1
|
Ma C, Zheng S, Yang S, Wu J, Sun X, Chen Y, Zhang P, Li Y, Wu L, Liang X, Fu Q, Li L, Zhu J, Jia X, Ye X, Xu Z, Chen R. OsCYCBL1 and OsHTR702 positively regulate rice tolerance to cold stress. Int J Biol Macromol 2025; 287:138642. [PMID: 39667477 DOI: 10.1016/j.ijbiomac.2024.138642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Chaling wild rice (Oryza rufipogon Griff.) can survive winter due to its extreme cold tolerance, whereas cultivated rice (Oryza sativa L.) cannot. Here, we found that the expression level of OsCYCBL1 decreased relatively less at low temperatures in Chaling wild rice compared with cultivated rice. Transgenic assays of OsCYCBL1 in Nipponbare (Nip) showed that overexpression of OsCYCBL1 promoted cold tolerance. Transcriptome profiling, RT-qPCR analysis, and physiological parameters measurement indicated that overexpression of OsCYCBL1 maintained better DNA damage repair capacity, balanced the cell cycle, enhanced reactive oxygen species (ROS) homeostasis, and increased wax content, directly affecting the ICE-CBF-COR cascade. Moreover, OsHTR702, a gene that interacts with OsCYCBL1, also positively regulates rice cold tolerance by affecting the ICE-CBF-COR cascade and increasing ROS homeostasis at low temperatures. In addition, overexpression of OsCYCBL1 and OsHTR702 enabled rice to survive through winter. Taken together, the current results indicate that OsCYCBL1 and OsHTR702 are related to cold tolerance in rice, making them potential targets for enhancing crop resilience to cold stress.
Collapse
Affiliation(s)
- Chuan Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Shiwei Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China.
| | - Songjin Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Jiacheng Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Xingzhuo Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Yulin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Peng Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Yanting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Lingli Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Xin Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Qiuping Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Lihua Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Jianqing Zhu
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University 211, Huimin Road, Chengdu 611130, China
| | - Xiaomei Jia
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University 211, Huimin Road, Chengdu 611130, China
| | - Xiaoying Ye
- Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University 211, Huimin Road, Chengdu 611130, China
| | - Zhengjun Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China
| | - Rongjun Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute of Sichuan Agricultural University of Rice Research Institute, Chengdu 611130, China; Demonstration Base for International Science & Technology Cooperation of Sichuan Province, Sichuan Agricultural University 211, Huimin Road, Chengdu 611130, China; Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Sun S, Liu D, Luo W, Li Z, Feng J, Guo Y, Chong K, Xu Y. Domestication-selected COG4-OsbZIP23 module regulates chilling tolerance in rice. Cell Rep 2024; 43:114965. [PMID: 39527475 DOI: 10.1016/j.celrep.2024.114965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/26/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Identifying excellent natural variations is the foundation for breeding. Several major genes of quantitative trait loci for chilling tolerance at the seedling stage (qCTS) have been identified. However, less is known about the dual elite modules for the tolerance. Here, we report the major gene of qCTS1-2, Chilling-tolerance in Geng/japonica rice 4 (COG4), encoding the transcription factor ENAC1, coupled with OsbZIP23 to positively regulate chilling tolerance. The haplotype analysis and geographical distribution show that most of the chilling-tolerant japonica varieties carry Var9(CT) at -317 in COG4 (COG4jap). The COG4jap promoter is preferentially bound by cold-induced OsbZIP23 to cause a higher expression of COG4jap compared to COG4ind, which promotes multiple pathways for the tolerance. Both COG4jap and OsbZIP23jap are artificially selected and retained in japonica varieties during domestication. These results not only reveal the regulatory mechanism of OsbZIP23jap-COG4jap module but also provide valuable variations for molecular design breeding.
Collapse
Affiliation(s)
- Shenli Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfeng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhitao Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinglei Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; Academician Workstation of Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China.
| |
Collapse
|
3
|
Bataller S, Davis JA, Gu L, Baca S, Chen G, Majid A, Villacastin AJ, Barth D, Han MV, Rushton PJ, Shen QJ. Disruption of the OsWRKY71 transcription factor gene results in early rice seed germination under normal and cold stress conditions. BMC PLANT BIOLOGY 2024; 24:1090. [PMID: 39551730 PMCID: PMC11571745 DOI: 10.1186/s12870-024-05808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Early seed germination in crops can confer a competitive advantage against weeds and reduce the time to maturation and harvest. WRKY transcription factors regulate many aspects of plant development including seed dormancy and germination. Both positive and negative regulators of seed germination have been reported in many plants such as rice and Arabidopsis. Using a transient expression system, we previously demonstrated that OsWRKY71 is a negative regulator of gibberellin (GA) signaling in aleurone cells and likely forms a "repressosome" complex with other transcriptional repressors. Hence, it has the potential to impact seed germination properties. RESULTS In this study, we demonstrate that OsWRKY71, a Group IIa WRKY gene, appeared at the same time as seed-bearing plants. Rice mutants lacking OsWRKY71 have seeds and embryos that germinate earlier than wildtype controls. In oswrky71 aleurone layers, α-amylase activity was hypersensitive to stimulation by GA3 and hyposensitive to inhibition by abscisic acid (ABA). Early germination in oswrky71 intact seeds was also hyposensitive to ABA. Transcriptomic profiling during embryo germination and early post-germination growth demonstrates that OsWRKY71 influences the expression of 9-17% of genes in dry and imbibing embryos. Compared to wildtype embryos, the mutant transcriptomes have large temporal shifts at 4, 8 and 12 h after imbibition (HAI). Importantly, many genes involved in the ABA-dependent inhibition of seed germination were downregulated in oswrky71-1. This mutant also displayed altered expression of multiple ABA receptors (OsPYLs/RCARs) that control ABA signaling and the VP1-SDR4-DOG1L branch of ABA signaling that promotes seed dormancy. Association studies reveal an OsWRKY71-containing quantitative trait locus involved in low-temperature seed germinability, qLTG-2. Indeed, oswrky71 seeds germinated early at 15 °C. CONCLUSIONS Rice Group-IIa WRKY transcription factor OsWRKY71 is a master regulator of germination that influences the expression of 9-17% of genes in dry and imbibing embryos. It is also most likely the primary candidate of low-temperature seed germinability QTL, qLTG-2. We propose that knockouts of OsWRKY71 can generate rice varieties with improved germination properties under normal or low-temperature conditions.
Collapse
Affiliation(s)
- Santiago Bataller
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - James A Davis
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Lingkun Gu
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Sophia Baca
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Gaelan Chen
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Azeem Majid
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Anne J Villacastin
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Dylan Barth
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Mira V Han
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Paul J Rushton
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Qingxi J Shen
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA.
| |
Collapse
|
4
|
Aloryi KD, Okpala NE, Guo H, Karikari B, Amo A, Bello SF, Saini DK, Akaba S, Tian X. Integrated meta-analysis and transcriptomics pinpoint genomic loci and novel candidate genes associated with submergence tolerance in rice. BMC Genomics 2024; 25:338. [PMID: 38575927 PMCID: PMC10993490 DOI: 10.1186/s12864-024-10219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Due to rising costs, water shortages, and labour shortages, farmers across the globe now prefer a direct seeding approach. However, submergence stress remains a major bottleneck limiting the success of this approach in rice cultivation. The merger of accumulated rice genetic resources provides an opportunity to detect key genomic loci and candidate genes that influence the flooding tolerance of rice. RESULTS In the present study, a whole-genome meta-analysis was conducted on 120 quantitative trait loci (QTL) obtained from 16 independent QTL studies reported from 2004 to 2023. These QTL were confined to 18 meta-QTL (MQTL), and ten MQTL were successfully validated by independent genome-wide association studies from diverse natural populations. The mean confidence interval (CI) of the identified MQTL was 3.44 times narrower than the mean CI of the initial QTL. Moreover, four core MQTL loci with genetic distance less than 2 cM were obtained. By combining differentially expressed genes (DEG) from two transcriptome datasets with 858 candidate genes identified in the core MQTL regions, we found 38 common differentially expressed candidate genes (DECGs). In silico expression analysis of these DECGs led to the identification of 21 genes with high expression in embryo and coleoptile under submerged conditions. These DECGs encode proteins with known functions involved in submergence tolerance including WRKY, F-box, zinc fingers, glycosyltransferase, protein kinase, cytochrome P450, PP2C, hypoxia-responsive family, and DUF domain. By haplotype analysis, the 21 DECGs demonstrated distinct genetic differentiation and substantial genetic distance mainly between indica and japonica subspecies. Further, the MQTL7.1 was successfully validated using flanked marker S2329 on a set of genotypes with phenotypic variation. CONCLUSION This study provides a new perspective on understanding the genetic basis of submergence tolerance in rice. The identified MQTL and novel candidate genes lay the foundation for marker-assisted breeding/engineering of flooding-tolerant cultivars conducive to direct seeding.
Collapse
Grants
- 2023AFA022 Hubei Provincial Natural Science Foundation of China
- 2023AFA022 Hubei Provincial Natural Science Foundation of China
- 2023AFA022 Hubei Provincial Natural Science Foundation of China
- 2023AFA022 Hubei Provincial Natural Science Foundation of China
- 2023AFA022 Hubei Provincial Natural Science Foundation of China
- 2023AFA022 Hubei Provincial Natural Science Foundation of China
- 2023AFA022 Hubei Provincial Natural Science Foundation of China
- 2023AFA022 Hubei Provincial Natural Science Foundation of China
- 2023AFA022 Hubei Provincial Natural Science Foundation of China
- 2020BBB060 Key R&D Project in Hubei Province, China
- 2020BBB060 Key R&D Project in Hubei Province, China
- 2020BBB060 Key R&D Project in Hubei Province, China
- 2020BBB060 Key R&D Project in Hubei Province, China
- 2020BBB060 Key R&D Project in Hubei Province, China
- 2020BBB060 Key R&D Project in Hubei Province, China
- 2020BBB060 Key R&D Project in Hubei Province, China
- 2020BBB060 Key R&D Project in Hubei Province, China
- 2020BBB060 Key R&D Project in Hubei Province, China
- 2018YFD0301306 the National Key Research and Development Program of China
- 2018YFD0301306 the National Key Research and Development Program of China
- 2018YFD0301306 the National Key Research and Development Program of China
- 2018YFD0301306 the National Key Research and Development Program of China
- 2018YFD0301306 the National Key Research and Development Program of China
- 2018YFD0301306 the National Key Research and Development Program of China
- 2018YFD0301306 the National Key Research and Development Program of China
- 2018YFD0301306 the National Key Research and Development Program of China
- 2018YFD0301306 the National Key Research and Development Program of China
- Key R&D Project in Hubei Province, China
Collapse
Affiliation(s)
- Kelvin Dodzi Aloryi
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Nnaemeka Emmanuel Okpala
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Hong Guo
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Benjamin Karikari
- Département de phytologie, Université Laval, Québec, QC, Canada
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Aduragbemi Amo
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
| | - Selorm Akaba
- School of Agriculture, University of Cape Coast, Cape Coast, Ghana
| | - Xiaohai Tian
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China.
| |
Collapse
|
5
|
Li X, Dong J, Zhu W, Zhao J, Zhou L. Progress in the study of functional genes related to direct seeding of rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:46. [PMID: 37309311 PMCID: PMC10248684 DOI: 10.1007/s11032-023-01388-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/20/2023] [Indexed: 06/14/2023]
Abstract
Rice is a major food crop in the world. Owing to the shortage of rural labor and the development of agricultural mechanization, direct seeding has become the main method of rice cultivation. At present, the main problems faced by direct seeding of rice are low whole seedling rate, serious weeds, and easy lodging of rice in the middle and late stages of growth. Along with the rapid development of functional genomics, the functions of a large number of genes have been confirmed, including seed vigor, low-temperature tolerance germination, low oxygen tolerance growth, early seedling vigor, early root vigor, resistance to lodging, and other functional genes related to the direct seeding of rice. A review of the related functional genes has not yet been reported. In this study, the genes related to direct seeding of rice are summarized to comprehensively understand the genetic basis and mechanism of action in direct seeding of rice and to lay the foundation for further basic theoretical research and breeding application research in direct seeding of rice.
Collapse
Affiliation(s)
- Xuezhong Li
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
| | - Wen Zhu
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, 510640 China
| | - Lingyan Zhou
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong China
| |
Collapse
|
6
|
Yang L, Lei L, Wang J, Zheng H, Xin W, Liu H, Zou D. qCTB7 positively regulates cold tolerance at booting stage in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:135. [PMID: 37222778 DOI: 10.1007/s00122-023-04388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
KEY MESSAGE LOC_Os07g07690 on qCTB7 is associated with cold tolerance at the booting stage in rice, and analysis of transgenic plants demonstrated that qCTB7 influenced cold tolerance by altering the morphology and cytoarchitecture of anthers and pollen. Cold tolerance at the booting stage (CTB) in rice can significantly affect yield in high-latitude regions. Although several CTB genes have been isolated, their ability to induce cold tolerance is insufficient to ensure adequate rice yields in cold regions at high latitudes. Here, we identified the PHD-finger domain-containing protein gene qCTB7 using QTL-seq and linkage analysis through systematic measurement of CTB differences and the spike fertility of the Longjing31 and Longdao3 cultivars, resulting in the derivation of 1570 F2 progeny under cold stress. We then characterized the function of qCTB7 in rice. It was found that overexpression of qCTB7 promoted CTB and the same yield as Longdao3 under normal growing conditions while the phenotype of qctb7 knockout showed anther and pollen failure under cold stress. When subjected to cold stress, the germination of qctb7 pollen on the stigma was reduced, resulting in lower spike fertility. These findings indicate that qCTB7 regulates the appearance, morphology, and cytoarchitecture of the anthers and pollen. Three SNPs in the promoter region and coding region of qCTB7 were identified as recognition signals for CTB in rice and could assist breeding efforts to improve cold tolerance for rice production in high latitudes.
Collapse
Affiliation(s)
- Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Lei
- Institute of Crop Cultivation and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
7
|
Wang W, Huang R, Wu G, Sun J, Zhu Y, Wang H. Transcriptomic and QTL Analysis of Seed Germination Vigor under Low Temperature in Weedy Rice WR04-6. PLANTS (BASEL, SWITZERLAND) 2023; 12:871. [PMID: 36840221 PMCID: PMC9961040 DOI: 10.3390/plants12040871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Low temperature is one of the major factors affecting rice germination, and low temperature germination (LTG) is an important agronomic trait. Although significant progress has been made in the study of rice LTG, the molecular mechanism of LTG remains poorly understood. To explore more rice LTG gene resources, we first demonstrated that weedy rice WR04-6 (Oryza sativa f. spontanea) had significantly higher LTG ability at 10 °C than the cultivated rice Qishanzhan (QSZ Oryza sativa L. ssp. indica). RNA-seq was used to investigate the gene expression of WR04-6 and QSZ at 10 °C for 10, 12 and 14 days after imbibition (DAI) of seed germination. The results of Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment revealed that the differentially expressed genes (DEGs) between WR04-6 and QSZ were mainly concentrated on the response to starch catabolic processes and the response to abscisic acid (ABA). This is consistent with the results of α-amylase activity, ABA and gibberellins (GA) treatment. A recombinant inbred line (RIL) population derived from a cross between WR04-6 and QSZ and its high-density SNP genetic map were used to detect quantitative trait loci (QTL) for LTG rates. The results showed that two new QTLs were located on chromosome 3 and chromosome 12. Combined with the mapped QTLs and RNA-seq DEGs, sixteen candidate genes potentially associated with LTG were identified. Validation of the expression of the candidates by qRT-PCR were consistent with the RNA-seq data. These results will enable us to understand the genetic basis of LTG in weedy rice and provide new genetic resources for the generation of rice germplasm with improved LTG.
Collapse
Affiliation(s)
- Wenjia Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruizhi Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gengwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
8
|
Li Q, Zhai W, Wei J, Jia Y. Rice lipid transfer protein, OsLTPL23, controls seed germination by regulating starch-sugar conversion and ABA homeostasis. Front Genet 2023; 14:1111318. [PMID: 36726806 PMCID: PMC9885049 DOI: 10.3389/fgene.2023.1111318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Seed germination is vital for ensuring the continuity of life in spermatophyte. High-quality seed germination usually represents good seedling establishment and plant production. Here, we identified OsLTPL23, a putative rice non-specific lipid transport protein, as an important regulator responsible for seed germination. Subcellular localization analysis confirmed that OsLTPL23 is present in the plasma membrane and nucleus. The knockout mutants of OsLTPL23 were generated by CRISPR/Cas9-mediated genome editing, and osltpl23 lines significantly germinated slower and lower than the Nipponbare (NIP). Starch and soluble sugar contents measurement showed that OsLTPL23 may have alpha-amylase inhibitor activity, and high soluble sugar content may be a causal agent for the delayed seed germination of osltpl23 mutants. Transcript profiles in the germinating seeds exhibited that the abscisic acid (ABA)-responsive genes, OsABI3 and OsABI5, and biosynthesis genes, OsNCED1, OsNCED2, OsNCED3 and OsNCED4, are obviously upregulated in the osltpl23 mutants compared to NIP plants, conversely, ABA metabolism genes OsABA8ox1, OsABA8ox2 and OsABA8ox3 are stepwise decreased. Further investigations found that osltpl23 mutants displays weakened early seedling growth, with elevated gene expresssion of ABA catabolism genes and repressive transcription response of defence-related genes OsWRKY45, OsEiN3, OsPR1a, OsPR1b and OsNPR1. Integrated analysis indicated that OsLTPL23 may exert an favorable effect on rice seed germination and early seedling growth via modulating endogenous ABA homeostasis. Collectively, our study provides important insights into the roles of OsLTPL23-mediated carbohydrate conversion and endogenous ABA pathway on seed germination and early seedling growth, which contributes to high-vigor seed production in rice breeding.
Collapse
Affiliation(s)
- Quanlin Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiaping Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Yanfeng Jia
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China,*Correspondence: Yanfeng Jia,
| |
Collapse
|
9
|
Li J, Zhang Z, Chong K, Xu Y. Chilling tolerance in rice: Past and present. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153576. [PMID: 34875419 DOI: 10.1016/j.jplph.2021.153576] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Rice is generally sensitive to chilling stress, which seriously affects growth and yield. Since early in the last century, considerable efforts have been made to understand the physiological and molecular mechanisms underlying the response to chilling stress and improve rice chilling tolerance. Here, we review the research trends and advances in this field. The phenotypic and biochemical changes caused by cold stress and the physiological explanations are briefly summarized. Using published data from the past 20 years, we reviewed the past progress and important techniques in the identification of quantitative trait loci (QTL), novel genes, and cellular pathways involved in rice chilling tolerance. The advent of novel technologies has significantly advanced studies of cold tolerance, and the characterization of QTLs, key genes, and molecular modules have sped up molecular design breeding for cold tolerance in rice varieties. In addition to gene function studies based on overexpression or artificially generated mutants, elucidating natural allelic variation in specific backgrounds is emerging as a novel approach for the study of cold tolerance in rice, and the superior alleles identified using this approach can directly facilitate breeding.
Collapse
Affiliation(s)
- Junhua Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Zeyong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
10
|
Yang L, Lei L, Li P, Wang J, Wang C, Yang F, Chen J, Liu H, Zheng H, Xin W, Zou D. Identification of Candidate Genes Conferring Cold Tolerance to Rice ( Oryza sativa L.) at the Bud-Bursting Stage Using Bulk Segregant Analysis Sequencing and Linkage Mapping. FRONTIERS IN PLANT SCIENCE 2021; 12:647239. [PMID: 33790929 PMCID: PMC8006307 DOI: 10.3389/fpls.2021.647239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 05/29/2023]
Abstract
Low-temperature tolerance during the bud-bursting stage is an important characteristic of direct-seeded rice. The identification of cold-tolerance quantitative trait loci (QTL) in species that can stably tolerate cold environments is crucial for the molecular breeding of rice with such traits. In our study, high-throughput QTL-sequencing analyses were performed in a 460-individual F2 : 3 mapping population to identify the major QTL genomic regions governing cold tolerance at the bud-bursting (CTBB) stage in rice. A novel major QTL, qCTBB9, which controls seed survival rate (SR) under low-temperature conditions of 5°C/9 days, was mapped on the 5.40-Mb interval on chromosome 9. Twenty-six non-synonymous single-nucleotide polymorphism (nSNP) markers were designed for the qCTBB9 region based on re-sequencing data and local QTL mapping conducted using traditional linkage analysis. We mapped qCTBB9 to a 483.87-kb region containing 58 annotated genes, among which six predicted genes contained nine nSNP loci. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed that only Os09g0444200 was strongly induced by cold stress. Haplotype analysis further confirmed that the SNP 1,654,225 bp in the Os09g0444200 coding region plays a key role in regulating the cold tolerance of rice. These results suggest that Os09g0444200 is a potential candidate for qCTBB9. Our results are of great significance to explore the genetic mechanism of rice CTBB and to improve the cold tolerance of rice varieties by marker-assisted selection.
Collapse
|
11
|
Yang L, Lei L, Liu H, Wang J, Zheng H, Zou D. Whole-genome mining of abiotic stress gene loci in rice. PLANTA 2020; 252:85. [PMID: 33052473 DOI: 10.1007/s00425-020-03488-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
We projected meta-QTL (MQTL) for drought, salinity, cold state, and high metal ion tolerance in rice using a meta-analysis based on high-density consensus maps. In addition, a genome-wide association analysis was used to validate the results of the meta-analysis, and four new chromosome intervals for mining abiotic stress candidate genes were obtained. Drought, severe cold, high salinity, and high metallic ion concentrations severely restrict rice production. Consequently, the breeding of abiotic stress-tolerant variety is being paid increasingly more attention. This study aimed to identify meta-quantitative trait loci (MQTL) for abiotic stress tolerance in rice, as well as the molecular markers and potential candidate genes of the MQTL regions. We summarized 2785 rice QTL and conducted a meta-analysis of 159 studies. We found 82 drought tolerance (DT), 70 cold tolerance (CT), 70 salt tolerance (ST), and 51 heavy metal ion tolerance (IT) meta-QTL, as well as 20 DT, 11 CT, 22 ST, and 5 IT candidate genes in the MQTL interval. Thirty-one multiple-tolerance related MQTL regions, which were highly enriched, were also detected, and 13 candidate genes related to multiple-tolerance were obtained. In addition, the correlation between DT, CT, and ST was significant in the rice genome. Four candidate genes and four MM-QTL regions were detected simultaneously by GWAS and meta-analysis. The four candidate genes showed distinct genetic differentiation and substantial genetic distance between indica and japonica rice, and the four MM-QTL are potential intervals for mining abiotic stress-related candidate genes. The candidate genes identified in this study will not only be useful for marker-assisted selection and pyramiding but will also accelerate the fine mapping and cloning of the candidate genes associated with abiotic stress-tolerance mechanisms in rice.
Collapse
Affiliation(s)
- Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Lei Lei
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - HuaLong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
12
|
Pan Y, Liang H, Gao L, Dai G, Chen W, Yang X, Qing D, Gao J, Wu H, Huang J, Zhou W, Huang C, Liang Y, Deng G. Transcriptomic profiling of germinating seeds under cold stress and characterization of the cold-tolerant gene LTG5 in rice. BMC PLANT BIOLOGY 2020; 20:371. [PMID: 32762649 PMCID: PMC7409433 DOI: 10.1186/s12870-020-02569-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/22/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Low temperature is a limiting factor of rice productivity and geographical distribution. Wild rice (Oryza rufipogon Griff.) is an important germplasm resource for rice improvement. It has superior tolerance to many abiotic stresses, including cold stress, but little is known about the mechanism underlying its resistance to cold. RESULTS This study elucidated the molecular genetic mechanisms of wild rice in tolerating low temperature. Comprehensive transcriptome profiles of two rice genotypes (cold-sensitive ce 253 and cold-tolerant Y12-4) at the germinating stage under cold stress were comparatively analyzed. A total of 42.44-68.71 million readings were obtained, resulting in the alignment of 29,128 and 30,131 genes in genotypes 253 and Y12-4, respectively. Many common and differentially expressed genes (DEGs) were analyzed in the cold-sensitive and cold-tolerant genotypes. Results showed more upregulated DEGs in the cold-tolerant genotype than in the cold-sensitive genotype at four stages under cold stress. Gene ontology enrichment analyses based on cellular process, metabolic process, response stimulus, membrane part, and catalytic activity indicated more upregulated genes than downregulated ones in the cold-tolerant genotype than in the cold-sensitive genotype. Quantitative real-time polymerase chain reaction was performed on seven randomly selected DEGs to confirm the RNA Sequencing (RNA-seq) data. These genes showed similar expression patterns corresponding with the RNA-Seq method. Weighted gene co-expression network analysis (WGCNA) revealed Y12-4 showed more positive genes than 253 under cold stress. We also explored the cold tolerance gene LTG5 (Low Temperature Growth 5) encoding a UDP-glucosyltransferase. The overexpression of the LTG5 gene conferred cold tolerance to indica rice. CONCLUSION Gene resources related to cold stress from wild rice can be valuable for improving the cold tolerance of crops.
Collapse
Affiliation(s)
- Yinghua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Haifu Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Lijun Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Xinghai Yang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Dongjin Qing
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Ju Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Hao Wu
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Juan Huang
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Weiyong Zhou
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Chengcui Huang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Yuntao Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| |
Collapse
|
13
|
Shim KC, Kim SH, Lee HS, Adeva C, Jeon YA, Luong NH, Kim WJ, Akhtamov M, Park YJ, Ahn SN. Characterization of a New qLTG3-1 Allele for Low-temperature Germinability in Rice from the Wild Species Oryza rufipogon. RICE (NEW YORK, N.Y.) 2020; 13:10. [PMID: 32025935 PMCID: PMC7002630 DOI: 10.1186/s12284-020-0370-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/21/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is generally sensitive to low temperatures, and in production systems that use direct-seeding, low-temperature germinability (LTG) is a desired trait. Previously, the QTLs, qLTG1 and qLTG3, that control LTG, were mapped using the BC4F8 population, which is a cross of Korean elite cultivar Hwaseong and O. rufipogon (IRGC 105491). We have characterized and analyzed the interaction between the two QTLs, by crossing TR20 that has O. rufipogon alleles at qLTG1 and qLTG3 in a Hwaseong background, with Hwaseong, to develop an F2 population. RESULTS The F2 plants with both qLTG1 and qLTG3 alleles from O. rufipogon showed higher LTG scores, than the plants with only qLTG1 or qLTG3. No significant interaction between the qLTG1 and qLTG3 was observed, indicating that they may regulate LTG via different pathways. Based on its location, qLTG3 appears to be allelic with qLTG3-1, a major QTL known to control LTG. To investigate the genetic differences between the two parents, that were controlling LTG, we compared their qLTG3-1 sequences. In the coding region, three sequence variations leading to amino acid changes were identified between the Hwaseong and O. rufipogon. Of these, a non-synonymous substitution at the 62nd amino acid site, had not previously been reported. To understand the cause of the LTG variations between the parents, we genotyped three sequence variations of qLTG3-1, that were identified in 98 Asian cultivated rice accessions (Oryza sativa L.). The 98 accessions were classified into 5 haplotypes, based on three variations and a 71-bp deletion. Mean low-temperature germination rates were compared among the haplotypes, and haplotype 5 (O. rufipogon-type) showed a significantly higher germination rate than haplotype 2 (Nipponbare-type), and haplotype 3 (Italica Livorno-type). CONCLUSIONS The O. rufipogon qLTG3-1 allele can be utilized for the improvement of LTG in rice breeding programs. Nearly isogenic lines harboring both qLTG1 and qLTG3-1 alleles from O. rufipogon, showed higher LTG scores than the NILs with qLTG1 or qLTG3-1 alone, and the two QTLs regulate LTG via different pathways. To our knowledge, this is the first report to detect a new qLTG3-1 allele and analyze the interaction of the two LTG QTLs in a nearly isogenic background.
Collapse
Affiliation(s)
- Kyu-Chan Shim
- Department of Agronomy, Chungnam National University, Daejeon, 34134, South Korea
| | - Sun Ha Kim
- Department of Agronomy, Chungnam National University, Daejeon, 34134, South Korea
| | - Hyun-Sook Lee
- Department of Agronomy, Chungnam National University, Daejeon, 34134, South Korea
| | - Cheryl Adeva
- Department of Agronomy, Chungnam National University, Daejeon, 34134, South Korea
| | - Yun-A Jeon
- Department of Agronomy, Chungnam National University, Daejeon, 34134, South Korea
| | - Ngoc Ha Luong
- Department of Agronomy, Chungnam National University, Daejeon, 34134, South Korea
| | - Woo-Jin Kim
- Department of Agronomy, Chungnam National University, Daejeon, 34134, South Korea
| | - Mirjalol Akhtamov
- Department of Agronomy, Chungnam National University, Daejeon, 34134, South Korea
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, South Korea
| | - Sang-Nag Ahn
- Department of Agronomy, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
14
|
Wu X, Feng F, Zhu Y, Xie F, Yang J, Gong J, Liu Y, Zhu W, Gao T, Chen D, Li X, Huang J. Construction of High-Density Genetic Map and Identification of QTLs Associated with Seed Vigor after Exposure to Artificial Aging Conditions in Sweet Corn Using SLAF-seq. Genes (Basel) 2019; 11:genes11010037. [PMID: 31905667 PMCID: PMC7016829 DOI: 10.3390/genes11010037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 01/23/2023] Open
Abstract
Seed vigor is a key factor that determines the quality of seeds, which is of great significance for agricultural production, with the potential to promote growth and productivity. However, the underlying molecular mechanisms and genetic basis for seed vigor remain unknown. High-density genetic linkage mapping is an effective method for genomic study and quantitative trait loci (QTL) mapping. In this study, a high-density genetic map was constructed from a 148 BC4F3 population cross between ‘M03’ and ‘M08’ strains based on specific-locus amplified fragment (SLAF) sequencing. The constructed high-density genetic linkage map (HDGM) included 3876 SNP markers on ten chromosomes covering 2413.25 cM in length, with a mean distance between markers of 0.62 cM. QTL analysis was performed on four sweet corn germination traits that are related to seed vigor under artificial aging conditions. A total of 18 QTLs were identified in two seasons. Interestingly, a stable QTL was detected in two seasons on chromosome 10—termed qGR10—within an interval of 1.37 Mb. Within this interval, combined with gene annotation, we found four candidate genes (GRMZM2G074309, GRMZM2G117319, GRMZM2G465812, and GRMZM2G343519) which may be related to seed vigor after artificial aging.
Collapse
Affiliation(s)
- Xiaming Wu
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (X.W.); (F.F.); (Y.Z.); (F.X.); (J.G.); (Y.L.); (W.Z.); (T.G.); (D.C.); (X.L.)
| | - Faqiang Feng
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (X.W.); (F.F.); (Y.Z.); (F.X.); (J.G.); (Y.L.); (W.Z.); (T.G.); (D.C.); (X.L.)
| | - Yuzhong Zhu
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (X.W.); (F.F.); (Y.Z.); (F.X.); (J.G.); (Y.L.); (W.Z.); (T.G.); (D.C.); (X.L.)
| | - Fugui Xie
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (X.W.); (F.F.); (Y.Z.); (F.X.); (J.G.); (Y.L.); (W.Z.); (T.G.); (D.C.); (X.L.)
| | - Jing Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China;
| | - Jie Gong
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (X.W.); (F.F.); (Y.Z.); (F.X.); (J.G.); (Y.L.); (W.Z.); (T.G.); (D.C.); (X.L.)
| | - Yu Liu
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (X.W.); (F.F.); (Y.Z.); (F.X.); (J.G.); (Y.L.); (W.Z.); (T.G.); (D.C.); (X.L.)
| | - Wei Zhu
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (X.W.); (F.F.); (Y.Z.); (F.X.); (J.G.); (Y.L.); (W.Z.); (T.G.); (D.C.); (X.L.)
| | - Tianle Gao
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (X.W.); (F.F.); (Y.Z.); (F.X.); (J.G.); (Y.L.); (W.Z.); (T.G.); (D.C.); (X.L.)
| | - Danyi Chen
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (X.W.); (F.F.); (Y.Z.); (F.X.); (J.G.); (Y.L.); (W.Z.); (T.G.); (D.C.); (X.L.)
| | - Xiaoqin Li
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (X.W.); (F.F.); (Y.Z.); (F.X.); (J.G.); (Y.L.); (W.Z.); (T.G.); (D.C.); (X.L.)
| | - Jun Huang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (X.W.); (F.F.); (Y.Z.); (F.X.); (J.G.); (Y.L.); (W.Z.); (T.G.); (D.C.); (X.L.)
- Correspondence: ; Tel.: +86-020-85288311
| |
Collapse
|
15
|
Fujino K, Hirayama Y, Obara M, Ikegaya T. Colocalization of QTLs for hull-cracked rice and grain size in elite rice varieties in Japan. BREEDING SCIENCE 2018; 68:449-454. [PMID: 30369819 PMCID: PMC6198905 DOI: 10.1270/jsbbs.18024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/05/2018] [Indexed: 05/20/2023]
Abstract
The control of insects that consume cereal grains is important for the production and storage of grains. Hull-cracked rice, which has splits in the hull, becomes more susceptible to insects both in the paddy field and during storage. The development of varieties with a low frequency of hull-cracked rice is the most economical and effective strategy to avoid insect damage and the environmental risks from agricultural chemical entering rice grains. In this study, we identified that QTLs for the frequency of hull-cracked rice and for grain width are located on the same chromosome using recombinant inbred lines derived from a cross between the elite rice varieties in Hokkaido, Japan, which are from the same pedigree and are genetically closely related. These QTLs were detected close to different molecular markers, which were separated by 1,101,675 bp, on chromosome 5 in the reference Nipponbare genome. In addition, low coefficient values of the phenotype were found between hull-cracked rice and grain size. These results suggested that the ratio of hull-cracked rice is independent of grain size. Using these QTLs, new varieties with low hull-cracked rice could be developed regardless of grain size.
Collapse
Affiliation(s)
- Kenji Fujino
- Hokkaido Agricultural Research Center, National Agricultural Research Organization,
Sapporo, Hokkaido 062-8555,
Japan
- Corresponding author (e-mail: )
| | - Yuji Hirayama
- Rice breeding group, Kamikawa Agricultural Experiment Station, Local Independent Administrative Agency Hokkaido Research Organization,
Pippu, Hokkaido 078-0397,
Japan
| | - Mari Obara
- Hokkaido Agricultural Research Center, National Agricultural Research Organization,
Sapporo, Hokkaido 062-8555,
Japan
| | - Tomohito Ikegaya
- Hokkaido Agricultural Research Center, National Agricultural Research Organization,
Sapporo, Hokkaido 062-8555,
Japan
| |
Collapse
|
16
|
Song J, Li J, Sun J, Hu T, Wu A, Liu S, Wang W, Ma D, Zhao M. Genome-Wide Association Mapping for Cold Tolerance in a Core Collection of Rice ( Oryza sativa L.) Landraces by Using High-Density Single Nucleotide Polymorphism Markers From Specific-Locus Amplified Fragment Sequencing. FRONTIERS IN PLANT SCIENCE 2018; 9:875. [PMID: 30013584 PMCID: PMC6036282 DOI: 10.3389/fpls.2018.00875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/05/2018] [Indexed: 05/02/2023]
Abstract
Understanding the genetic mechanism of cold tolerance in rice is important to mine elite genes from rice landraces and breed excellent cultivars for this trait. In this study, a genome-wide association study (GWAS) was performed using high-density single nucleotide polymorphisms (SNPs) obtained using specific-locus amplified fragment sequencing (SLAF-seq) technology from a core collection of landraces of rice. A total of 67,511 SNPs obtained from 116,643 SLAF tags were used for genotyping the 150 accessions of rice landraces in the Ting's rice core collection. A compressed mixed liner model was used to perform GWAS by using the high-density SNPs for cold tolerance in rice landraces at the seedling stage. A total of 26 SNPs were found to be significantly (P < 1.48 × 10-7) associated with cold tolerance, which could explained phenotypic variations ranging from 26 to 33%. Among them, two quantitative trait loci (QTLs) were mapped closely to the previously cloned/mapped genes or QTLs for cold tolerance. A newly identified QTL for cold tolerance in rice was further characterized by sequencing, real time-polymerase chain reaction, and bioinformatics analyses. One candidate gene, i.e., Os01g0620100, showed different gene expression levels between the cold tolerant and sensitive landraces under cold stress. We found the difference of coding amino acid in Os01g0620100 between cold tolerant and sensitive landraces caused by polymorphism within the coding domain sequence. In addition, the prediction of Os01g0620100 protein revealed a WD40 domain that was frequently found in cold tolerant landraces. Therefore, we speculated that Os01g0620100 was highly important for the response to cold stress in rice. These results indicated that rice landraces are important sources for investigating rice cold tolerance, and the mapping results might provide important information to breed cold-tolerant rice cultivars by using marker-assisted selection.
Collapse
Affiliation(s)
- Jiayu Song
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Jinqun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Tao Hu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Aiting Wu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Sitong Liu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Wenjia Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Minghui Zhao
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
17
|
Hori K, Yamamoto T, Yano M. Genetic dissection of agronomically important traits in closely related temperate japonica rice cultivars. BREEDING SCIENCE 2017; 67:427-434. [PMID: 29398936 PMCID: PMC5790047 DOI: 10.1270/jsbbs.17053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/11/2017] [Indexed: 05/15/2023]
Abstract
Many quantitative trait loci (QTLs) for agronomically important traits such as grain yield, disease resistance, and stress tolerance of rice (Oryza sativa L.) have been detected by using segregating populations derived from crosses between indica and japonica subspecies or with wild relatives. However, the QTLs involved in the control of natural variation in agronomic traits among closely related cultivars are still unclear. Decoding the whole genome sequences of Nipponbare and other temperate japonica rice cultivars has accelerated the collection of a huge number of single nucleotide polymorphisms (SNPs). These SNPs are good resource for developing polymorphic DNA markers and for detecting QTLs distributed across all rice chromosomes. The temperate japonica rice cultivar Koshihikari has remained the top cultivar for about 40 years since 1979 in Japan. Unraveling the genetic factors in Koshihikari will provide important insights into improving agronomic traits in temperate japonica rice cultivars. Here we describe recent progress in our studies as an example of genetic analysis in closely related cultivars.
Collapse
|
18
|
Zhang A, Liu C, Chen G, Hong K, Gao Y, Tian P, Peng Y, Zhang B, Ruan B, Jiang H, Guo L, Qian Q, Gao Z. Genetic analysis for rice seedling vigor and fine mapping of a major QTL qSSL1b for seedling shoot length. BREEDING SCIENCE 2017; 67:307-315. [PMID: 28744184 PMCID: PMC5515316 DOI: 10.1270/jsbbs.16195] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/07/2017] [Indexed: 05/25/2023]
Abstract
Seedling vigor is an important agricultural trait as direct-seeded rice technology becomes widely applied. In order to investigate the genetic mechanisms underlying seedling vigor in rice, seeds of 132 recombinant inbred lines (RILs) derived from 93-11 and PA64s, harvested from Lingshui and Hangzhou were cultivated in the nutrient solution, and four indices for seedling vigor were measured including seedling shoot length (SSL), seedling root length (SRL), seedling wet weight (SWW) and seedling dry weight (SDW). Significant correlations were observed among the indices, and also between 1000-seed weight (TSW) and SWW or SDW. Combined with a high-resolution genetic map generated from sequencing of the RILs, 65 quantitative trait loci (QTLs) were detected on all chromosomes with interval of 1.93 Mb on average. Among 57 QTLs for seedling vigor, 28 were detected from seeds harvested in both sites and 33 were first identified. With BC3F2 derived from 93-11 and a CSSL harboring segments from PA64s in 93-11 background, a major QTL for SSL, qSSL1b was fine mapped within 80.5 kb between two InDel markers. Our study provides a platform for further cloning of the QTL and dissecting the molecular basis for seedling vigor at early seedling stage in rice.
Collapse
|
19
|
Lee GA, Jeon YA, Lee HS, Hyun DY, Lee JR, Lee MC, Lee SY, Ma KH, Koh HJ. New Genetic Loci Associated with Preharvest Sprouting and Its Evaluation Based on the Model Equation in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1393. [PMID: 28848592 PMCID: PMC5550670 DOI: 10.3389/fpls.2017.01393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/26/2017] [Indexed: 05/19/2023]
Abstract
Preharvest sprouting (PHS) in rice panicles is an important quantitative trait that causes both yield losses and the deterioration of grain quality under unpredictable moisture conditions at the ripening stage. However, the molecular mechanism underlying PHS has not yet been elucidated. Here, we explored the genetic loci associated with PHS in rice and formulated a model regression equation for rapid screening for use in breeding programs. After re-sequencing 21 representative accessions for PHS and performing enrichment analysis, we found that approximately 20,000 SNPs revealed distinct allelic distributions between PHS resistant and susceptible accessions. Of these, 39 candidate SNP loci were selected, including previously reported QTLs. We analyzed the genotypes of 144 rice accessions to determine the association between PHS and the 39 candidate SNP loci, 10 of which were identified as significantly affecting PHS based on allele type. Based on the allele types of the SNP loci, we constructed a regression equation for evaluating PHS, accounting for an R2 value of 0.401 in japonica rice. We validated this equation using additional accessions, which exhibited a significant R2 value of 0.430 between the predicted values and actual measurements. The newly detected SNP loci and the model equation could facilitate marker-assisted selection to predict PHS in rice germplasm and breeding lines.
Collapse
Affiliation(s)
- Gi-An Lee
- National Agrobiodiversity Center, National Institute of Agricultural SciencesJeonju, South Korea
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Young-Ah Jeon
- National Agrobiodiversity Center, National Institute of Agricultural SciencesJeonju, South Korea
| | - Ho-Sun Lee
- International Technology Cooperation CenterJeonju, South Korea
| | - Do Yoon Hyun
- National Agrobiodiversity Center, National Institute of Agricultural SciencesJeonju, South Korea
| | - Jung-Ro Lee
- National Agrobiodiversity Center, National Institute of Agricultural SciencesJeonju, South Korea
| | - Myung-Chul Lee
- National Agrobiodiversity Center, National Institute of Agricultural SciencesJeonju, South Korea
| | - Sok-Young Lee
- National Agrobiodiversity Center, National Institute of Agricultural SciencesJeonju, South Korea
| | - Kyung-Ho Ma
- National Agrobiodiversity Center, National Institute of Agricultural SciencesJeonju, South Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
- *Correspondence: Hee-Jong Koh,
| |
Collapse
|
20
|
Jha UC, Bohra A, Jha R. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress. PLANT CELL REPORTS 2017; 36:1-35. [PMID: 27878342 DOI: 10.1007/s00299-016-2073-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/04/2016] [Indexed: 05/11/2023]
Abstract
Improved knowledge about plant cold stress tolerance offered by modern omics technologies will greatly inform future crop improvement strategies that aim to breed cultivars yielding substantially high under low-temperature conditions. Alarmingly rising temperature extremities present a substantial impediment to the projected target of 70% more food production by 2050. Low-temperature (LT) stress severely constrains crop production worldwide, thereby demanding an urgent yet sustainable solution. Considerable research progress has been achieved on this front. Here, we review the crucial cellular and metabolic alterations in plants that follow LT stress along with the signal transduction and the regulatory network describing the plant cold tolerance. The significance of plant genetic resources to expand the genetic base of breeding programmes with regard to cold tolerance is highlighted. Also, the genetic architecture of cold tolerance trait as elucidated by conventional QTL mapping and genome-wide association mapping is described. Further, global expression profiling techniques including RNA-Seq along with diverse omics platforms are briefly discussed to better understand the underlying mechanism and prioritize the candidate gene (s) for downstream applications. These latest additions to breeders' toolbox hold immense potential to support plant breeding schemes that seek development of LT-tolerant cultivars. High-yielding cultivars endowed with greater cold tolerance are urgently required to sustain the crop yield under conditions severely challenged by low-temperature.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Institute of Pulses Research, Kanpur, 208024, India.
| | - Abhishek Bohra
- Indian Institute of Pulses Research, Kanpur, 208024, India.
| | - Rintu Jha
- Indian Institute of Pulses Research, Kanpur, 208024, India
| |
Collapse
|
21
|
Ichitani K, Taura S, Sato M, Kuboyama T. Distribution of Hwc2-1, a causal gene of a hybrid weakness, in the World Rice Core collection and the Japanese Rice mini Core collection: its implications for varietal differentiation and artificial selection. BREEDING SCIENCE 2016; 66:776-789. [PMID: 28163594 PMCID: PMC5282758 DOI: 10.1270/jsbbs.16071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/09/2016] [Indexed: 05/27/2023]
Abstract
A pair of complementary genes, Hwc1-1 at HWC1 locus and Hwc2-1 at HWC2 locus, cause a weakness phenomenon in rice. For this study, we performed haplotype analysis around the HWC2 locus in two core collections comprising 119 accessions. We also examined reactions to phenol and Xanthomonas oryzae pv. oryzae (Xoo) Japanese race I. To elucidate the genetic relations among all accessions, we analyzed their banding patterns of 40 Indel markers covering the rice genome. The classification by Indel markers was almost consistent with that using 4,357 SNPs. The testcross with Hwc1-1 carrier indicated that 37 accessions carried Hwc2-1 allele, whereas 82 carried hwc2-2 allele. Strong association between HWC2 and Ph genes was observed. Based on 14 DNA markers around HWC2 locus and Ph genotype, the 119 accessions were divided into 50 haplotypes. To examine the HWC2 candidate chromosomal region specifically, the 'haplotype group' characterized by the six DNA markers closely linked with HWC2 were analyzed. Hwc2-1 carriers had the same haplotype group. Some hwc2-2 haplotype groups were associated with resistance against the Xoo race. The relation between varietal differentiation and haplotypes around the HWC2 locus was discussed, along with its breeding significance.
Collapse
Affiliation(s)
- Katsuyuki Ichitani
- Faculty of Agriculture, Kagoshima University,
1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065,
Japan
| | - Satoru Taura
- Institute of Gene Research, Kagoshima University,
1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065,
Japan
| | - Muneharu Sato
- Faculty of Agriculture, Kagoshima University,
1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065,
Japan
| | - Tsutomu Kuboyama
- College of Agriculture, Ibaraki University,
3-21-1 Chuo, Ami, Ibaraki 300-0393,
Japan
| |
Collapse
|
22
|
Lv Y, Guo Z, Li X, Ye H, Li X, Xiong L. New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis. PLANT, CELL & ENVIRONMENT 2016; 39:556-70. [PMID: 26381647 DOI: 10.1111/pce.12635] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 05/19/2023]
Abstract
In order to understand cold adaptability and explore additional genetic resources for the cold tolerance improvement of rice, we investigated the genetic variation of 529 rice accessions under natural chilling and cold shock stress conditions at the seedling stage using genome-wide association studies; a total of 132 loci were identified. Among them, 12 loci were common for both chilling and cold shock tolerance, suggesting that rice has a distinct and overlapping genetic response and adaptation to the two stresses. Haplotype analysis of a known gene OsMYB2, which is involved in cold tolerance, revealed indica-japonica differentiation and latitude tendency for the haplotypes of this gene. By checking the subpopulation and geographical distribution of accessions with tolerance or sensitivity under these two stress conditions, we found that the chilling tolerance group, which mainly consisted of japonica accessions, has a wider latitudinal distribution than the chilling sensitivity group. We conclude that the genetic basis of natural chilling stress tolerance in rice is distinct from that of cold shock stress frequently used for low-temperature treatment in the laboratory and the cold adaptability of rice is associated with the subpopulation and latitudinal distribution.
Collapse
Affiliation(s)
- Yan Lv
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zilong Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Haiyan Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
23
|
Fujino K, Obara M, Shimizu T, Koyanagi KO, Ikegaya T. Genome-wide association mapping focusing on a rice population derived from rice breeding programs in a region. BREEDING SCIENCE 2015; 65:403-10. [PMID: 26719743 PMCID: PMC4671701 DOI: 10.1270/jsbbs.65.403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/07/2015] [Indexed: 05/20/2023]
Abstract
Plant breeding programs in local regions may generate genetic variations that are desirable to local populations and shape adaptability during the establishment of local populations. To elucidate genetic bases for this process, we proposed a new approach for identifying the genetic bases for the traits improved during rice breeding programs; association mapping focusing on a local population. In the present study, we performed association mapping focusing on a local rice population, consisting of 63 varieties, in Hokkaido, the northernmost region of Japan and one of the northern limits of rice cultivation worldwide. Six and seventeen QTLs were identified for heading date and low temperature germinability, respectively. Of these, 13 were novel QTLs in this population and 10 corresponded to the QTLs previously reported based on QTL mapping. The identification of QTLs for traits in local populations including elite varieties may lead to a better understanding of the genetic bases of elite traits. This is of direct relevance for plant breeding programs in local regions.
Collapse
Affiliation(s)
- Kenji Fujino
- NARO Hokkaido Agricultural Research Center, National Agricultural Research Organization,
Sapporo, Hokkaido 062-8555,
Japan
- Corresponding author (e-mail: )
| | - Mari Obara
- NARO Hokkaido Agricultural Research Center, National Agricultural Research Organization,
Sapporo, Hokkaido 062-8555,
Japan
| | - Toshiaki Shimizu
- Laboratory of Genome Sciences, Graduate School of Information Science and Technology, Hokkaido University,
Sapporo, Hokkaido 060-0814,
Japan
| | - Kanako O. Koyanagi
- Laboratory of Genome Sciences, Graduate School of Information Science and Technology, Hokkaido University,
Sapporo, Hokkaido 060-0814,
Japan
| | - Tomohito Ikegaya
- NARO Hokkaido Agricultural Research Center, National Agricultural Research Organization,
Sapporo, Hokkaido 062-8555,
Japan
| |
Collapse
|
24
|
Fujino K, Obara M, Ikegaya T, Tamura K. Genetic shift in local rice populations during rice breeding programs in the northern limit of rice cultivation in the world. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1739-1746. [PMID: 26021294 DOI: 10.1007/s00122-015-2543-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
The rapid accumulation of pre-existing mutations may play major roles in the establishment and shaping of adaptability for local regions in current rice breeding programs. The cultivated rice, Oryza sativa L., which originated from tropical regions, is now grown worldwide due to the concerted efforts of breeding programs. However, the process of establishing local populations and their origins remain unclear. In the present study, we characterized DNA polymorphisms in the rice variety KITAAKE from Hokkaido, one of the northern limits of rice cultivation in the world. Indel polymorphisms were attributed to transposable element-like insertions, tandem duplications, and non-TE deletions as the original mutation events in the NIPPONBARE and KITAAKE genomes. The allele frequencies of the KITAAKE alleles markedly shifted to the current variety types among the local population from Hokkaido in the last two decades. The KITAAKE alleles widely distributed throughout wild rice and cultivated rice over the world. These have accumulated in the local population from Hokkaido via Japanese landraces as the ancestral population of Hokkaido. These results strongly suggested that combinations of pre-existing mutations played a role in the establishment of adaptability. This approach using the re-sequencing of local varieties in unique environmental conditions will be useful as a genetic resource in plant breeding programs in local regions.
Collapse
Affiliation(s)
- Kenji Fujino
- NARO Hokkaido Agricultural Research Center, National Agricultural Research Organization, Sapporo, Hokkaido, 062-8555, Japan,
| | | | | | | |
Collapse
|
25
|
Shinada H, Yamamoto T, Yamamoto E, Hori K, Yonemaru J, Matsuba S, Fujino K. Historical changes in population structure during rice breeding programs in the northern limits of rice cultivation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:995-1004. [PMID: 24510168 DOI: 10.1007/s00122-014-2274-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 01/26/2014] [Indexed: 05/10/2023]
Abstract
The rice local population was clearly differentiated into six groups over the 100-year history of rice breeding programs in the northern limit of rice cultivation over the world. Genetic improvements in plant breeding programs in local regions have led to the development of new cultivars with specific agronomic traits under environmental conditions and generated the unique genetic structures of local populations. Understanding historical changes in genome structures and phenotypic characteristics within local populations may be useful for identifying profitable genes and/or genetic resources and the creation of new gene combinations in plant breeding programs. In the present study, historical changes were elucidated in genome structures and phenotypic characteristics during 100-year rice breeding programs in Hokkaido, the northern limit of rice cultivation in the world. We selected 63 rice cultivars to represent the historical diversity of this local population from landraces to the current breeding lines. The results of the phylogenetic analysis demonstrated that these cultivars clearly differentiated into six groups over the history of rice breeding programs. Significant differences among these groups were detected in five of the seven traits, indicating that the differentiation of the Hokkaido rice population into these groups was correlated with these phenotypic changes. These results demonstrated that breeding practices in Hokkaido have created new genetic structures for adaptability to specific environmental conditions and breeding objectives. They also provide a new strategy for rice breeding programs in which such unique genes in local populations in the world can explore the genetic potentials of the local populations.
Collapse
Affiliation(s)
- Hiroshi Shinada
- Rice Breeding Group, Kamikawa Agricultural Experiment Station, Local Independent Administrative Agency Hokkaido Research Organization, Minami 1-5, Pippu, Hokkaido, 078-0397, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Fujino K, Obara M, Sato K. Diversification of the plant-specific hybrid glycine-rich protein (HyGRP) genes in cereals. FRONTIERS IN PLANT SCIENCE 2014; 5:489. [PMID: 25309566 PMCID: PMC4174136 DOI: 10.3389/fpls.2014.00489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/03/2014] [Indexed: 05/20/2023]
Abstract
Plant-specific hybrid proline- or glycine-rich proteins (HyP/GRPs) are involved in diverse gene functions including plant development and responses to biotic and abiotic stresses. The quantitative trait locus, qLTG3-1, enhances seed germination in rice under low-temperature conditions and encodes a member with a glycine-rich motif of the HyP/GRP family. The function of this gene may be related to the weakening of tissue covering the embryo during seed germination. In the present study, the diversification of the HyP/GRP gene family was elucidated in rice based on phylogenetic relationships and gene expression levels. At least 21 members of the HyP/GRP family have been identified in the rice genome and clustered in five regions on four chromosomes by tandem and chromosomal duplications. Of these, OsHyPRP05 (qLTG3-1) and its paralogous gene, OsHyPRP21, had a glycine-rich motif. Furthermore, orthologous genes with a glycine-rich motif and the HyP/GRP gene family were detected in four genome-sequenced monocots: 12 in barley, 10 in Brachypodium, 20 in maize, and 28 in sorghum, using a BLAST search of qLTG3-1 as the query. All members of the HyP/GRP family in these five species were classified into seven main groups, which were clustered together in these species. These results suggested that the HyP/GRP gene family was formed in the ancestral genome before the divergence of these species. The collinearity of chromosomal regions around qLTG3-1 and its orthologous genes were conserved among rice, Brachypodium, sorghum, and maize, indicating that qLTG3-1 and orthologous genes conserve gene function during seed germination.
Collapse
Affiliation(s)
- Kenji Fujino
- *Correspondence: Kenji Fujino, NARO Hokkaido Agricultural Research Center, National Agricultural Research Organization, Hitsujigaoka 1, Sapporo 062-8555, Japan e-mail:
| | | | | |
Collapse
|
27
|
Fujino K, Iwata N. Selection for low-temperature germinability on the short arm of chromosome 3 in rice cultivars adapted to Hokkaido, Japan. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:1089-97. [PMID: 21744228 DOI: 10.1007/s00122-011-1650-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 06/28/2011] [Indexed: 05/25/2023]
Abstract
In plant breeding with intensive selection, the haplotype patterns in the targeted chromosomal regions may become monogenic among local populations with the most desirable combination of loci. This study demonstrated that the chromosomal region surrounding qLTG3-1 was under selection during rice breeding programs in a local region of Japan, Hokkaido. qLTG3-1 is a major quantitative trait loci controlling tolerance to low-temperature at the seed germination stage in rice, termed low-temperature germinability. A clear association between qLTG3-1 alleles and low-temperature germinability was detected among 64 rice cultivars from Hokkaido. The allele with a loss-of-function mutation seemed to be selected during rice breeding programs. Comparison of haplotype patterns along with the short arm of chromosome 3 revealed that the selection of qLTG3-1 alleles was focused on a distinct chromosomal region of at most 130 kb. In the short arm of chromosome 3, two major traits associated with the adaptability to local conditions have been identified; eating quality and heading date. This study demonstrated that recombinant haplotype patterns for these traits might shape the adaptability to local environmental conditions and market demands during rice breeding programs in addition to the selection of qLTG3-1 alleles. The present results provide new opportunities for the design of hybridization combinations based on the haplotype patterns of chromosomal regions under selection during rice breeding programs in local regions.
Collapse
Affiliation(s)
- Kenji Fujino
- Agricultural Research Institute, Hokuren Federation of Agricultural Cooperatives, Naganuma, Hokkaido, 069-1317, Japan.
| | | |
Collapse
|