1
|
Yu L, Zhang H, Guan R, Li Y, Guo Y, Qiu L. Genome-Wide Tissue-Specific Genes Identification for Novel Tissue-Specific Promoters Discovery in Soybean. Genes (Basel) 2023; 14:1150. [PMID: 37372330 DOI: 10.3390/genes14061150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Promoters play a crucial role in controlling the spatial and temporal expression of genes at transcriptional levels in the process of higher plant growth and development. The spatial, efficient, and correct regulation of exogenous genes expression, as desired, is the key point in plant genetic engineering research. Constitutive promoters widely used in plant genetic transformation are limited because, sometimes, they may cause potential negative effects. This issue can be solved, to a certain extent, by using tissue-specific promoters. Compared with constitutive promoters, a few tissue-specific promoters have been isolated and applied. In this study, based on the transcriptome data, a total of 288 tissue-specific genes were collected, expressed in seven tissues, including the leaves, stems, flowers, pods, seeds, roots, and nodules of soybean (Glycine max). KEGG pathway enrichment analysis was carried out, and 52 metabolites were annotated. A total of 12 tissue-specific genes were selected via the transcription expression level and validated through real-time quantitative PCR, of which 10 genes showed tissue-specific expression. The 3-kb 5' upstream regions of ten genes were obtained as putative promoters. Further analysis showed that all the 10 promoters contained many tissue-specific cis-elements. These results demonstrate that high-throughput transcriptional data can be used as effective tools, providing a guide for high-throughput novel tissue-specific promoter discovery.
Collapse
Affiliation(s)
- Lili Yu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rongxia Guan
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinghui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong Guo
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lijuan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Lin L, Fan J, Li P, Liu D, Ren S, Lin K, Fang Y, Lin C, Wang Y, Wu J. The Sclerotinia sclerotiorum-inducible promoter pBnGH17D7 in Brassica napus: isolation, characterization, and application in host-induced gene silencing. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6663-6677. [PMID: 35927220 PMCID: PMC9629790 DOI: 10.1093/jxb/erac328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is among the most devastating diseases in Brassica napus worldwide. Conventional breeding for SSR resistance in Brassica species is challenging due to the limited availability of resistant germplasm. Therefore, genetic engineering is an attractive approach for developing SSR-resistant Brassica crops. Compared with the constitutive promoter, an S. sclerotiorum-inducible promoter would avoid ectopic expression of defense genes that may cause plant growth deficits. In this study, we generated a S. sclerotiorum-inducible promoter. pBnGH17D7, from the promoter of B. napus glycosyl hydrolase 17 gene (pBnGH17). Specifically, 5'-deletion and promoter activity analyses in transgenic Arabidopsis thaliana plants defined a 189 bp region of pBnGH17 which was indispensable for S. sclerotiorum-induced response. Compared with pBnGH17, pBnGH17D7 showed a similar response upon S. sclerotiorum infection, but lower activity in plant tissues in the absence of S. sclerotiorum infection. Moreover, we revealed that the transcription factor BnTGA7 directly binds to the TGACG motif in pBnGH17D7 to activate BnGH17. Ultimately, pBnGH17D7 was exploited for engineering Sclerotinia-resistant B. napus via host-induced gene silencing. It induces high expression of siRNAs against the S. sclerotiorum pathogenic factor gene specifically during infection, leading to increased resistance.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Jialin Fan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Panpan Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Dongxiao Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Sichao Ren
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Keyun Lin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Yujie Fang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | | | | |
Collapse
|
3
|
Chen S, Peng Y, Lv Q, Liu J, Wu Z, Wang H, Wang X. Characterization of two constitutive promoters RPS28 and EIF1 for studying soybean growth, development, and symbiotic nodule development. ABIOTECH 2022; 3:99-109. [PMID: 36312443 PMCID: PMC9590564 DOI: 10.1007/s42994-022-00073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/25/2022] [Indexed: 06/03/2023]
Abstract
Native promoters that can drive high and stable transgene expression are important tools for modifying plant traits. Although several such promoters have been reported in soybean (Glycine max), few of them function at multiple growth and development stages and during nodule development. Here, we report that the promoters of 40S RIBOSOMAL PROTEIN SMALL SUBUNIT S28 (RPS28) and EUKARYOTIC TRANSLATION INITIATION FACTOR 1 (EIF1) are ideal for high expression of transgene. Through bioinformatic analysis, we determined that RPS28 and EIF1 were highly expressed during soybean growth and development, nodule development, and various biotic and abiotic stresses. Fusion of both RPS28 and EIF1 promoters, with or without their first intron, with the reporter gene β-GLUCURONIDASE (uidA) in transgenic soybean, resulted in high GUS activity in seedlings, seeds, and nodules. Fluorimetric GUS assays showed that the RPS28 promoter and the EIF1 promoter yielded high expression, comparable to the soybean Ubiquitin (GmUbi) promoter. RPS28 and EIF1 promoters were also highly expressed in Arabidopsis thaliana and Nicotiana benthamiana. Our results indicate the potential of RPS28 and EIF1 promoters to facilitate future genetic engineering and breeding to improve the quality and yield of soybean, as well as in a wide variety of other plant species. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-022-00073-6.
Collapse
Affiliation(s)
- Shengcai Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yaqi Peng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475001 China
- Sanya Institute of Henan University, Sanya, 572025 China
| | - Qi Lv
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475001 China
- Sanya Institute of Henan University, Sanya, 572025 China
| | - Jing Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475001 China
- Sanya Institute of Henan University, Sanya, 572025 China
| | - Zhihua Wu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074 China
| | - Haijiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475001 China
- Sanya Institute of Henan University, Sanya, 572025 China
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475001 China
- Sanya Institute of Henan University, Sanya, 572025 China
| |
Collapse
|
4
|
Li R, Zhu F, Duan D. Function analysis and stress-mediated cis-element identification in the promoter region of VqMYB15. PLANT SIGNALING & BEHAVIOR 2020; 15:1773664. [PMID: 32475217 PMCID: PMC8570707 DOI: 10.1080/15592324.2020.1773664] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 05/21/2023]
Abstract
The transcription factor MYB15 plays an important role in grape basal immunity, and its promoter can be used as a potential target in resistance breeding. However, the regulatory mechanisms of cis-elements in its promoter region under a variety of stresses remain unclear. In this study, we identified some putative cis-regulatory elements present upstream of MYB15 in Vitis quinquangularis Shanyang (pVqMYB15_SY) and subsequently characterized the function of these elements using reporter assays. Our results showed that TCA-elements 1 and 2, ABRE, MYC and 3-AF1 binding site 1 are key cis-regulatory elements in pVqMYB15_SY and play important roles in plant bio/abiotic stress resistance.
Collapse
Affiliation(s)
- Ruixiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Fanding Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Dong Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
- CONTACT Dong Duan Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an710069, China
| |
Collapse
|
5
|
Wang J, Hossain MS, Lyu Z, Schmutz J, Stacey G, Xu D, Joshi T. SoyCSN: Soybean context-specific network analysis and prediction based on tissue-specific transcriptome data. PLANT DIRECT 2019; 3:e00167. [PMID: 31549018 PMCID: PMC6747016 DOI: 10.1002/pld3.167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 05/04/2023]
Abstract
The Soybean Gene Atlas project provides a comprehensive map for understanding gene expression patterns in major soybean tissues from flower, root, leaf, nodule, seed, and shoot and stem. The RNA-Seq data generated in the project serve as a valuable resource for discovering tissue-specific transcriptome behavior of soybean genes in different tissues. We developed a computational pipeline for Soybean context-specific network (SoyCSN) inference with a suite of prediction tools to analyze, annotate, retrieve, and visualize soybean context-specific networks at both transcriptome and interactome levels. BicMix and Cross-Conditions Cluster Detection algorithms were applied to detect modules based on co-expression relationships across all the tissues. Soybean context-specific interactomes were predicted by combining soybean tissue gene expression and protein-protein interaction data. Functional analyses of these predicted networks provide insights into soybean tissue specificities. For example, under symbiotic, nitrogen-fixing conditions, the constructed soybean leaf network highlights the connection between the photosynthesis function and rhizobium-legume symbiosis. SoyCSN data and all its results are publicly available via an interactive web service within the Soybean Knowledge Base (SoyKB) at http://soykb.org/SoyCSN. SoyCSN provides a useful web-based access for exploring context specificities systematically in gene regulatory mechanisms and gene relationships for soybean researchers and molecular breeders.
Collapse
Affiliation(s)
- Juexin Wang
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriSt. LouisMOUSA
- Christopher S. Bond Life Sciences CenterUniversity of MissouriSt. LouisMOUSA
| | - Md Shakhawat Hossain
- Christopher S. Bond Life Sciences CenterUniversity of MissouriSt. LouisMOUSA
- Divisions of Plant Science and BiochemistryUniversity of MissouriSt. LouisMOUSA
| | - Zhen Lyu
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriSt. LouisMOUSA
| | - Jeremy Schmutz
- HudsonAlpha Institute for BiotechnologyHuntsvilleALUSA
- DOE Joint Genome InstituteWalnut CreekCAUSA
| | - Gary Stacey
- Christopher S. Bond Life Sciences CenterUniversity of MissouriSt. LouisMOUSA
- Divisions of Plant Science and BiochemistryUniversity of MissouriSt. LouisMOUSA
| | - Dong Xu
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriSt. LouisMOUSA
- Christopher S. Bond Life Sciences CenterUniversity of MissouriSt. LouisMOUSA
- Informatics InstituteUniversity of MissouriSt. LouisMOUSA
| | - Trupti Joshi
- Christopher S. Bond Life Sciences CenterUniversity of MissouriSt. LouisMOUSA
- Informatics InstituteUniversity of MissouriSt. LouisMOUSA
- Department of Health Management and Informatics and Office of ResearchSchool of MedicineUniversity of MissouriSt. LouisMOUSA
| |
Collapse
|