1
|
Szántó M, Yélamos J, Bai P. Specific and shared biological functions of PARP2 - is PARP2 really a lil' brother of PARP1? Expert Rev Mol Med 2024; 26:e13. [PMID: 38698556 PMCID: PMC11140550 DOI: 10.1017/erm.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024]
Abstract
PARP2, that belongs to the family of ADP-ribosyl transferase enzymes (ART), is a discovery of the millennium, as it was identified in 1999. Although PARP2 was described initially as a DNA repair factor, it is now evident that PARP2 partakes in the regulation or execution of multiple biological processes as inflammation, carcinogenesis and cancer progression, metabolism or oxidative stress-related diseases. Hereby, we review the involvement of PARP2 in these processes with the aim of understanding which processes are specific for PARP2, but not for other members of the ART family. A better understanding of the specific functions of PARP2 in all of these biological processes is crucial for the development of new PARP-centred selective therapies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - José Yélamos
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Péter Bai
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
2
|
Wang J, Gao Y, Xiong X, Yan Y, Lou J, Noman M, Li D, Song F. The Ser/Thr protein kinase FonKin4-poly(ADP-ribose) polymerase FonPARP1 phosphorylation cascade is required for the pathogenicity of watermelon fusarium wilt fungus Fusarium oxysporum f. sp. niveum. Front Microbiol 2024; 15:1397688. [PMID: 38690366 PMCID: PMC11058995 DOI: 10.3389/fmicb.2024.1397688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and hydrolyzed by poly(ADP-ribose) glycohydrolase (PARG), is a kind of post-translational protein modification that is involved in various cellular processes in fungi, plants, and mammals. However, the function of PARPs in plant pathogenic fungi remains unknown. The present study investigated the roles and mechanisms of FonPARP1 in watermelon Fusarium wilt fungus Fusarium oxysporum f. sp. niveum (Fon). Fon has a single PARP FonPARP1 and one PARG FonPARG1. FonPARP1 is an active PARP and contributes to Fon pathogenicity through regulating its invasive growth within watermelon plants, while FonPARG1 is not required for Fon pathogenicity. A serine/threonine protein kinase, FonKin4, was identified as a FonPARP1-interacting partner by LC-MS/MS. FonKin4 is required for vegetative growth, conidiation, macroconidia morphology, abiotic stress response and pathogenicity of Fon. The S_TKc domain is sufficient for both enzyme activity and pathogenicity function of FonKin4 in Fon. FonKin4 phosphorylates FonPARP1 in vitro to enhance its poly(ADP-ribose) polymerase activity; however, FonPARP1 does not PARylate FonKin4. These results establish the FonKin4-FonPARP1 phosphorylation cascade that positively contributes to Fon pathogenicity. The present study highlights the importance of PARP-catalyzed protein PARylation in regulating the pathogenicity of Fon and other plant pathogenic fungi.
Collapse
Affiliation(s)
- Jiajing Wang
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizhou Gao
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaohui Xiong
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuqing Yan
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiajun Lou
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Noman
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Dayong Li
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengming Song
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
BrPARP1, a Poly (ADP-Ribose) Polymerase Gene, Is Involved in Root Development in Brassica rapa under Drought Stress. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PARP proteins are highly conserved homologs among the eukaryotic poly (ADP-ribose) polymerases. After activation, ADP-ribose polymers are synthesized on a series of ribozymes that use NAD+ as a substrate. PARPs participate in the regulation of various important biological processes, such as plant growth, development, and stress response. In this study, we characterized the homologue of PARP1 in B. rapa using RNA interference (RNAi) to reveal the underlying mechanism responding to drought stress. Bioinformatics and expression pattern analyses demonstrated that two copy numbers of PARP1 genes (BrPARP1.A03 and BrPARP1.A05) in B. rapa following a whole-genome triplication (WGT) event were retained compared with Arabidopsis, but only BrPARP1.A03 was predominantly transcribed in plant roots. Silencing of BrPARP1 could markedly promote root growth and development, probably via regulating cell division, and the transgenic Brassica lines showed more tolerance under drought treatment, accompanied with substantial alterations including accumulated proline contents, significantly reduced malondialdehyde, and increased antioxidative enzyme activity. In addition, the findings showed that the expression of stress-responsive genes, as well as reactive oxygen species (ROS)-scavenging related genes, was largely reinforced in the transgenic lines under drought stress. In general, these results indicated that BrPARP1 likely responds to drought stress by regulating root growth and the expression of stress-related genes to cope with adverse conditions in B. rapa.
Collapse
|
4
|
Feitosa-Araujo E, da Fonseca-Pereira P, Knorr LS, Schwarzländer M, Nunes-Nesi A. NAD meets ABA: connecting cellular metabolism and hormone signaling. TRENDS IN PLANT SCIENCE 2022; 27:16-28. [PMID: 34426070 DOI: 10.1016/j.tplants.2021.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/04/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
NAD is a ubiquitous metabolic coenzyme. Although the role of NAD as a central redox shuttle remains of critical interest in plant metabolism, recent evidence indicates that NAD serves additional functions in signaling and regulation. A link with the plant stress hormone abscisic acid (ABA) has emerged on the basis of similar plant phenotypes following interference with NAD or ABA, especially in stomatal development, stomatal movements, responses to pathogens and abiotic stress insults, and seed germination. The association between NAD and ABA regulation appears specific and cannot be accounted for by pleiotropic interference. Here, we review the current picture of the NAD - ABA relationship, discuss emerging candidate mechanisms, and assess avenues to dissect interaction mechanisms.
Collapse
Affiliation(s)
- Elias Feitosa-Araujo
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany.
| | - Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Lena S Knorr
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
5
|
Mahapatra K, Banerjee S, De S, Mitra M, Roy P, Roy S. An Insight Into the Mechanism of Plant Organelle Genome Maintenance and Implications of Organelle Genome in Crop Improvement: An Update. Front Cell Dev Biol 2021; 9:671698. [PMID: 34447743 PMCID: PMC8383295 DOI: 10.3389/fcell.2021.671698] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
Besides the nuclear genome, plants possess two small extra chromosomal genomes in mitochondria and chloroplast, respectively, which contribute a small fraction of the organelles’ proteome. Both mitochondrial and chloroplast DNA have originated endosymbiotically and most of their prokaryotic genes were either lost or transferred to the nuclear genome through endosymbiotic gene transfer during the course of evolution. Due to their immobile nature, plant nuclear and organellar genomes face continuous threat from diverse exogenous agents as well as some reactive by-products or intermediates released from various endogenous metabolic pathways. These factors eventually affect the overall plant growth and development and finally productivity. The detailed mechanism of DNA damage response and repair following accumulation of various forms of DNA lesions, including single and double-strand breaks (SSBs and DSBs) have been well documented for the nuclear genome and now it has been extended to the organelles also. Recently, it has been shown that both mitochondria and chloroplast possess a counterpart of most of the nuclear DNA damage repair pathways and share remarkable similarities with different damage repair proteins present in the nucleus. Among various repair pathways, homologous recombination (HR) is crucial for the repair as well as the evolution of organellar genomes. Along with the repair pathways, various other factors, such as the MSH1 and WHIRLY family proteins, WHY1, WHY2, and WHY3 are also known to be involved in maintaining low mutation rates and structural integrity of mitochondrial and chloroplast genome. SOG1, the central regulator in DNA damage response in plants, has also been found to mediate endoreduplication and cell-cycle progression through chloroplast to nucleus retrograde signaling in response to chloroplast genome instability. Various proteins associated with the maintenance of genome stability are targeted to both nuclear and organellar compartments, establishing communication between organelles as well as organelles and nucleus. Therefore, understanding the mechanism of DNA damage repair and inter compartmental crosstalk mechanism in various sub-cellular organelles following induction of DNA damage and identification of key components of such signaling cascades may eventually be translated into strategies for crop improvement under abiotic and genotoxic stress conditions. This review mainly highlights the current understanding as well as the importance of different aspects of organelle genome maintenance mechanisms in higher plants.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Samrat Banerjee
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Sayanti De
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Mehali Mitra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Pinaki Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Burdwan, India
| |
Collapse
|
6
|
Li X, Zhang Y, Liu Q, Song S, Liu J. Poly ADP-ribose polymerase-1 promotes seed-setting rate by facilitating gametophyte development and meiosis in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:760-774. [PMID: 33977586 DOI: 10.1111/tpj.15344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/10/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Poly(ADP-ribose) polymerases (PARPs), which transfer either monomer or polymer of ADP-ribose from nicotinamide adenine dinucleotide (NAD+ ) onto target proteins, are required for multiple processes in DNA damage repair, cell cycle, development, and abiotic stress in animals and plants. Here, the uncharacterized rice (Oryza sativa) OsPARP1, which has been predicted to have two alternative OsPARP1 mRNA splicing variants, OsPARP1.1 and OsPARP1.2, was investigated. However, bimolecular fluorescence complementation showed that only OsPARP1.1 interacted with OsPARP3 paralog, suggesting that OsPARP1.1 is a functional protein in rice. OsPARP1 was preferentially expressed in the stamen primordial and pollen grain of mature stamen during flower development. The osparp1 mutant and CRISPR plants were delayed in germination, indicating that defective DNA repair machinery impairs early seed germination. The mutant displayed a normal phenotype during vegetative growth but had a lower seed-setting rate than wild-type plants under normal conditions. Chromosome bridges and DNA fragmentations were detected in male meiocytes at anaphase I to prophase II. After meiosis II, malformed tetrads or tetrads with micronuclei were formed. Meanwhile, the abnormality was also found in embryo sac development. Collectively, these results suggest that OsPARP1 plays an important role in mediating response to DNA damage and gametophyte development, crucial for rice yield in the natural environment.
Collapse
Affiliation(s)
- Xiumei Li
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agricultural Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yixin Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Qinjian Liu
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agricultural Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Songquan Song
- Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agricultural Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| |
Collapse
|
7
|
Feitosa-Araujo E, da Fonseca-Pereira P, Pena MM, Medeiros DB, Perez de Souza L, Yoshida T, Weber APM, Araújo WL, Fernie AR, Schwarzländer M, Nunes-Nesi A. Changes in intracellular NAD status affect stomatal development in an abscisic acid-dependent manner. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1149-1168. [PMID: 32996222 DOI: 10.1111/tpj.15000] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/05/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) plays a central role in redox metabolism in all domains of life. Additional roles in regulating posttranslational protein modifications and cell signaling implicate NAD as a potential integrator of central metabolism and programs regulating stress responses and development. Here we found that NAD negatively impacts stomatal development in cotyledons of Arabidopsis thaliana. Plants with reduced capacity for NAD+ transport from the cytosol into the mitochondria or the peroxisomes exhibited reduced numbers of stomatal lineage cells and reduced stomatal density. Cotyledons of plants with reduced NAD+ breakdown capacity and NAD+ -treated cotyledons also presented reduced stomatal number. Expression of stomatal lineage-related genes was repressed in plants with reduced expression of NAD+ transporters as well as in plants treated with NAD+ . Impaired NAD+ transport was further associated with an induction of abscisic acid (ABA)-responsive genes. Inhibition of ABA synthesis rescued the stomatal phenotype in mutants deficient in intracellular NAD+ transport, whereas exogenous NAD+ feeding of aba-2 and ost1 seedlings, impaired in ABA synthesis and ABA signaling, respectively, did not impact stomatal number, placing NAD upstream of ABA. Additionally, in vivo measurement of ABA dynamics in seedlings of an ABA-specific optogenetic reporter - ABAleon2.1 - treated with NAD+ showed increases in ABA content suggesting that NAD+ impacts on stomatal development through ABA synthesis and signaling. Our results demonstrate that intracellular NAD+ homeostasis as set by synthesis, breakdown and transport is essential for normal stomatal development, and provide a link between central metabolism, hormone signaling and developmental plasticity.
Collapse
Affiliation(s)
- Elias Feitosa-Araujo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, 48143, Germany
| | - Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Mateus M Pena
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Takuya Yoshida
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Andreas P M Weber
- Department of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, 48143, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
8
|
Taipakova S, Kuanbay A, Saint-Pierre C, Gasparutto D, Baiken Y, Groisman R, Ishchenko AA, Saparbaev M, Bissenbaev AK. The Arabidopsis thaliana Poly(ADP-Ribose) Polymerases 1 and 2 Modify DNA by ADP-Ribosylating Terminal Phosphate Residues. Front Cell Dev Biol 2020; 8:606596. [PMID: 33324653 PMCID: PMC7726343 DOI: 10.3389/fcell.2020.606596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Proteins from the poly(ADP-ribose) polymerase (PARP) family, such as PARP1 and PARP2, use NAD+ as a substrate to catalyze the synthesis of polymeric chains consisting of ADP-ribose units covalently attached to an acceptor molecule. PARP1 and PARP2 are viewed as DNA damage sensors that, upon binding to strand breaks, poly(ADP-ribosyl)ate themselves and nuclear acceptor proteins. The flowering plant Arabidopsis thaliana contains three genes encoding homologs of mammalian PARPs: atPARP1, atPARP2, and atPARP3. Both atPARP1 and atPARP2 contain poly(ADP-ribosyl)ating activity; however, it is unknown whether they could covalently modify DNA by ADP-ribosylating the strand break termini. Here, we report that similar to their mammalian counterparts, the plant atPARP1 and atPARP2 proteins ADP-ribosylate 5′-terminal phosphate residues in duplex DNA oligonucleotides and plasmid containing at least two closely spaced DNA strand breaks. AtPARP1 preferentially catalyzes covalent attachment of ADP-ribose units to the ends of recessed DNA duplexes containing 5′-phosphate, whereas atPARP2 preferentially ADP-ribosylates the nicked and gapped DNA duplexes containing the terminal 5′-phosphate. Similar to their mammalian counterparts, the plant PARP-catalyzed DNA ADP-ribosylation is particularly sensitive to the distance that separates two strand breaks in the same DNA molecule, 1.5 and 1 or 2 turns of helix for atPARP1 and atPARP2, respectively. PAR glycohydrolase (PARG) restored native DNA structure by hydrolyzing the PAR–DNA adducts generated by atPARPs. Biochemical and mass spectrometry analyses of the PAR–DNA adducts showed that atPARPs utilize phosphorylated DNA termini as an alternative to protein acceptor residues to catalyze PAR chain synthesis via phosphodiester bond formation between C1′ of ADP-ribose and a phosphate residue of the terminal nucleotide in DNA fragment. Taken together, these data establish the presence of a new type of DNA-modifying activity in Arabidopsis PARPs, suggesting a possible role of DNA ADP-ribosylation in DNA damage signaling and repair of terrestrial plants.
Collapse
Affiliation(s)
- Sabira Taipakova
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Aigerim Kuanbay
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Groupe «Mechanisms of DNA Repair and Carcinogenesis», Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| | | | - Didier Gasparutto
- CEA, CNRS, IRIG/SyMMES-UMR 5819/CREAB, Université Grenoble Alpes, Grenoble, France
| | - Yeldar Baiken
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan.,School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Regina Groisman
- Groupe «Mechanisms of DNA Repair and Carcinogenesis», Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| | - Alexander A Ishchenko
- Groupe «Mechanisms of DNA Repair and Carcinogenesis», Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| | - Murat Saparbaev
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Groupe «Mechanisms of DNA Repair and Carcinogenesis», Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| | - Amangeldy K Bissenbaev
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
9
|
Zhang Y, Krahnert I, Bolze A, Gibon Y, Fernie AR. Adenine Nucleotide and Nicotinamide Adenine Dinucleotide Measurements in Plants. ACTA ACUST UNITED AC 2020; 5:e20115. [PMID: 32841544 DOI: 10.1002/cppb.20115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
As the principal co-factors of many metabolic pathways, the measurement of both adenine nucleotides and nicotinamide adenine dinucleotide provides important information about cellular energy metabolism. However, given their rapid and reversible conversion as well as their relatively low concentration ranges, it is difficult to measure these compounds. Here, we describe a highly sensitive and selective ion-pairing HPLC method with fluorescence detection to quantify adenine nucleotides in plants. In addition, nicotinamide adenine dinucleotide is a crucially important redox-active substrate for multiple catabolic and anabolic reactions with the ratios of NAD+ /NADH and NADP+ /NADPH being suggested as indicators of the general intracellular redox potential and hence metabolic state. Here, we describe highly sensitive enzyme cycling-based colorimetric assays (with a detection limit in the pmol range) performed subsequent to a simple extraction procedure involving acid or base extraction to allow the measurement of the cellular levels of these metabolites. © 2020 The Authors. Basic Protocol 1: Preparation of plant material for the measurement Basic Protocol 2: Measurement of ATP, ADP, and AMP via HPLC Basic Protocol 3: NAD+ /NADP+ measurements Basic Protocol 4: NADH/NADPH measurements Basic Protocol 5: Data analysis and quality control approaches.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Ina Krahnert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Antje Bolze
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Yves Gibon
- Institut National de la Recherche Agronomique (INRAE), University of Bordeaux, Villenave d'Ornon, France
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.,Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
10
|
Kadam A, Jubin T, Roychowdhury R, Begum R. Role of PARP-1 in mitochondrial homeostasis. Biochim Biophys Acta Gen Subj 2020; 1864:129669. [PMID: 32553688 DOI: 10.1016/j.bbagen.2020.129669] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nuclear poly(ADP-ribose) polymerase-1 (PARP-1) is a well characterised protein that accounts for the majority of PARylation reactions using NAD+ as a substrate, regulating diverse cellular functions. In addition to its nuclear functions, several recent studies have identified localization of PARP-1 in mitochondria and emphasized its possible role in maintaining mitochondrial homeostasis. Various reports suggest that nuclear PARP-1 has been implicated in diverse mitochondria-specific communication processes. SCOPE OF REVIEW The present review emphasizes on the potential role of PARP-1 in mitochondrial processes such as bioenergetics, mtDNA maintenance, cell death and mitophagy. MAJOR CONCLUSIONS The origin of mitochondrial PARP-1 is still an enigma; however researchers are trying to establish the cross-talk between nuclear and mitochondrial PARP-1 and how these PARP-1 pools modulate mitochondrial activity. GENERAL SIGNIFICANCE A better understanding of the possible role of PARP-1 in mitochondrial homeostasis helps us to explore the potential therapeutic targets to protect mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Rittwika Roychowdhury
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
11
|
Feitosa-Araujo E, de Souza Chaves I, Florian A, da Fonseca-Pereira P, Condori Apfata JA, Heyneke E, Medeiros DB, Pires MV, Mettler-Altmann T, Neuhaus HE, Palmieri F, Ara�jo WL, Obata T, Weber APM, Linka N, Fernie AR, Nunes-Nesi A. Downregulation of a Mitochondrial NAD+ Transporter (NDT2) Alters Seed Production and Germination in Arabidopsis. PLANT & CELL PHYSIOLOGY 2020; 61:897-908. [PMID: 32065636 PMCID: PMC7217668 DOI: 10.1093/pcp/pcaa017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/08/2020] [Indexed: 05/20/2023]
Abstract
Despite the fundamental importance of nicotinamide adenine dinucleotide (NAD+) for metabolism, the physiological roles of NAD+ carriers in plants remain unclear. We previously characterized the Arabidopsis thaliana gene (At1g25380), named AtNDT2, encoding a protein located in the mitochondrial inner membrane, which imports NAD+ from the cytosol using ADP and AMP as counter-exchange substrates for NAD+. Here, we further investigated the physiological roles of NDT2, by isolating a T-DNA insertion line, generating an antisense line and characterizing these genotypes in detail. Reduced NDT2 expression affected reproductive phase by reducing total seed yield. In addition, reduced seed germination and retardation in seedling establishment were observed in the mutant lines. Moreover, remarkable changes in primary metabolism were observed in dry and germinated seeds and an increase in fatty acid levels was verified during seedling establishment. Furthermore, flowers and seedlings of NDT2 mutants displayed upregulation of de novo and salvage pathway genes encoding NAD+ biosynthesis enzymes, demonstrating the transcriptional control mediated by NDT2 activity over these genes. Taken together, our results suggest that NDT2 expression is fundamental for maintaining NAD+ balance amongst organelles that modulate metabolism, physiology and developmental processes of heterotrophic tissues.
Collapse
Affiliation(s)
- Elias Feitosa-Araujo
- Max Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa 36570-900, Minas Gerais, Brazil
| | - Izabel de Souza Chaves
- Max Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa 36570-900, Minas Gerais, Brazil
| | - Alexandra Florian
- Max-Planck-Institute of Molecular Plant Physiology, Am M�hlenberg 1, Potsdam-Golm 14476, Germany
| | - Paula da Fonseca-Pereira
- Max Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa 36570-900, Minas Gerais, Brazil
| | - Jorge Alberto Condori Apfata
- Max Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa 36570-900, Minas Gerais, Brazil
| | - Elmien Heyneke
- Max-Planck-Institute of Molecular Plant Physiology, Am M�hlenberg 1, Potsdam-Golm 14476, Germany
| | - David Barbosa Medeiros
- Max Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa 36570-900, Minas Gerais, Brazil
- Max-Planck-Institute of Molecular Plant Physiology, Am M�hlenberg 1, Potsdam-Golm 14476, Germany
| | - Marcel Viana Pires
- Max Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa 36570-900, Minas Gerais, Brazil
| | - Tabea Mettler-Altmann
- Department of Plant Biochemistry, Heinrich Heine University D�sseldorf, D�sseldorf 40225, Germany
| | - H Ekkehard Neuhaus
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari 70125, Italy
| | - Wagner L Ara�jo
- Max Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa 36570-900, Minas Gerais, Brazil
| | - Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, Am M�hlenberg 1, Potsdam-Golm 14476, Germany
| | - Andreas P M Weber
- Department of Plant Biochemistry, Heinrich Heine University D�sseldorf, D�sseldorf 40225, Germany
| | - Nicole Linka
- Department of Plant Biochemistry, Heinrich Heine University D�sseldorf, D�sseldorf 40225, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am M�hlenberg 1, Potsdam-Golm 14476, Germany
- Corresponding authors: Alisdair R. Fernie, E-mail, ; Adriano Nunes-Nesi, E-mail,
| | - Adriano Nunes-Nesi
- Max Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Vi�osa, Vi�osa 36570-900, Minas Gerais, Brazil
- Corresponding authors: Alisdair R. Fernie, E-mail, ; Adriano Nunes-Nesi, E-mail,
| |
Collapse
|
12
|
Møller IM, Igamberdiev AU, Bykova NV, Finkemeier I, Rasmusson AG, Schwarzländer M. Matrix Redox Physiology Governs the Regulation of Plant Mitochondrial Metabolism through Posttranslational Protein Modifications. THE PLANT CELL 2020; 32:573-594. [PMID: 31911454 PMCID: PMC7054041 DOI: 10.1105/tpc.19.00535] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/28/2019] [Accepted: 01/06/2020] [Indexed: 05/18/2023]
Abstract
Mitochondria function as hubs of plant metabolism. Oxidative phosphorylation produces ATP, but it is also a central high-capacity electron sink required by many metabolic pathways that must be flexibly coordinated and integrated. Here, we review the crucial roles of redox-associated posttranslational protein modifications (PTMs) in mitochondrial metabolic regulation. We discuss several major concepts. First, the major redox couples in the mitochondrial matrix (NAD, NADP, thioredoxin, glutathione, and ascorbate) are in kinetic steady state rather than thermodynamic equilibrium. Second, targeted proteomics have produced long lists of proteins potentially regulated by Cys oxidation/thioredoxin, Met-SO formation, phosphorylation, or Lys acetylation, but we currently only understand the functional importance of a few of these PTMs. Some site modifications may represent molecular noise caused by spurious reactions. Third, different PTMs on the same protein or on different proteins in the same metabolic pathway can interact to fine-tune metabolic regulation. Fourth, PTMs take part in the repair of stress-induced damage (e.g., by reducing Met and Cys oxidation products) as well as adjusting metabolic functions in response to environmental variation, such as changes in light irradiance or oxygen availability. Finally, PTMs form a multidimensional regulatory system that provides the speed and flexibility needed for mitochondrial coordination far beyond that provided by changes in nuclear gene expression alone.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, DK-4200 Slagelse, Denmark
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - Natalia V Bykova
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Manitoba R6M 1Y5, Canada
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, DE-48149 Münster, Germany
| | | | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, DE-48143 Münster, Germany
| |
Collapse
|
13
|
Gu Z, Pan W, Chen W, Lian Q, Wu Q, Lv Z, Cheng X, Ge X. New perspectives on the plant PARP family: Arabidopsis PARP3 is inactive, and PARP1 exhibits predominant poly (ADP-ribose) polymerase activity in response to DNA damage. BMC PLANT BIOLOGY 2019; 19:364. [PMID: 31426748 PMCID: PMC6701155 DOI: 10.1186/s12870-019-1958-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/31/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Poly (ADP-ribosyl) ation (PARylation) is an important posttranslational modification that regulates DNA repair, gene transcription, stress responses and developmental processes in multicellular organisms. Poly (ADP-ribose) polymerase (PARP) catalyzes PARylation by consecutively adding ADP-ribose moieties from NAD+ to the amino acid receptor residues on target proteins. Arabidopsis has three canonical PARP members, and two of these members, AtPARP1 and AtPARP2, have been demonstrated to be bona fide poly (ADP-ribose) polymerases and to regulate DNA repair and stress response processes. However, it remains unknown whether AtPARP3, a member that is highly expressed in seeds, has similar biochemical activity to that of AtPARP1 and AtPARP2. Additionally, although both the phylogenetic relationships and structural similarities indicate that AtPARP1 and AtPARP2 correspond to animal PARP1 and PARP2, respectively, two previous studies have indicated that AtPARP2, and not AtPARP1, accounts for most of the PARP activity in Arabidopsis, which is contrary to the knowledge that PARP1 is the predominant PARP in animals. RESULTS In this study, we obtained both in vitro and in vivo evidence demonstrating that AtPARP3 does not act as a typical PARP in Arabidopsis. Domain swapping and point mutation assays indicated that AtPARP3 has lost NAD+-binding capability and is inactive. In addition, our results showed that AtPARP1 was responsible for most of the PARP enzymatic activity in response to the DNA damage-inducing agents zeocin and methyl methanesulfonate (MMS) and was more rapidly activated than AtPARP2, which supports that AtPARP1 remains the predominant PARP member in Arabidopsis. AtPARP1 might first become activated by binding to damaged sites, and AtPARP2 is then poly (ADP-ribosyl) ated by AtPARP1 in vivo. CONCLUSIONS Collectively, our biochemical and genetic analysis results strongly support the notion that AtPARP3 has lost poly (ADP-ribose) polymerase activity in plants and performs different functions from those of AtPARP1 and AtPARP2. AtPARP1, instead of AtPARP2, plays the predominant role in PAR synthesis in both seeds and seedlings. These data bring new insights into our understanding of the physiological functions of plant PARP family members.
Collapse
Affiliation(s)
- Zongying Gu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Weiyang Pan
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Wei Chen
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Qichao Lian
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Qiao Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Zeyu Lv
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xuan Cheng
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xiaochun Ge
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| |
Collapse
|
14
|
Rissel D, Peiter E. Poly(ADP-Ribose) Polymerases in Plants and Their Human Counterparts: Parallels and Peculiarities. Int J Mol Sci 2019; 20:E1638. [PMID: 30986964 PMCID: PMC6479469 DOI: 10.3390/ijms20071638] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/25/2022] Open
Abstract
Poly(ADP-ribosyl)ation is a rapid and transient post-translational protein modification that was described first in mammalian cells. Activated by the sensing of DNA strand breaks, poly(ADP-ribose)polymerase1 (PARP1) transfers ADP-ribose units onto itself and other target proteins using NAD⁺ as a substrate. Subsequently, DNA damage responses and other cellular responses are initiated. In plants, poly(ADP-ribose) polymerases (PARPs) have also been implicated in responses to DNA damage. The Arabidopsis genome contains three canonical PARP genes, the nomenclature of which has been uncoordinated in the past. Albeit assumptions concerning the function and roles of PARP proteins in planta have often been inferred from homology and structural conservation between plant PARPs and their mammalian counterparts, plant-specific roles have become apparent. In particular, PARPs have been linked to stress responses of plants. A negative role under abiotic stress has been inferred from studies in which a genetic or, more commonly, pharmacological inhibition of PARP activity improved the performance of stressed plants; in response to pathogen-associated molecular patterns, a positive role has been suggested. However, reports have been inconsistent, and the effects of PARP inhibitors appear to be more robust than the genetic abolition of PARP gene expression, indicating the presence of alternative targets of those drugs. Collectively, recent evidence suggests a conditionality of stress-related phenotypes of parp mutants and calls for a reconsideration of PARP inhibitor studies on plants. This review critically summarizes our current understanding of poly(ADP-ribosylation) and PARP proteins in plants, highlighting similarities and differences to human PARPs, areas of controversy, and requirements for future studies.
Collapse
Affiliation(s)
- Dagmar Rissel
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany.
- Agrochemisches Institut Piesteritz e.V. (AIP), Möllensdorfer Strasse 13, 06886 Lutherstadt Wittenberg, Germany.
- Institute for Plant Protection in Field Crops and Grassland, Julius Kühn-Institut (JKI), 38104 Braunschweig, Germany.
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany.
- Agrochemisches Institut Piesteritz e.V. (AIP), Möllensdorfer Strasse 13, 06886 Lutherstadt Wittenberg, Germany.
| |
Collapse
|
15
|
Sun Y, Li P, Shen D, Wei Q, He J, Lu Y. The Ralstonia solanacearum effector RipN suppresses plant PAMP-triggered immunity, localizes to the endoplasmic reticulum and nucleus, and alters the NADH/NAD + ratio in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2019; 20:533-546. [PMID: 30499216 PMCID: PMC6637912 DOI: 10.1111/mpp.12773] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ralstonia solanacearum, one of the most destructive plant bacterial pathogens, delivers an array of effector proteins via its type III secretion system for pathogenesis. However, the biochemical functions of most of these proteins remain unclear. RipN is a type III effector with unknown function(s) from the pathogen R. solanacearum. Here, we demonstrate that RipN is a conserved type III effector found within the R. solanacearum species complex that contains a putative Nudix hydrolase domain and has ADP-ribose/NADH pyrophosphorylase activity in vitro. Further analysis shows that RipN localizes to the endoplasmic reticulum (ER) and nucleus in Nicotiana tabacum leaf cells and Arabidopsis protoplasts, and truncation of the C-terminus of RipN results in a loss of nuclear and ER targeting. Furthermore, the expression of RipN in Arabidopsis suppresses callose deposition and the transcription of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes under flg22 treatment, and promotes bacterial growth in planta. In addition, the expression of RipN in plant cells alters NADH/NAD+ , but not GSH/GSSG, ratios, and its Nudix hydrolase activity is indispensable for such biochemical function. These results suggest that RipN acts as a Nudix hydrolase, alters the NADH/NAD+ ratio of the plant and contributes to R. solanacearum virulence by suppression of PTI of the host.
Collapse
Affiliation(s)
- Yunhao Sun
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Pai Li
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Dong Shen
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Qiaoling Wei
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Jianguo He
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| | - Yongjun Lu
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- State Key Laboratory of BiocontrolSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
16
|
Gakière B, Fernie AR, Pétriacq P. More to NAD + than meets the eye: A regulator of metabolic pools and gene expression in Arabidopsis. Free Radic Biol Med 2018; 122:86-95. [PMID: 29309893 DOI: 10.1016/j.freeradbiomed.2018.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
Since its discovery more than a century ago, nicotinamide adenine dinucleotide (NAD+) is recognised as a fascinating cornerstone of cellular metabolism. This ubiquitous energy cofactor plays vital roles in metabolic pathways and regulatory processes, a fact emphasised by the essentiality of a balanced NAD+ metabolism for normal plant growth and development. Research on the role of NAD in plants has been predominantly carried out in the model plant Arabidopsis thaliana (Arabidopsis) with emphasis on the redox properties and cellular signalling functions of the metabolite. This review examines the current state of knowledge concerning how NAD can regulate both metabolic pools and gene expression in Arabidopsis. Particular focus is placed on recent studies highlighting the complexity of metabolic regulations involving NAD, more particularly in the mitochondrial compartment, and of signalling roles with respect to interactions with environmental fluctuations most specifically those involving plant immunity.
Collapse
Affiliation(s)
- Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Univ. Paris-Diderot, Univ. Paris-Saclay, Bâtiment 630 Rue Noetzlin, 91192 Gif-sur-Yvette cedex, France; Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Univ. Paris-Diderot, Univ. ParisSaclay, Bâtiment 630 Rue Noetzlin, 91192 Gif-sur-Yvette cedex, France
| | - Alisdair R Fernie
- Max-Planck-Institute for Molecular Plant Physiology, Wissenschaftspark Golm, 14476 Potsdam-Golm, Germany
| | - Pierre Pétriacq
- biOMICS Facility, Department of Animal and Plant Sciences, The University of Sheffield, S10 2TN Sheffield, United Kingdom; UMR 1332 Biologie du Fruit et Pathologie, INRA Bordeaux & Université de Bordeaux, F-33883 Villenave d'Ornon, France.
| |
Collapse
|
17
|
The Importance of Experimental Design, Quality Assurance, and Control in Plant Metabolomics Experiments. Methods Mol Biol 2018; 1778:3-17. [PMID: 29761427 DOI: 10.1007/978-1-4939-7819-9_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The output of metabolomics relies to a great extent upon the methods and instrumentation to identify, quantify, and access spatial information on as many metabolites as possible. However, the most modern machines and sophisticated tools for data analysis cannot compensate for inappropriate harvesting and/or sample preparation procedures that modify metabolic composition and can lead to erroneous interpretation of results. In addition, plant metabolism has a remarkable degree of complexity, and the number of identified compounds easily surpasses the number of samples in metabolomics analyses, increasing false discovery risk. These aspects pose a large challenge when carrying out plant metabolomics experiments. In this chapter, we address the importance of a proper experimental design taking into consideration preventable complications and unavoidable factors to achieve success in metabolomics analysis. We also focus on quality control and standardized procedures during the metabolomics workflow.
Collapse
|
18
|
A transcriptomics approach uncovers novel roles for poly(ADP-ribosyl)ation in the basal defense response in Arabidopsis thaliana. PLoS One 2017; 12:e0190268. [PMID: 29284022 PMCID: PMC5746271 DOI: 10.1371/journal.pone.0190268] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/10/2017] [Indexed: 12/20/2022] Open
Abstract
Pharmacological inhibition of poly(ADP-ribose) polymerase (PARP) or loss of Arabidopsis thaliana PARG1 (poly(ADP-ribose) glycohydrolase) disrupt a subset of plant defenses. In the present study we examined the impact of altered poly(ADP-ribosyl)ation on early gene expression induced by the microbe-associate molecular patterns (MAMPs) flagellin (flg22) and EF-Tu (elf18). Stringent statistical analyses and filtering identified 178 genes having MAMP-induced mRNA abundance patterns that were altered by either PARP inhibitor 3-aminobenzamide (3AB) or PARG1 knockout. From the identified set of 178 genes, over fifty Arabidopsis T-DNA insertion lines were chosen and screened for altered basal defense responses. Subtle alterations in callose deposition and/or seedling growth in response to those MAMPs were observed in knockouts of At3g55630 (FPGS3, a cytosolic folylpolyglutamate synthetase), At5g15660 (containing an F-box domain), At1g47370 (a TIR-X (Toll-Interleukin Receptor domain)), and At5g64060 (a predicted pectin methylesterase inhibitor). Over-represented GO terms for the gene expression study included "innate immune response" for elf18/parg1, highlighting a subset of elf18-activated defense-associated genes whose expression is altered in parg1 plants. The study also allowed a tightly controlled comparison of early mRNA abundance responses to flg22 and elf18 in wild-type Arabidopsis, which revealed many differences. The PARP inhibitor 3-methoxybenzamide (3MB) was also used in the gene expression profiling, but pleiotropic impacts of this inhibitor were observed. This transcriptomics study revealed targets for further dissection of MAMP-induced plant immune responses, impacts of PARP inhibitors, and the molecular mechanisms by which poly(ADP-ribosyl)ation regulates plant responses to MAMPs.
Collapse
|
19
|
Liu C, Wu Q, Liu W, Gu Z, Wang W, Xu P, Ma H, Ge X. Poly(ADP-ribose) polymerases regulate cell division and development in Arabidopsis roots. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:459-474. [PMID: 28263025 DOI: 10.1111/jipb.12530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Root organogenesis involves cell division, differentiation and expansion. The molecular mechanisms regulating root development are not fully understood. In this study, we identified poly(adenosine diphosphate (ADP)-ribose) polymerases (PARPs) as new players in root development. PARP catalyzes poly(ADP-ribosyl)ation of proteins by repeatedly adding ADP-ribose units onto proteins using nicotinamide adenine dinucleotide (NAD+ ) as the donor. We found that inhibition of PARP activities by 3-aminobenzomide (3-AB) increased the growth rates of both primary and lateral roots, leading to a more developed root system. The double mutant of Arabidopsis PARPs, parp1parp2, showed more rapid primary and lateral root growth. Cyclin genes regulating G1-to-S and G2-to-M transition were up-regulated upon treatment by 3-AB. The proportion of 2C cells increased while cells with higher DNA ploidy declined in the roots of treated plants, resulting in an enlarged root meristematic zone. The expression level of PARP2 was very low in the meristematic zone but high in the maturation zone, consistent with a role of PARP in inhibiting mitosis and promoting cell differentiation. Our results suggest that PARPs play an important role in root development by negatively regulating root cell division.
Collapse
Affiliation(s)
- Caifeng Liu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiao Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Weiwei Liu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zongyin Gu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wenjing Wang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ping Xu
- School of Biological Sciences, University of East Anglia, Norwich, NR47TJ, UK
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaochun Ge
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
20
|
Batista Silva W, Daloso DM, Fernie AR, Nunes-Nesi A, Araújo WL. Can stable isotope mass spectrometry replace radiolabelled approaches in metabolic studies? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 249:59-69. [PMID: 27297990 DOI: 10.1016/j.plantsci.2016.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/21/2016] [Accepted: 05/13/2016] [Indexed: 05/03/2023]
Abstract
Metabolic pathways and the key regulatory points thereof can be deduced using isotopically labelled substrates. One prerequisite is the accurate measurement of the labeling pattern of targeted metabolites. The subsequent estimation of metabolic fluxes following incubation in radiolabelled substrates has been extensively used. Radiolabelling is a sensitive approach and allows determination of total label uptake since the total radiolabel content is easy to detect. However, the incubation of cells, tissues or the whole plant in a stable isotope enriched environment and the use of either mass spectrometry or nuclear magnetic resonance techniques to determine label incorporation within specific metabolites offers the possibility to readily obtain metabolic information with higher resolution. It additionally also offers an important complement to other post-genomic strategies such as metabolite profiling providing insights into the regulation of the metabolic network and thus allowing a more thorough description of plant cellular function. Thus, although safety concerns mean that stable isotope feeding is generally preferred, the techniques are in truth highly complementary and application of both approaches in tandem currently probably provides the best route towards a comprehensive understanding of plant cellular metabolism.
Collapse
Affiliation(s)
- Willian Batista Silva
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| | - Danilo M Daloso
- Max-Planck-Institute of Molecular Plant Physiology Am Mühlenberg 1, 14476,Golm Potsdam, Germany.
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology Am Mühlenberg 1, 14476,Golm Potsdam, Germany.
| | - Adriano Nunes-Nesi
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| | - Wagner L Araújo
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| |
Collapse
|