1
|
Abstract
The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Robert K Jansen
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Sloan DB, Warren JM, Williams AM, Wu Z, Abdel-Ghany SE, Chicco AJ, Havird JC. Cytonuclear integration and co-evolution. Nat Rev Genet 2018; 19:635-648. [PMID: 30018367 PMCID: PMC6469396 DOI: 10.1038/s41576-018-0035-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The partitioning of genetic material between the nucleus and cytoplasmic (mitochondrial and plastid) genomes within eukaryotic cells necessitates coordinated integration between these genomic compartments, with important evolutionary and biomedical implications. Classic questions persist about the pervasive reduction of cytoplasmic genomes via a combination of gene loss, transfer and functional replacement - and yet why they are almost always retained in some minimal form. One striking consequence of cytonuclear integration is the existence of 'chimeric' enzyme complexes composed of subunits encoded in two different genomes. Advances in structural biology and comparative genomics are yielding important insights into the evolution of such complexes, including correlated sequence changes and recruitment of novel subunits. Thus, chimeric cytonuclear complexes provide a powerful window into the mechanisms of molecular co-evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
3
|
Wu Z, Sloan DB, Brown CW, Rosenblueth M, Palmer JD, Ong HC. Mitochondrial Retroprocessing Promoted Functional Transfers of rpl5 to the Nucleus in Grasses. Mol Biol Evol 2017; 34:2340-2354. [PMID: 28541477 PMCID: PMC5850859 DOI: 10.1093/molbev/msx170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Functional gene transfers from the mitochondrion to the nucleus are ongoing in angiosperms and have occurred repeatedly for all 15 ribosomal protein genes, but it is not clear why some of these genes are transferred more often than others nor what the balance is between DNA- and RNA-mediated transfers. Although direct insertion of mitochondrial DNA into the nucleus occurs frequently in angiosperms, case studies of functional mitochondrial gene transfer have implicated an RNA-mediated mechanism that eliminates introns and RNA editing sites, which would otherwise impede proper expression of mitochondrial genes in the nucleus. To elucidate the mechanisms that facilitate functional gene transfers and the evolutionary dynamics of the coexisting nuclear and mitochondrial gene copies that are established during these transfers, we have analyzed rpl5 genes from 90 grasses (Poaceae) and related monocots. Multiple lines of evidence indicate that rpl5 has been functionally transferred to the nucleus at least three separate times in the grass family and that at least seven species have intact and transcribed (but not necessarily functional) copies in both the mitochondrion and nucleus. In two grasses, likely functional nuclear copies of rpl5 have been subject to recent gene conversion events via secondarily transferred mitochondrial copies in what we believe are the first described cases of mitochondrial-to-nuclear gene conversion. We show that rpl5 underwent a retroprocessing event within the mitochondrial genome early in the evolution of the grass family, which we argue predisposed the gene towards successful, DNA-mediated functional transfer by generating a "pre-edited" sequence.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Colin W. Brown
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX
| | | | | | | |
Collapse
|
4
|
Adem M, Beyene D, Feyissa T. Recent achievements obtained by chloroplast transformation. PLANT METHODS 2017; 13:30. [PMID: 28428810 PMCID: PMC5395794 DOI: 10.1186/s13007-017-0179-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/09/2017] [Indexed: 05/22/2023]
Abstract
Chloroplasts play a great role for sustained wellbeing of life on the planet. They have the power and raw materials that can be used as sophisticated biological factories. They are rich in energy as they have lots of pigment-protein complexes capable of collecting sunlight, in sugar produced by photosynthesis and in minerals imported from the plant cell. Chloroplast genome transformation offers multiple advantages over nuclear genome which among others, include: integration of the transgene via homologus recombination that enables to eliminate gene silencing and position effect, higher level of transgene expression resulting into higher accumulations of foreign proteins, and significant reduction in environmental dispersion of the transgene due to maternal inheritance which helps to minimize the major critic of plant genetic engineering. Chloroplast genetic engineering has made fruit full progresses in the development of plants resistance to various stresses, phytoremediation of toxic metals, and production of vaccine antigens, biopharmaceuticals, biofuels, biomaterials and industrial enzymes. Although successful results have been achieved, there are still difficulties impeding full potential exploitation and expansion of chloroplast transformation technology to economical plants. These include, lack of species specific regulatory sequences, problem of selection and shoot regeneration, and massive expression of foreign genes resulting in phenotypic alterations of transplastomic plants. The aim of this review is to critically recapitulate the latest development of chloroplast transformation with special focus on the different traits of economic interest.
Collapse
Affiliation(s)
- Muhamed Adem
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
- Department of Forestry, School of Agriculture and Natural Resources, Madawalabu University, P.O. Box 247, Bale Robe, Oromiya Ethiopia
| | - Dereje Beyene
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
| | - Tileye Feyissa
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
- Institute of Biotechnology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Abstract
The plastid genome (plastome) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations are allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
6
|
Yoshida T, Furihata HY, Kawabe A. Patterns of genomic integration of nuclear chloroplast DNA fragments in plant species. DNA Res 2013; 21:127-40. [PMID: 24170805 PMCID: PMC3989485 DOI: 10.1093/dnares/dst045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The transfer of organelle DNA fragments to the nuclear genome is frequently observed in eukaryotes. These transfers are thought to play an important role in gene and genome evolution of eukaryotes. In plants, such transfers occur from plastid to nuclear [nuclear plastid DNAs (NUPTs)] and mitochondrial to nuclear (nuclear mitochondrial DNAs) genomes. The amount and genomic organization of organelle DNA fragments have been studied in model plant species, such as Arabidopsis thaliana and rice. At present, publicly available genomic data can be used to conduct such studies in non-model plants. In this study, we analysed the amount and genomic organization of NUPTs in 17 plant species for which genome sequences are available. The amount and distribution of NUPTs varied among the species. We also estimated the distribution of NUPTs according to the time of integration (relative age) by conducting sequence similarity analysis between NUPTs and the plastid genome. The age distributions suggested that the present genomic constitutions of NUPTs could be explained by the combination of the rapidly eliminated deleterious parts and few but constantly existing less deleterious parts.
Collapse
Affiliation(s)
- Takanori Yoshida
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Kyoto 603-8555, Japan
| | | | | |
Collapse
|
7
|
Venkatesh J, Park SW. Plastid genetic engineering in Solanaceae. PROTOPLASMA 2012; 249:981-99. [PMID: 22395455 PMCID: PMC3459085 DOI: 10.1007/s00709-012-0391-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/21/2012] [Indexed: 05/23/2023]
Abstract
Plastid genetic engineering has come of age, becoming today an attractive alternative approach for the expression of foreign genes, as it offers several advantages over nuclear transformants. Significant progress has been made in plastid genetic engineering in tobacco and other Solanaceae plants, through the use of improved regeneration procedures and transformation vectors with efficient promoters and untranslated regions. Many genes encoding for industrially important proteins and vaccines, as well as genes conferring important agronomic traits, have been stably integrated and expressed in the plastid genome. Despite these advances, it remains a challenge to achieve marked levels of plastid transgene expression in non-green tissues. In this review, we summarize the basic requirements of plastid genetic engineering and discuss the current status, limitations, and the potential of plastid transformation for expanding future studies relating to Solanaceae plants.
Collapse
Affiliation(s)
- Jelli Venkatesh
- Department of Molecular Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 Republic of Korea
| | - Se Won Park
- Department of Molecular Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 Republic of Korea
| |
Collapse
|
8
|
Abstract
More than a billion years of endosymbiotic evolution has resulted in extensive gene relocation between the genetic compartments of eukaryotic cells. A new study uses chloroplast genome transformation to shed light on the mechanisms involved.
Collapse
Affiliation(s)
- Jeremy N Timmis
- Discipline of Genetics, School of Molecular and Biomedical Science, The University of Adelaide, South Australia 5005, Australia.
| |
Collapse
|
9
|
Fuentes I, Karcher D, Bock R. Experimental Reconstruction of the Functional Transfer of Intron- Containing Plastid Genes to the Nucleus. Curr Biol 2012; 22:763-71. [DOI: 10.1016/j.cub.2012.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/01/2012] [Accepted: 03/01/2012] [Indexed: 11/28/2022]
|
10
|
Dorrell RG, Howe CJ. What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J Cell Sci 2012; 125:1865-75. [PMID: 22547565 DOI: 10.1242/jcs.102285] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Earth is populated by an extraordinary diversity of photosynthetic eukaryotes. Many eukaryotic lineages contain chloroplasts, obtained through the endosymbiosis of a wide range of photosynthetic prokaryotes or eukaryotes, and a wide variety of otherwise non-photosynthetic species form transient associations with photosynthetic symbionts. Chloroplast lineages are likely to be derived from pre-existing transient symbioses, but it is as yet poorly understood what steps are required for the establishment of permanent chloroplasts from photosynthetic symbionts. In the past decade, several species that contain relatively recently acquired chloroplasts, such as the rhizarian Paulinella chromatophora, and non-photosynthetic taxa that maintain photosynthetic symbionts, such as the sacoglossan sea slug Elysia, the ciliate Myrionecta rubra and the dinoflagellate Dinophysis, have emerged as potential model organisms in the study of chloroplast establishment. In this Commentary, we compare recent molecular insights into the maintenance of chloroplasts and photosynthetic symbionts from these lineages, and others that might represent the early stages of chloroplast establishment. We emphasise the importance in the establishment of chloroplasts of gene transfer events that minimise oxidative stress acting on the symbiont. We conclude by assessing whether chloroplast establishment is facilitated in some lineages by a mosaic of genes, derived from multiple symbiotic associations, encoded in the host nucleus.
Collapse
Affiliation(s)
- Richard G Dorrell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| | | |
Collapse
|
11
|
Environmental stress increases the entry of cytoplasmic organellar DNA into the nucleus in plants. Proc Natl Acad Sci U S A 2012; 109:2444-8. [PMID: 22308419 DOI: 10.1073/pnas.1117890109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria and chloroplasts (photosynthetic members of the plastid family of cytoplasmic organelles) in eukaryotic cells originated more than a billion years ago when an ancestor of the nucleated cell engulfed two different prokaryotes in separate sequential events. Extant cytoplasmic organellar genomes contain very few genes compared with their candidate free-living ancestors, as most have functionally relocated to the nucleus. The first step in functional relocation involves the integration of inactive DNA fragments into nuclear chromosomes, and this process continues at high frequency with attendant genetic, genomic, and evolutionary consequences. Using two different transplastomic tobacco lines, we show that DNA migration from chloroplasts to the nucleus is markedly increased by mild heat stress. In addition, we show that insertion of mitochondrial DNA fragments during the repair of induced double-strand breaks is increased by heat stress. The experiments demonstrate that the nuclear influx of organellar DNA is a potentially a source of mutation for nuclear genomes that is highly susceptible to temperature fluctuations that are well within the range experienced naturally.
Collapse
|
12
|
Lloyd AH, Rousseau-Gueutin M, Timmis JN, Sheppard AE, Ayliffe MA. Promiscuous Organellar DNA. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|