| | - Maria Mancheno-Solano
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Darmstadt, Germany
| | - Heribert Warzecha
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Darmstadt, Germany
- * E-mail:
| |
Collapse
|
11
|
Scharff LB, Bock R. Synthetic biology in plastids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:783-98. [PMID: 24147738 DOI: 10.1111/tpj.12356] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/08/2013] [Accepted: 10/16/2013] [Indexed: 05/21/2023]
Abstract
Plastids (chloroplasts) harbor a small gene-dense genome that is amenable to genetic manipulation by transformation. During 1 billion years of evolution from the cyanobacterial endosymbiont to present-day chloroplasts, the plastid genome has undergone a dramatic size reduction, mainly as a result of gene losses and the large-scale transfer of genes to the nuclear genome. Thus the plastid genome can be regarded as a naturally evolved miniature genome, the gradual size reduction and compaction of which has provided a blueprint for the design of minimum genomes. Furthermore, because of the largely prokaryotic genome structure and gene expression machinery, the high transgene expression levels attainable in transgenic chloroplasts and the very low production costs in plant systems, the chloroplast lends itself to synthetic biology applications that are directed towards the efficient synthesis of green chemicals, biopharmaceuticals and other metabolites of commercial interest. This review describes recent progress with the engineering of plastid genomes with large constructs of foreign or synthetic DNA, and highlights the potential of the chloroplast as a model system in bottom-up and top-down synthetic biology approaches.
Collapse
Affiliation(s)
- Lars B Scharff
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | | |
Collapse
|
12
|
Tseng MJ, Yang MT, Chu WR, Liu CW. Plastid transformation in cabbage (Brassica oleracea L. var. capitata L.) by the biolistic process. Methods Mol Biol 2014; 1132:355-66. [PMID: 24599866 DOI: 10.1007/978-1-62703-995-6_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cabbage (Brassica oleracea L. var. capitata L.) is one of the most important vegetable crops grown worldwide. Scientists are using biotechnology in addition to traditional breeding methods to develop new cabbage varieties with desirable traits. Recent biotechnological advances in chloroplast transformation technology have opened new avenues for crop improvement. In 2007, we developed a stable plastid transformation system for cabbage and reported the successful transformation of the cry1Ab gene into the cabbage chloroplast genome. This chapter describes the methods for cabbage transformation using biolistic procedures. The following sections are included in this protocol: preparation of donor materials, coating gold particles with DNA, biolistic bombardment, as well as the regeneration and selection of transplastomic cabbage plants. The establishment of a plastid transformation system for cabbage offers new possibilities for introducing new agronomic and horticultural traits into Brassica crops.
Collapse
Affiliation(s)
- Menq-Jiau Tseng
- Department of Horticulture, National Chung Hsing University, Taichung, Taiwan, ROC
| | | | | | | |
Collapse
|
13
|
Maliga P, Tungsuchat-Huang T. Plastid transformation in Nicotiana tabacum and Nicotiana sylvestris by biolistic DNA delivery to leaves. Methods Mol Biol 2014; 1132:147-63. [PMID: 24599851 DOI: 10.1007/978-1-62703-995-6_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The protocol we report here is based on biolistic delivery of the transforming DNA to tobacco leaves, selection of transplastomic clones by spectinomycin resistance and regeneration of plants with uniformly transformed plastid genomes. Because the plastid genome of Nicotiana tabacum derives from Nicotiana sylvestris, and the two genomes are highly conserved, vectors developed for N. tabacum can be used in N. sylvestris. Also, the tissue culture responses of N. tabacum cv. Petit Havana and N. sylvestris accession TW137 are similar, allowing plastid engineering protocols developed for N. tabacum to be directly applied to N. sylvestris. However, the tissue culture protocol is applicable only in a subset of N. tabacum cultivars. Here we highlight differences between the protocols for the two species. We describe updated vectors targeting insertions in the unique and repeated regions of the plastid genome as well as systems for marker excision. The simpler genetics of the diploid N. sylvestris, as opposed to the allotetraploid N. tabacum, make it an attractive model for plastid transformation.
Collapse
Affiliation(s)
- Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA
| | | |
Collapse
|
14
|
|
15
|
Tungsuchat-Huang T, Slivinski KM, Sinagawa-Garcia SR, Maliga P. Visual spectinomycin resistance (aadA(au)) gene for facile identification of transplastomic sectors in tobacco leaves. PLANT MOLECULAR BIOLOGY 2011; 76:453-61. [PMID: 21193947 DOI: 10.1007/s11103-010-9724-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 12/19/2010] [Indexed: 05/28/2023]
Abstract
Identification of a genetically stable Nicotiana tabacum (tobacco) plant with a uniform population of transformed plastid genomes (ptDNA) takes two cycles of plant regeneration from chimeric leaves and analysis of multiple shoots by Southern probing in each cycle. Visual detection of transgenic sectors facilitates identification of transformed shoots in the greenhouse, complementing repeated cycles of blind purification in culture. In addition, it provides a tool to monitor the maintenance of transplastomic state. Our current visual marker system requires two genes: the aurea bar (bar(au)) gene that confers a golden leaf phenotype and a spectinomycin resistance (aadA) gene that is necessary for the introduction of the bar(au) gene in the plastid genome. We developed a novel aadA gene that fulfills both functions: it is a conventional selectable aadA gene in culture, and allows detection of transplastomic sectors in the greenhouse by leaf color. Common causes of pigment deficiency in leaves are mutations in photosynthetic genes, which affect chlorophyll accumulation. We use a different approach to achieve pigment deficiency: post-transcriptional interference with the expression of the clpP1 plastid gene by aurea aadA(au) transgene. This interference produces plants with reduced growth and a distinct color, but maintains a wild-type gene set and the capacity for photosynthesis. Importantly, when the aurea gene is removed, green pigmentation and normal growth rate are restored. Because the aurea plants are viable, the new aadA(au) genes are useful to query rare events in large populations and for in planta manipulation of the plastid genome.
Collapse
Affiliation(s)
- Tarinee Tungsuchat-Huang
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | | | |
Collapse
|
16
|
Mileshina D, Koulintchenko M, Konstantinov Y, Dietrich A. Transfection of plant mitochondria and in organello gene integration. Nucleic Acids Res 2011; 39:e115. [PMID: 21715377 PMCID: PMC3177224 DOI: 10.1093/nar/gkr517] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Investigation and manipulation of mitochondrial genetics in animal and plant cells remains restricted by the lack of an efficient in vivo transformation methodology. Mitochondrial transfection in whole cells and maintenance of the transfected DNA are main issues on this track. We showed earlier that isolated mitochondria from different organisms can import DNA. Exploiting this mechanism, we assessed the possibility to maintain exogenous DNA in plant organelles. Whereas homologous recombination is scarce in the higher plant nuclear compartment, recombination between large repeats generates the multipartite structure of the plant mitochondrial genome. These processes are under strict surveillance to avoid extensive genomic rearrangements. Nevertheless, following transfection of isolated organelles with constructs composed of a partial gfp gene flanked by fragments of mitochondrial DNA, we demonstrated in organello homologous recombination of the imported DNA with the resident DNA and integration of the reporter gene. Recombination yielded insertion of a continuous exogenous DNA fragment including the gfp sequence and at least 0.5 kb of flanking sequence on each side. According to our observations, transfection constructs carrying multiple sequences homologous to the mitochondrial DNA should be suitable and targeting of most regions in the organelle genome should be feasible, making the approach of general interest.
Collapse
|
17
|
Rogalski M, Carrer H. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:554-64. [PMID: 21535359 DOI: 10.1111/j.1467-7652.2011.00621.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The ability to manipulate plant fatty acid biosynthesis by using new biotechnological approaches has allowed the production of transgenic plants with unusual fatty acid profile and increased oil content. This review focuses on the production of very long chain polyunsaturated fatty acids (VLCPUFAs) and the increase in oil content in plants using molecular biology tools. Evidences suggest that regular consumption of food rich in VLCPUFAs has multiple positive health benefits. Alternative sources of these nutritional fatty acids are found in cold-water fishes. However, fish stocks are in severe decline because of decades of overfishing, and also fish oils can be contaminated by the accumulation of toxic compounds. Recently, there is also an increase in oilseed use for the production of biofuels. This tendency is partly associated with the rapidly rising costs of petroleum, increased concern about the environmental impact of fossil oil and the attractive need to develop renewable sources of fuel. In contrast to this scenario, oil derived from crop plants is normally contaminant free and less environmentally aggressive. Genetic engineering of the plastid genome (plastome) offers a number of attractive advantages, including high-level foreign protein expression, marker-gene excision and transgene containment because of maternal inheritance of plastid genome in most crops. Here, we describe the possibility to improve fatty acid biosynthesis in plastids, production of new fatty acids and increase their content in plants by genetic engineering of plastid fatty acid biosynthesis via plastid transformation.
Collapse
Affiliation(s)
- Marcelo Rogalski
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba-SP. 13418-900, Brazil
| | | |
Collapse
|
18
|
Valkov VT, Gargano D, Manna C, Formisano G, Dix PJ, Gray JC, Scotti N, Cardi T. High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5' and 3' regulatory sequences. Transgenic Res 2011; 20:137-51. [PMID: 20464632 DOI: 10.1007/s11248-010-9402-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/22/2010] [Indexed: 11/28/2022]
Abstract
Transformation of potato plastids is limited by low transformation frequencies and low transgene expression in tubers. In order to improve the transformation efficiency, we modified the regeneration procedure and prepared novel vectors containing potato flanking sequences for transgene integration by homologous recombination in the Large Single Copy region of the plastome. Vector delivery was performed by the biolistic approach. By using the improved regeneration procedure and the potato flanking sequences, we regenerated about one shoot every bombardment. This efficiency corresponds to 15-18-fold improvement compared to previous results with potato and is comparable to that usually achieved with tobacco. Further, we tested five promoters and terminators, and four 5'-UTRs, to increase the expression of the gfp transgene in tubers. In leaves, accumulation of GFP to about 4% of total soluble protein (TSP) was obtained with the strong promoter of the rrn operon, a synthetic rbcL-derived 5'-UTR and the bacterial rrnB terminator. GFP protein was detected in tubers of plants transformed with only four constructs out of eleven. Best results (up to approximately 0.02% TSP) were achieved with the rrn promoter and rbcL 5'-UTR construct, described above, and another containing the same terminator, but with the promoter and 5'-UTR from the plastid clpP gene. The results obtained suggest the potential use of clpP as source of novel regulatory sequences in constructs aiming to express transgenes in amyloplasts and other non-green plastids. Furthermore, they represent a significant advancement of the plastid transformation technology in potato, of relevance to its implementation in potato breeding and biotechnology.
Collapse
Affiliation(s)
- Vladimir T Valkov
- CNR-IGV, Institute of Plant Genetics, Res. Div. Portici, via Università 133, 80055, Portici, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Maliga P, Svab Z. Engineering the plastid genome of Nicotiana sylvestris, a diploid model species for plastid genetics. Methods Mol Biol 2011; 701:37-50. [PMID: 21181523 DOI: 10.1007/978-1-61737-957-4_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The plastids of higher plants have their own ∼120-160-kb genome that is present in 1,000-10,000 copies per cell. Engineering of the plastid genome (ptDNA) is based on homologous recombination between the plastid genome and cloned ptDNA sequences in the vector. A uniform population of engineered ptDNA is obtained by selection for marker genes encoded in the vectors. Manipulations of ptDNA include (1) insertion of transgenes in intergenic regions; (2) posttransformation excision of marker genes to obtain marker-free plants; (3) gene knockouts and gene knockdowns, and (4) cotransformation with multiple plasmids to introduce nonselected genes without physical linkage to marker genes. Most experiments on plastome engineering have been carried out in the allotetraploid Nicotiana tabacum. We report here for the first time plastid transformation in Nicotiana sylvestris, a diploid ornamental species. We demonstrate that the protocols and vectors developed for plastid transformation in N. tabacum are directly applicable to N. sylvestris with the advantage that the N. sylvestris transplastomic lines are suitable for mutant screens.
Collapse
Affiliation(s)
- Pal Maliga
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | | |
Collapse
|
20
|
Cardi T, Lenzi P, Maliga P. Chloroplasts as expression platforms for plant-produced vaccines. Expert Rev Vaccines 2010; 9:893-911. [PMID: 20673012 DOI: 10.1586/erv.10.78] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Production of recombinant subunit vaccines from genes incorporated in the plastid genome is advantageous because of the attainable expression level due to high transgene copy number and the absence of gene silencing; biocontainment as a consequence of maternal inheritance of plastids and no transgene presence in the pollen; and expression of multiple transgenes in prokaryotic-like operons. We discuss the core technology of plastid transformation in Chlamydomonas reinhardtii, a unicellular alga, and Nicotiana tabacum (tobacco), a flowering plant species, and demonstrate the utility of the technology for the production of recombinant vaccine antigens.
Collapse
Affiliation(s)
- Teodoro Cardi
- CNR-IGV, Institute of Plant Genetics, Portici, Italy.
| | | | | |
Collapse
|
21
|
Newell CA, Gray JC. Binding of lac repressor-GFP fusion protein to lac operator sites inserted in the tobacco chloroplast genome examined by chromatin immunoprecipitation. Nucleic Acids Res 2010; 38:e145. [PMID: 20484380 PMCID: PMC2919732 DOI: 10.1093/nar/gkq413] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/29/2010] [Accepted: 05/04/2010] [Indexed: 11/12/2022] Open
Abstract
Chromatin immunoprecipitation (ChIP) has been used to detect binding of DNA-binding proteins to sites in nuclear and mitochondrial genomes. Here, we describe a method for detecting protein-binding sites on chloroplast DNA, using modifications to the nuclear ChIP procedures. The method was developed using the lac operator (lacO)/lac repressor (LacI) system from Escherichia coli. The lacO sequences were integrated into a single site between the rbcL and accD genes in tobacco plastid DNA and homoplasmic transplastomic plants were crossed with transgenic tobacco plants expressing a nuclear-encoded plastid-targeted GFP-LacI fusion protein. In the progeny, the GFP-LacI fusion protein could be visualized in living tissues using confocal microscopy, and was found to co-localize with plastid nucleoids. Isolated chloroplasts from the lacO/GFP-LacI plants were lysed, treated with micrococcal nuclease to digest the DNA to fragments of approximately 600 bp and incubated with antibodies to GFP and protein A-Sepharose. PCR analysis on DNA extracted from the immunoprecipitate demonstrated IPTG (isopropylthiogalactoside)-sensitive binding of GFP-LacI to lacO. Binding of GFP-LacI to endogenous sites in plastid DNA showing sequence similarity to lacO was also detected, but required reversible cross-linking with formaldehyde. This may provide a general method for the detection of binding sites on plastid DNA for specific proteins.
Collapse
Affiliation(s)
| | - John C. Gray
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|