1
|
Chanda S, Roy J, Banu N, Poudel A, Phogat S, Hossain F, Muthusamy V, Gaikwad K, Mandal PK, Madhavan J. A detailed comparative in silico and functional analysis of ccd1 gene in maize gives new insights of its expression and functions. Mol Biol Rep 2025; 52:279. [PMID: 40035960 DOI: 10.1007/s11033-025-10378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Biofortified maize with enhanced carotenoid content was developed to combat vitamin A deficiency. However, it was observed that during storage, carotenoids present in maize grain get degraded and it has been reported that carotenoid cleavage dioxygenase1 (ccd1) is responsible for this degradation. METHODS AND RESULTS In our current study, comprehensive in-silico analysis deciphered a complete overview of the ccd1 gene in maize including the gene structures, phylogeny, chromosomal locations, promoter analysis, conserved motifs and interacting protein partners. In addition to these, a comparative in-silico analysis of the ccd1 gene in maize, rice and Arabidopsis was performed. An intronic region of ccd1, unique to the maize genome, was matched significantly with a lot of long non-coding RNA and was identified. Also, growth stage-specific ccd1 expression analysis was performed in two maize inbred lines, V335PV and HKI161PV. The results indicate that both inbred lines displayed higher ccd1 expression during reproductive stages compared to vegetative stages, with the highest expression level observed at the milking stage in both inbreds. CONCLUSION This detailed in-silico characterisation and expression analysis of the ccd1 gene contributes to our understanding of its activity and expression pattern in maize in stage and tissue-specific manner. This study will further provide an effective strategy for manipulating the ccd1 gene to enhance the carotenoid content of maize grain, thereby aiding in the combat against vitamin A deficiency.
Collapse
Affiliation(s)
- Sagnik Chanda
- Indian Council of Agricultural Research-National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi, 110012, India
- Division of Molecular Biology and Biotechnology, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India
| | - Jeet Roy
- Indian Council of Agricultural Research-National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi, 110012, India
- Division of Molecular Biology and Biotechnology, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India
| | - Nuzat Banu
- Indian Council of Agricultural Research-National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi, 110012, India
- Division of Molecular Biology and Biotechnology, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India
| | - Ankur Poudel
- Indian Council of Agricultural Research-National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi, 110012, India
- Division of Molecular Biology and Biotechnology, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India
| | - Sachin Phogat
- Indian Council of Agricultural Research-National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi, 110012, India
- Division of Molecular Biology and Biotechnology, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India
| | - Firoz Hossain
- Division of Genetics, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India
| | - Vignesh Muthusamy
- Division of Genetics, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India
| | - Kishor Gaikwad
- Indian Council of Agricultural Research-National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Pranab Kumar Mandal
- Indian Council of Agricultural Research-National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi, 110012, India.
| | - Jayanthi Madhavan
- Division of Genetics, ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India.
| |
Collapse
|
2
|
Gallardo-Martínez AM, Jiménez-López J, Hernández ML, Pérez-Ruiz JM, Cejudo FJ. Plastid 2-Cys peroxiredoxins are essential for embryogenesis in Arabidopsis. Redox Biol 2023; 62:102645. [PMID: 36898225 PMCID: PMC10020101 DOI: 10.1016/j.redox.2023.102645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
The redox couple formed by NADPH-dependent thioredoxin reductase C (NTRC) and 2-Cys peroxiredoxins (Prxs) allows fine-tuning chloroplast performance in response to light intensity changes. Accordingly, the Arabidopsis 2cpab mutant lacking 2-Cys Prxs shows growth inhibition and sensitivity to light stress. However, this mutant also shows defective post-germinative growth, suggesting a relevant role of plastid redox systems in seed development, which is so far unknown. To address this issue, we first analyzed the pattern of expression of NTRC and 2-Cys Prxs in developing seeds. Transgenic lines expressing GFP fusions of these proteins showed their expression in developing embryos, which was low at the globular stage and increased at heart and torpedo stages, coincident with embryo chloroplast differentiation, and confirmed the plastid localization of these enzymes. The 2cpab mutant produced white and abortive seeds, which contained lower and altered composition of fatty acids, thus showing the relevance of 2-Cys Prxs in embryogenesis. Most embryos of white and abortive seeds of the 2cpab mutant were arrested at heart and torpedo stages of embryogenesis suggesting an essential function of 2-Cys Prxs in embryo chloroplast differentiation. This phenotype was not recovered by a mutant version of 2-Cys Prx A replacing the peroxidatic Cys by Ser. Neither the lack nor the overexpression of NTRC had any effect on seed development indicating that the function of 2-Cys Prxs at these early stages of development is independent of NTRC, in clear contrast with the operation of these regulatory redox systems in leaves chloroplasts.
Collapse
Affiliation(s)
- Antonia M Gallardo-Martínez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092, Sevilla, Spain.
| | - Julia Jiménez-López
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092, Sevilla, Spain.
| | - María Luisa Hernández
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092, Sevilla, Spain.
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092, Sevilla, Spain.
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio, 49, 41092, Sevilla, Spain.
| |
Collapse
|
3
|
Cheng Q, He Y, Lu Q, Wang H, Liu S, Liu J, Liu M, Zhang Y, Wang Y, Sun L, Shen H. Mapping of the AgWp1 gene for the white petiole in celery (Apium graveolens L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111563. [PMID: 36509245 DOI: 10.1016/j.plantsci.2022.111563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Celery (Apium graveolens L.) is one of the most popular leafy vegetables worldwide. The main edible parts of celery are the leaf blade and especially the petiole, which typically has a white, green and red color. To date, there are very few reports about the inheritance and gene cloning of celery petiole color. In this study, bulked segregant analysis-sequencing (BSA-Seq) and fine mapping were conducted to delimit the white petiole (wp1) loci into a 668.5-kb region on Chr04. In this region, AgWp1 is a homolog of a DAG protein in Antirrhinum majus and a MORF9 protein in Arabidopsis, and both proteins are involved in chloroplast development. Sequencing alignment shows that there is a 27-bp insertion in the 3'-utr region in AgWp1 in the white petiole. Gene expression analysis indicated that the expression level of AgWp1 in the green petiole was much higher than that in the white petiole. Further cosegregation revealed that the 27-bp insertion was completely cosegregated with the petiole color in 45 observed celery varieties. Therefore, AgWp1 was considered to be the candidate gene controlling the white petiole in celery. Our results could not only improve the efficiency and accuracy of celery breeding but also help in understanding the mechanism of chlorophyll synthesis and chloroplast development in celery.
Collapse
Affiliation(s)
- Qing Cheng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yujiao He
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qiaohua Lu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Haoran Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Sujun Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jinkui Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mengmeng Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yingxue Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yihao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liang Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huolin Shen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Liebers M, Cozzi C, Uecker F, Chambon L, Blanvillain R, Pfannschmidt T. Biogenic signals from plastids and their role in chloroplast development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7105-7125. [PMID: 36002302 DOI: 10.1093/jxb/erac344] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant seeds do not contain differentiated chloroplasts. Upon germination, the seedlings thus need to gain photoautotrophy before storage energies are depleted. This requires the coordinated expression of photosynthesis genes encoded in nuclear and plastid genomes. Chloroplast biogenesis needs to be additionally coordinated with the light regulation network that controls seedling development. This coordination is achieved by nucleus to plastid signals called anterograde and plastid to nucleus signals termed retrograde. Retrograde signals sent from plastids during initial chloroplast biogenesis are also called biogenic signals. They have been recognized as highly important for proper chloroplast biogenesis and for seedling development. The molecular nature, transport, targets, and signalling function of biogenic signals are, however, under debate. Several studies disproved the involvement of a number of key components that were at the base of initial models of retrograde signalling. New models now propose major roles for a functional feedback between plastid and cytosolic protein homeostasis in signalling plastid dysfunction as well as the action of dually localized nucleo-plastidic proteins that coordinate chloroplast biogenesis with light-dependent control of seedling development. This review provides a survey of the developments in this research field, summarizes the unsolved questions, highlights several recent advances, and discusses potential new working modes.
Collapse
Affiliation(s)
- Monique Liebers
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Carolina Cozzi
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Finia Uecker
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Louise Chambon
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Robert Blanvillain
- Université Grenoble-Alpes, CNRS, CEA, INRA, IRIG-LPCV, F-38000 Grenoble, France
| | - Thomas Pfannschmidt
- Gottfried-Wilhelm-Leibniz-Universität Hannover, Naturwissenschaftliche Fakultät, Institut für Botanik, Pflanzenphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
5
|
Guo F, Zhang P, Wu Y, Lian G, Yang Z, Liu W, Buerte B, Zhou C, Zhang W, Li D, Han N, Tong Z, Zhu M, Xu L, Chen M, Bian H. Rice LEAFY COTYLEDON1 Hinders Embryo Greening During the Seed Development. FRONTIERS IN PLANT SCIENCE 2022; 13:887980. [PMID: 35620685 PMCID: PMC9128838 DOI: 10.3389/fpls.2022.887980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
LEAFY COTYLEDON1 (LEC1) is the central regulator of seed development in Arabidopsis, while its function in monocots is largely elusive. We generated Oslec1 mutants using CRISPR/Cas9 technology. Oslec1 mutant seeds lost desiccation tolerance and triggered embryo greening at the early development stage. Transcriptome analysis demonstrated that Oslec1 mutation altered diverse hormonal pathways and stress response in seed maturation, and promoted a series of photosynthesis-related genes. Further, genome-wide identification of OsLEC1-binding sites demonstrated that OsLEC1 bound to genes involved in photosynthesis, photomorphogenesis, as well as abscisic acid (ABA) and gibberellin (GA) pathways, involved in seed maturation. We illustrated an OsLEC1-regulating gene network during seed development, including the interconnection between photosynthesis and ABA/GA biosynthesis/signaling. Our findings suggested that OsLEC1 acts as not only a central regulator of seed maturation but also an inhibitor of embryo greening during rice seed development. This study would provide new understanding for the OsLEC1 regulatory mechanisms on photosynthesis in the monocot seed development.
Collapse
Affiliation(s)
- Fu Guo
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| | - Peijing Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Centre, Hangzhou, China
| | - Yan Wu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Guiwei Lian
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhengfei Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - B. Buerte
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chun Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wenqian Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Dandan Li
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| | - Ning Han
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, China
| | - Muyuan Zhu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hongwu Bian
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Kulichová K, Pieters J, Kumar V, Honys D, Hafidh S. A Plastid-Bound Ankyrin Repeat Protein Controls Gametophyte and Early Embryo Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:767339. [PMID: 35350296 PMCID: PMC8958021 DOI: 10.3389/fpls.2022.767339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Proplastids are essential precursors for multi-fate plastid biogenesis, including chloroplast differentiation, a powerhouse for photosynthesis in plants. Arabidopsis ankyrin repeat protein (AKRP, AT5G66055) is a plastid-localized protein with a putative function in plastid differentiation and morphogenesis. Loss of function of akrp leads to embryo developmental arrest. Whether AKRP is critical pre-fertilization has remained unresolved. Here, using reverse genetics, we report a new allele, akrp-3, that exhibited a reduced frequency of mutant embryos (<13%) compared to previously reported alleles. akrp-3 affected both male and female gametophytes resulting in reduced viability, incompetence in pollen tube attraction, altered gametic cell fate, and embryo arrest that were depleted of chlorophyll. AKRP is widely expressed, and the AKRP-GFP fusion localized to plastids of both gametophytes, in isolated chloroplast and co-localized with a plastid marker in pollen and pollen tubes. Cell-type-specific complementation of akrp-3 hinted at the developmental timing at which AKRP might play an essential role. Our findings provide a plausible insight into the crucial role of AKRP in the differentiation of both gametophytes and coupling embryo development with chlorophyll synthesis.
Collapse
Affiliation(s)
- Katarína Kulichová
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Janto Pieters
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Vinod Kumar
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Plant Experimental Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Zhang Q, Wang Y, Xie W, Chen C, Ren D, Hu J, Zhu L, Zhang G, Gao Z, Guo L, Zeng D, Shen L, Qian Q. OsMORF9 is necessary for chloroplast development and seedling survival in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110907. [PMID: 33902846 DOI: 10.1016/j.plantsci.2021.110907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 05/24/2023]
Abstract
Chloroplasts are closely associated with the growth and development of higher plants. Accumulating evidence has revealed that the multiple organellar RNA editing factors (MORF) family of proteins influences plastidic and mitochondrial development through post-transcriptional regulation. However, the role of MORFs in regulating the development of chloroplasts in rice is still unclear. The OsMORF9 gene belongs to a small family of 7 genes in rice and is highly expressed in young leaves. We used the CRISPR/Cas9 system to mutate OsMORF9. The resulting knockout lines osmorf9-1 and osmorf9-2 exhibited an albino seedling lethal phenotype. Besides, the expression of many plastid-encoded genes involved in photosynthesis, the biogenesis of plastidic ribosomes and the editing and splicing of specific plastidic RNA molecules were severely affected in these two OsMORF9 mutants. Furthermore, yeast two-hybrid analysis revealed that OsMORF9 could interact with OsSLA4 and DUA1 which are members of the pentatricopeptide repeat (PPR) family of proteins. Analysis of subcellular localization of OsMORF9 also suggested that it might function in chloroplasts. The findings from the present study demonstrated the critical role of OsMORF9 in the biogenesis of chloroplast ribosomes, chloroplast development and seedling survival. This therefore provides new insights on the function of MORF proteins in rice.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yaliang Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Wei Xie
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Changzhao Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Deyong Ren
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Li Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guangheng Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhenyu Gao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Longbiao Guo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lan Shen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Qian Qian
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
8
|
Wang L, Leister D, Kleine T. Chloroplast development and genomes uncoupled signaling are independent of the RNA-directed DNA methylation pathway. Sci Rep 2020; 10:15412. [PMID: 32963291 PMCID: PMC7508864 DOI: 10.1038/s41598-020-71907-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/21/2020] [Indexed: 01/18/2023] Open
Abstract
The Arabidopsis genome is methylated in CG and non-CG (CHG, and CHH in which H stands for A, T, or C) sequence contexts. DNA methylation has been suggested to be critical for seed development, and CHH methylation patterns change during stratification and germination. In plants, CHH methylation occurs mainly through the RNA-directed DNA methylation (RdDM) pathway. To test for an involvement of the RdDM pathway in chloroplast development, we analyzed seedling greening and the maximum quantum yield of photosystem II (Fv/Fm) in Arabidopsis thaliana seedlings perturbed in components of that pathway. Neither seedling greening nor Fv/Fm in seedlings and adult plants were affected in this comprehensive set of mutants, indicating that alterations in the RdDM pathway do not affect chloroplast development. Application of inhibitors like lincomycin or norflurazon inhibits greening of seedlings and represses the expression of photosynthesis-related genes including LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN1.2 (LHCB1.2) in the nucleus. Our results indicate that the LHCB1.2 promoter is poorly methylated under both control conditions and after inhibitor treatment. Therefore no correlation between LHCB1.2 mRNA transcription and methylation changes of the LHCB1.2 promoter could be established. Moreover, we conclude that perturbations in the RdDM pathway do not interfere with gun signaling.
Collapse
Affiliation(s)
- Liangsheng Wang
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
9
|
Méteignier L, Ghandour R, Meierhoff K, Zimmerman A, Chicher J, Baumberger N, Alioua A, Meurer J, Zoschke R, Hammani K. The Arabidopsis mTERF-repeat MDA1 protein plays a dual function in transcription and stabilization of specific chloroplast transcripts within the psbE and ndhH operons. THE NEW PHYTOLOGIST 2020; 227:1376-1391. [PMID: 32343843 PMCID: PMC7496394 DOI: 10.1111/nph.16625] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 05/28/2023]
Abstract
The mTERF gene family encodes for nucleic acid binding proteins that are predicted to regulate organellar gene expression in eukaryotes. Despite the implication of this gene family in plant development and response to abiotic stresses, a precise molecular function was assigned to only a handful number of its c. 30 members in plants. Using a reverse genetics approach in Arabidopsis thaliana and combining molecular and biochemical techniques, we revealed new functions for the chloroplast mTERF protein, MDA1. We demonstrated that MDA1 associates in vivo with components of the plastid-encoded RNA polymerase and transcriptional active chromosome complexes. MDA1 protein binds in vivo and in vitro with specificity to 27-bp DNA sequences near the 5'-end of psbE and ndhA chloroplast genes to stimulate their transcription, and additionally promotes the stabilization of the 5'-ends of processed psbE and ndhA messenger (m)RNAs. Finally, we provided evidence that MDA1 function in gene transcription likely coordinates RNA folding and the action of chloroplast RNA-binding proteins on mRNA stabilization. Our results provide examples for the unexpected implication of DNA binding proteins and gene transcription in the regulation of mRNA stability in chloroplasts, blurring the boundaries between DNA and RNA metabolism in this organelle.
Collapse
Affiliation(s)
- Louis‐Valentin Méteignier
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Rabea Ghandour
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Karin Meierhoff
- Institute of Developmental and Molecular Biology of PlantsHeinrich Heine University Düsseldorf40225DüsseldorfGermany
| | - Aude Zimmerman
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRSUniversité de Strasbourg15 rue René Descartes67084StrasbourgFrance
| | - Nicolas Baumberger
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Abdelmalek Alioua
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| | - Jörg Meurer
- Plant SciencesFaculty of BiologyLudwig‐Maximilians‐University MunichGroßhaderner Street 2‐482152Planegg‐MartinsriedGermany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476Potsdam‐GolmGermany
| | - Kamel Hammani
- Institut de Biologie Moléculaire des PlantesCentre National de la Recherche Scientifique (CNRS)Université de Strasbourg12 rue du Général Zimmer67084StrasbourgFrance
| |
Collapse
|
10
|
Tan H, Qi X, Li Y, Wang X, Zhou J, Liu X, Shi X, Ye W, Xiang X. Light induces gene expression to enhance the synthesis of storage reserves in Brassica napus L. embryos. PLANT MOLECULAR BIOLOGY 2020; 103:457-471. [PMID: 32274640 DOI: 10.1007/s11103-020-01003-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
In this manuscript, we disclosed the influence of light on the accumulation of storage reserves in B. napus embryos.1.Light induced the gene expression in the developing embryos of B. napus.2.Light promoted the starch synthesis in chloroplasts of B. napus embryos.3.Light enhanced the metabolic activity of storage reserve synthesis in B. napus embryos. Light influences the accumulation of storage reserves in embryos, but the molecular mechanism was not fully understood. Here, we monitored the effects of light on reserve biosynthesis in Brassica napus by comparing embryos from siliques grown in normal light conditions to those that were shaded or masked (i.e., darkened completely). Masked embryos developed more slowly, weighed less, and contained fewer proteins and lipids than control embryos. They also had fewer and smaller oil bodies than control embryos and lacked chloroplasts, where starch grains are usually synthesized. The levels of most amino acids, carbohydrates, and fatty acids were higher in masked embryos than in control or shaded embryos, whereas the levels of these metabolites in the masked endosperms were lower than those in control and shaded endosperm. Transcriptome analysis indicated that genes involved in photosynthesis (42 genes), amino acid biosynthesis (51 genes), lipid metabolism (61 genes), and sugar transport (13 genes) were significantly repressed in masked embryos. Our results suggest that light contributes to reserve accumulation in embryos by inducing the expression of metabolic genes, thereby enhancing the biosynthesis of storage reserves.
Collapse
Affiliation(s)
- Helin Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiao Qi
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Yan Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Xingchun Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Jianguo Zhou
- Animal Sciences National Teaching Demonstration Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuhong Liu
- Animal Sciences National Teaching Demonstration Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoli Shi
- Animal Sciences National Teaching Demonstration Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoe Xiang
- Animal Sciences National Teaching Demonstration Center, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
11
|
Tadini L, Jeran N, Peracchio C, Masiero S, Colombo M, Pesaresi P. The plastid transcription machinery and its coordination with the expression of nuclear genome: Plastid-Encoded Polymerase, Nuclear-Encoded Polymerase and the Genomes Uncoupled 1-mediated retrograde communication. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190399. [PMID: 32362266 DOI: 10.1098/rstb.2019.0399] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Plastid genes in higher plants are transcribed by at least two different RNA polymerases, the plastid-encoded RNA polymerase (PEP), a bacteria-like core enzyme whose subunits are encoded by plastid genes (rpoA, rpoB, rpoC1 and rpoC2), and the nuclear-encoded plastid RNA polymerase (NEP), a monomeric bacteriophage-type RNA polymerase. Both PEP and NEP enzymes are active in non-green plastids and in chloroplasts at all developmental stages. Their transcriptional activity is affected by endogenous and exogenous factors and requires a strict coordination within the plastid and with the nuclear gene expression machinery. This review focuses on the different molecular mechanisms underlying chloroplast transcription regulation and its coordination with the photosynthesis-associated nuclear genes (PhANGs) expression. Particular attention is given to the link between NEP and PEP activity and the GUN1- (Genomes Uncoupled 1) mediated chloroplast-to-nucleus retrograde communication with respect to the Δrpo adaptive response, i.e. the increased accumulation of NEP-dependent transcripts upon depletion of PEP activity, and the editing-level changes observed in NEP-dependent transcripts, including rpoB and rpoC1, in gun1 cotyledons after norflurazon or lincomycin treatment. The role of cytosolic preproteins and HSP90 chaperone as components of the GUN1-retrograde signalling pathway, when chloroplast biogenesis is inhibited in Arabidopsis cotyledons, is also discussed. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Luca Tadini
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Nicolaj Jeran
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Carlotta Peracchio
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, 38010 San Michele all'Adige, Italy
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| |
Collapse
|
12
|
Lost in Translation: Physiological Roles of Stored mRNAs in Seed Germination. PLANTS 2020; 9:plants9030347. [PMID: 32164149 PMCID: PMC7154877 DOI: 10.3390/plants9030347] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Seeds characteristics such as germination ability, dormancy, and storability/longevity are important traits in agriculture, and various genes have been identified that are involved in its regulation at the transcriptional and post-transcriptional level. A particularity of mature dry seeds is a special mechanism that allows them to accumulate more than 10,000 mRNAs during seed maturation and use them as templates to synthesize proteins during germination. Some of these stored mRNAs are also referred to as long-lived mRNAs because they remain translatable even after seeds have been exposed to long-term stressful conditions. Mature seeds can germinate even in the presence of transcriptional inhibitors, and this ability is acquired in mid-seed development. The type of mRNA that accumulates in seeds is affected by the plant hormone abscisic acid and environmental factors, and most of them accumulate in seeds in the form of monosomes. Release of seed dormancy during after-ripening involves the selective oxidation of stored mRNAs and this prevents translation of proteins that function in the suppression of germination after imbibition. Non-selective oxidation and degradation of stored mRNAs occurs during long-term storage of seeds so that the quality of stored RNAs is linked to the degree of seed deterioration. After seed imbibition, a population of stored mRNAs are selectively loaded into polysomes and the mRNAs, involved in processes such as redox, glycolysis, and protein synthesis, are actively translated for germination.
Collapse
|
13
|
Jaussaud A, Lupette J, Salvaing J, Jouhet J, Bastien O, Gromova M, Maréchal E. Stepwise Biogenesis of Subpopulations of Lipid Droplets in Nitrogen Starved Phaeodactylum tricornutum Cells. FRONTIERS IN PLANT SCIENCE 2020; 11:48. [PMID: 32117386 PMCID: PMC7026457 DOI: 10.3389/fpls.2020.00048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/14/2020] [Indexed: 05/05/2023]
Abstract
Diatoms are unicellular heterokonts, living in oceans and freshwaters, exposed to frequent environmental variations. They have a sophisticated membrane compartmentalization and are bounded by a siliceous cell-wall. Formation of lipid droplets (LDs), filled with triacylglycerol (TAG), is a common response to stress. The proteome of mature-LDs from Phaeodactylum tricornutum highlighted the lack of proteins involved in early-LD formation, TAG biosynthesis or LD-to-LD connections. These features suggest that cytosolic LDs might reach a size limit. We analyzed the dynamics of LD formation in P. tricornutum (Pt1 8.6; CCAP 1055/1) during 7 days of nitrogen starvation, by monitoring TAG by mass spectrometry-based lipidomics, and LD radius using epifluorescence microscopy and pulse field gradient nuclear magnetic resonance. We confirmed that mature LDs reach a maximal size. Based on pulse field gradient nuclear magnetic resonance, we did not detect any LD-LD fusion. Three LD subpopulations were produced, each with a different maximal size, larger-sized LDs (radius 0.675 ± 0.125 µm) being generated first. Mathematical modeling showed how smaller LDs are produced once larger LDs have reached their maximum radius. In a mutant line having larger cells, the maximal size of the first LD subpopulation was higher (0.941 ± 0.169 µm), while the principle of stepwise formation of distinct LD populations was maintained. Results suggest that LD size is determined by available cytosolic space and sensing of an optimal size reached in the previous LD subpopulation. Future perspectives include the unraveling of LD-size control mechanisms upon nitrogen shortage. This study also provides novel prospects for the optimization of oleaginous microalgae for biotechnological applications.
Collapse
Affiliation(s)
- Antoine Jaussaud
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'énergie atomique et aux énergies alternatives, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, IRIG, CEA-Grenoble, Grenoble, France
| | - Josselin Lupette
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'énergie atomique et aux énergies alternatives, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, IRIG, CEA-Grenoble, Grenoble, France
- Plant Research Laboratory, Department of Energy, Michigan State University, MI, East Lansing, USA
| | - Juliette Salvaing
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'énergie atomique et aux énergies alternatives, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, IRIG, CEA-Grenoble, Grenoble, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'énergie atomique et aux énergies alternatives, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, IRIG, CEA-Grenoble, Grenoble, France
| | - Olivier Bastien
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'énergie atomique et aux énergies alternatives, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, IRIG, CEA-Grenoble, Grenoble, France
| | - Marina Gromova
- Laboratoire Modélisation et Exploration des Matériaux, Université Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, IRIG, CEA-Grenoble, Grenoble, France
- *Correspondence: Marina Gromova, ; Eric Maréchal,
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'énergie atomique et aux énergies alternatives, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, IRIG, CEA-Grenoble, Grenoble, France
- *Correspondence: Marina Gromova, ; Eric Maréchal,
| |
Collapse
|
14
|
Liebers M, Chevalier F, Blanvillain R, Pfannschmidt T. PAP genes are tissue- and cell-specific markers of chloroplast development. PLANTA 2018; 248:629-646. [PMID: 29855700 DOI: 10.1007/s00425-018-2924-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/21/2018] [Indexed: 05/03/2023]
Abstract
Expression of PAP genes is strongly coordinated and represents a highly selective cell-specific marker associated with the development of chloroplasts in photosynthetically active organs of Arabidopsis seedlings and adult plants. Transcription in plastids of plants depends on the activity of phage-type single-subunit nuclear-encoded RNA polymerases (NEP) and a prokaryotic multi-subunit plastid-encoded RNA polymerase (PEP). PEP is comprised of the core subunits α, β, β' and β″ encoded by rpoA, rpoB/C1/C2 genes located on the plastome. This core enzyme needs to interact with nuclear-encoded sigma factors for proper promoter recognition. In chloroplasts, the core enzyme is surrounded by additional 12 nuclear-encoded subunits, all of eukaryotic origin. These PEP-associated proteins (PAPs) were found to be essential for chloroplast biogenesis as Arabidopsis inactivation mutants for each of them revealed albino or pale-green phenotypes. In silico analysis of transcriptomic data suggests that PAP genes represent a tightly controlled regulon, whereas wetlab data are sparse and correspond to the expression of individual genes mostly studied at the seedling stage. Using RT-PCR, transient, and stable expression assays of PAP promoter-GUS-constructs, we do provide, in this study, a comprehensive expression catalogue for PAP genes throughout the life cycle of Arabidopsis. We demonstrate a selective impact of light on PAP gene expression and uncover a high tissue specificity that is coupled to developmental progression especially during the transition from skotomorphogenesis to photomorphogenesis. Our data imply that PAP gene expression precedes the formation of chloroplasts rendering PAP genes a tissue- and cell-specific marker of chloroplast biogenesis.
Collapse
Affiliation(s)
- Monique Liebers
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France
| | - Fabien Chevalier
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France
| | - Robert Blanvillain
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France.
| | - Thomas Pfannschmidt
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France.
| |
Collapse
|
15
|
Mapping Plastid Transcript Population by Circular Reverse Transcription Polymerase Chain Reaction. Methods Mol Biol 2018. [PMID: 29987728 DOI: 10.1007/978-1-4939-8654-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
During evolution of photosynthetic organisms, the genetic information provided by the internalized cyanobacteria has been transferred to the nucleus. The small genome kept by the chloroplast, the so-called plastome, displays a complex organization, comprising operons under the control of multiples promoters. In addition, polycistronic transcripts undergo multiple processing events, thus generating a complex population of mRNAs from a single gene. This chapter describes a method to investigate the diversity of the mRNA population from a single gene by circular RT-PCR. The protocol provided here allows for the simultaneous mapping of both 5' and 3' ends of the same RNA molecule.
Collapse
|
16
|
Smolikova G, Dolgikh E, Vikhnina M, Frolov A, Medvedev S. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos. Int J Mol Sci 2017; 18:E1993. [PMID: 28926960 PMCID: PMC5618642 DOI: 10.3390/ijms18091993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 01/05/2023] Open
Abstract
The embryos of some angiosperms (usually referred to as chloroembryos) contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN (SGR) genes are the principle ones. On the biochemical level, abscisic acid (ABA) is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Elena Dolgikh
- All-Russia Institute for Agricultural Microbiology, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Maria Vikhnina
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
- Department of Biochemistry, St. Petersburg State University, St. Petersburg 199034, Russia.
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, St. Petersburg 199034, Russia.
| |
Collapse
|
17
|
Liebers M, Grübler B, Chevalier F, Lerbs-Mache S, Merendino L, Blanvillain R, Pfannschmidt T. Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development. FRONTIERS IN PLANT SCIENCE 2017; 8:23. [PMID: 28154576 PMCID: PMC5243808 DOI: 10.3389/fpls.2017.00023] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/05/2017] [Indexed: 05/10/2023]
Abstract
Plastids display a high morphological and functional diversity. Starting from an undifferentiated small proplastid, these plant cell organelles can develop into four major forms: etioplasts in the dark, chloroplasts in green tissues, chromoplasts in colored flowers and fruits and amyloplasts in roots. The various forms are interconvertible into each other depending on tissue context and respective environmental condition. Research of the last two decades uncovered that each plastid type contains its own specific proteome that can be highly different from that of the other types. Composition of these proteomes largely defines the enzymatic functionality of the respective plastid. The vast majority of plastid proteins is encoded in the nucleus and must be imported from the cytosol. However, a subset of proteins of the photosynthetic and gene expression machineries are encoded on the plastid genome and are transcribed by a complex transcriptional apparatus consisting of phage-type nuclear-encoded RNA polymerases and a bacterial-type plastid-encoded RNA polymerase. Both types recognize specific sets of promoters and transcribe partly over-lapping as well as specific sets of genes. Here we summarize the current knowledge about the sequential activity of these plastid RNA polymerases and their relative activities in different types of plastids. Based on published plastid gene expression profiles we hypothesize that each conversion from one plastid type into another is either accompanied or even preceded by significant changes in plastid transcription suggesting that these changes represent important determinants of plastid morphology and protein composition and, hence, the plastid type.
Collapse
|
18
|
Liu H, Wang X, Ren K, Li K, Wei M, Wang W, Sheng X. Light Deprivation-Induced Inhibition of Chloroplast Biogenesis Does Not Arrest Embryo Morphogenesis But Strongly Reduces the Accumulation of Storage Reserves during Embryo Maturation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1287. [PMID: 28775734 PMCID: PMC5517488 DOI: 10.3389/fpls.2017.01287] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/07/2017] [Indexed: 05/18/2023]
Abstract
The chloroplast is one of the most important organelles found exclusively in plant and algal cells. Previous reports indicated that the chloroplast is involved in plant embryogenesis, but the role of the organelle during embryo morphogenesis and maturation is still a controversial question demanding further research. In the present study, siliques of Arabidopsis at the early globular stage were enwrapped using tinfoil, and light deprivation-induced inhibition of the chloroplast biogenesis were validated by stereomicroscope, laser scanning confocal microscope and transmission electron microscope. Besides, the effects of inhibited chloroplast differentiation on embryogenesis, especially on the reserve deposition were analyzed using periodic acid-Schiff reaction, Nile red labeling, and Coomassie brilliant blue staining. Our results indicated that tinfoil enwrapping strongly inhibited the formation of chloroplasts, which did not arrest embryo morphogenesis, but markedly influenced embryo maturation, mainly through reducing the accumulation of storage reserves, especially starch grains and oil. Our data provide a new insight into the roles of the chloroplast during embryogenesis.
Collapse
Affiliation(s)
- Huichao Liu
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Xiaoxia Wang
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Kaixuan Ren
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Kai Li
- Department of Chemistry, Capital Normal UniversityBeijing, China
| | - Mengmeng Wei
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Wenjie Wang
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Xianyong Sheng
- College of Life Sciences, Capital Normal UniversityBeijing, China
- *Correspondence: Xianyong Sheng,
| |
Collapse
|
19
|
ChloroSeq, an Optimized Chloroplast RNA-Seq Bioinformatic Pipeline, Reveals Remodeling of the Organellar Transcriptome Under Heat Stress. G3-GENES GENOMES GENETICS 2016; 6:2817-27. [PMID: 27402360 PMCID: PMC5015939 DOI: 10.1534/g3.116.030783] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Although RNA-Seq has revolutionized transcript analysis, organellar transcriptomes are rarely assessed even when present in published datasets. Here, we describe the development and application of a rapid and convenient method, ChloroSeq, to delineate qualitative and quantitative features of chloroplast RNA metabolism from strand-specific RNA-Seq datasets, including processing, editing, splicing, and relative transcript abundance. The use of a single experiment to analyze systematically chloroplast transcript maturation and abundance is of particular interest due to frequent pleiotropic effects observed in mutants that affect chloroplast gene expression and/or photosynthesis. To illustrate its utility, ChloroSeq was applied to published RNA-Seq datasets derived from Arabidopsis thaliana grown under control and abiotic stress conditions, where the organellar transcriptome had not been examined. The most appreciable effects were found for heat stress, which induces a global reduction in splicing and editing efficiency, and leads to increased abundance of chloroplast transcripts, including genic, intergenic, and antisense transcripts. Moreover, by concomitantly analyzing nuclear transcripts that encode chloroplast gene expression regulators from the same libraries, we demonstrate the possibility of achieving a holistic understanding of the nucleus-organelle system. ChloroSeq thus represents a unique method for streamlining RNA-Seq data interpretation of the chloroplast transcriptome and its regulators.
Collapse
|
20
|
Siniauskaya MG, Danilenko NG, Lukhanina NV, Shymkevich AM, Davydenko OG. Expression of the chloroplast genome: Modern concepts and experimental approaches. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s2079059716050117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Pfannschmidt T, Blanvillain R, Merendino L, Courtois F, Chevalier F, Liebers M, Grübler B, Hommel E, Lerbs-Mache S. Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6957-73. [PMID: 26355147 DOI: 10.1093/jxb/erv415] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chloroplasts are the sunlight-collecting organelles of photosynthetic eukaryotes that energetically drive the biosphere of our planet. They are the base for all major food webs by providing essential photosynthates to all heterotrophic organisms including humans. Recent research has focused largely on an understanding of the function of these organelles, but knowledge about the biogenesis of chloroplasts is rather limited. It is known that chloroplasts develop from undifferentiated precursor plastids, the proplastids, in meristematic cells. This review focuses on the activation and action of plastid RNA polymerases, which play a key role in the development of new chloroplasts from proplastids. Evolutionarily, plastids emerged from the endosymbiosis of a cyanobacterium-like ancestor into a heterotrophic eukaryote. As an evolutionary remnant of this process, they possess their own genome, which is expressed by two types of plastid RNA polymerase, phage-type and prokaryotic-type RNA polymerase. The protein subunits of these polymerases are encoded in both the nuclear and plastid genomes. Their activation and action therefore require a highly sophisticated regulation that controls and coordinates the expression of the components encoded in the plastid and nucleus. Stoichiometric expression and correct assembly of RNA polymerase complexes is achieved by a combination of developmental and environmentally induced programmes. This review highlights the current knowledge about the functional coordination between the different types of plastid RNA polymerases and provides working models of their sequential expression and function for future investigations.
Collapse
Affiliation(s)
- Thomas Pfannschmidt
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Robert Blanvillain
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Livia Merendino
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Florence Courtois
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Fabien Chevalier
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Monique Liebers
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Björn Grübler
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Elisabeth Hommel
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Silva Lerbs-Mache
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| |
Collapse
|
22
|
Chloroplast RNA polymerases: Role in chloroplast biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:761-9. [PMID: 25680513 DOI: 10.1016/j.bbabio.2015.02.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/26/2015] [Accepted: 02/02/2015] [Indexed: 12/18/2022]
Abstract
Plastid genes are transcribed by two types of RNA polymerase in angiosperms: the bacterial type plastid-encoded RNA polymerase (PEP) and one (RPOTp in monocots) or two (RPOTp and RPOTmp in dicots) nuclear-encoded RNA polymerase(s) (NEP). PEP is a bacterial-type multisubunit enzyme composed of core subunits (coded for by the plastid rpoA, rpoB, rpoC1 and rpoC2 genes) and additional protein factors (sigma factors and polymerase associated protein, PAPs) encoded in the nuclear genome. Sigma factors are required by PEP for promoter recognition. Six different sigma factors are used by PEP in Arabidopsis plastids. NEP activity is represented by phage-type RNA polymerases. Only one NEP subunit has been identified, which bears the catalytic activity. NEP and PEP use different promoters. Many plastid genes have both PEP and NEP promoters. PEP dominates in the transcription of photosynthesis genes. Intriguingly, rpoB belongs to the few genes transcribed exclusively by NEP. Both NEP and PEP are active in non-green plastids and in chloroplasts at all stages of development. The transcriptional activity of NEP and PEP is affected by endogenous and exogenous factors. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
23
|
Allorent G, Osorio S, Vu JL, Falconet D, Jouhet J, Kuntz M, Fernie AR, Lerbs-Mache S, Macherel D, Courtois F, Finazzi G. Adjustments of embryonic photosynthetic activity modulate seed fitness in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 205:707-19. [PMID: 25256557 DOI: 10.1111/nph.13044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/10/2014] [Indexed: 05/19/2023]
Abstract
In this work, we dissect the physiological role of the transient photosynthetic stage observed in developing seeds of Arabidopsis thaliana. By combining biochemical and biophysical approaches, we demonstrate that despite similar features of the photosynthetic apparatus, light absorption, chloroplast morphology and electron transport are modified in green developing seeds, as a possible response to the peculiar light environment experienced by them as a result of sunlight filtration by the pericarp. In particular, enhanced exposure to far-red light, which mainly excites photosystem I, largely enhances cyclic electron flow around this complex at the expenses of oxygen evolution. Using pharmacological, genetic and metabolic analyses, we show that both linear and cyclic electron flows are important during seed formation for proper germination timing. Linear flow provides specific metabolites related to oxygen and water stress responses. Cyclic electron flow possibly adjusts the ATP to NADPH ratio to cope with the specific energy demand of developing seeds. By providing a comprehensive scenario of the characteristics, function and consequences of embryonic photosynthesis on seed vigour, our data provide a rationale for the transient building up of a photosynthetic machinery in seeds.
Collapse
Affiliation(s)
- Guillaume Allorent
- Laboratoire de Physiologie Cellulaire & Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique, F-38054, Grenoble, France; Université Grenoble-Alpes, F-38054, Grenoble, France; Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054, Grenoble, France; Unité Sous Contrat 1359, Institut National Recherche Agronomique, F-38054, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Law SR, Narsai R, Whelan J. Mitochondrial biogenesis in plants during seed germination. Mitochondrion 2014; 19 Pt B:214-21. [PMID: 24727594 DOI: 10.1016/j.mito.2014.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/29/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
Abstract
Mitochondria occupy a central role in the eukaryotic cell. In addition to being major sources of cellular energy, mitochondria are also involved in a diverse range of functions including signalling, the synthesis of many essential organic compounds and a role in programmed cell death. The active proliferation and differentiation of mitochondria is termed mitochondrial biogenesis and necessitates the coordinated communication of mitochondrial status within an integrated cellular network. Two models of mitochondrial biogenesis have been defined previously, the growth and division model and the maturation model. The former describes the growth and division of pre-existing mature organelles through a form of binary fission, while the latter describes the propagation of mitochondria from structurally and biochemically simple promitochondrial structures that upon appropriate stimuli, mature into fully functional mitochondria. In the last decade, a number of studies have utilised seed germination in plants as a platform for the examination of the processes occurring during mitochondrial biogenesis. These studies have revealed many new aspects of the tightly regulated procession of events that define mitochondrial biogenesis during this period of rapid development. A model for mitochondrial biogenesis that supports the maturation of mitochondria from promitochondrial structures has emerged, where mitochondrial signalling plays a crucial role in the early steps of seed germination.
Collapse
Affiliation(s)
- Simon R Law
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Reena Narsai
- Department of Botany, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - James Whelan
- Department of Botany, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia.
| |
Collapse
|