1
|
Diaz A, Roca-Martínez J, Vranken W. RRMScorer: A web server for predicting RNA recognition motif binding preferences. Nucleic Acids Res 2025:gkaf367. [PMID: 40331414 DOI: 10.1093/nar/gkaf367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 05/08/2025] Open
Abstract
RRMScorer is a web server designed to predict RNA binding preferences for proteins containing RNA recognition motifs (RRMs), the most prevalent RNA binding domain in eukaryotes. By carefully analysing a dataset of 187 RRM-RNA structural complexes, we calculated residue-level binding scores using a probabilistic model derived from amino acid-nucleotide interaction propensities, which are the basis of RRMScorer. The server accepts protein sequences and optional RNA sequences as input, providing detailed outputs, including bar plots, sequence logos, and downloadable CSV/JSON files, to visualize and interpret RNA binding preferences. RRMScorer is particularly useful for studying the impact of single-point mutations and comparing binding preferences across multiple RRM domains. The web server, freely accessible at https://bio2byte.be/rrmscorer without login requirements, offers a user-friendly interface and integrates precomputed predictions for over 1400 RRM-containing proteins. With its ability to provide residue-level insights and accurate predictions, RRMScorer serves as a valuable tool for researchers exploring the functional landscape of RRM-RNA interactions.
Collapse
Affiliation(s)
- Adrian Diaz
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Joel Roca-Martínez
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Wim Vranken
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels 1050, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
2
|
Mimura M, Ono S, Somashekar H, Nonomura KI. Impact of protein domains on the MEL2 granule, a cytoplasmic ribonucleoprotein complex maintaining faithful meiosis progression in rice. THE NEW PHYTOLOGIST 2024; 243:2235-2250. [PMID: 39049570 DOI: 10.1111/nph.19968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Cytoplasmic ribonucleoprotein (RNP) granules are membraneless structures composed of various RNAs and proteins that play important roles in post-transcriptional regulation. While RNP granules are known to regulate the meiotic entry in some organisms, little is known about their roles in plants. In this study, we observed the cytoplasmic granular structures of rice RNA-binding protein MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2), which contributes to the control of meiotic entry timing, in leaf protoplasts and spore mother cells. We performed colocalization analysis with known cytoplasmic RNP factors, and domain deletion analysis to assess their impact on granule formation and meiosis progression. Conservation of MEL2 domains across plant species was also explored. Our results indicated that MEL2 granules colocalized with processing body and stress granule factors. The maintenance of granule properties modulated by LOTUS domain and the intrinsically disordered region (IDR) is essential for proper MEL2 function in meiosis progression. MEL2-like proteins widely found in plant kingdom conserved LOTUS domain followed by the IDR despite their diverse domain structures, suggesting the functional conservation of these domains among plant species. This study highlights the role of MEL2 granule dynamics and its impact on meiotic transition and progression.
Collapse
Affiliation(s)
- Manaki Mimura
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Seijiro Ono
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Harsha Somashekar
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Genetics Program, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Genetics Program, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
3
|
Wang X, Yuan S, Wang C, Yan W, Xie G, Wang C, Qiu S, Wu J, Deng XW, Xu C, Tang X. Construction of a Female Sterility Maintaining System Based on a Novel Mutation of the MEL2 Gene. RICE (NEW YORK, N.Y.) 2024; 17:12. [PMID: 38310612 PMCID: PMC10838886 DOI: 10.1186/s12284-024-00688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Hybrid rice has significant yield advantage and stress tolerance compared with inbred rice. However, production of hybrid rice seeds requires extensive manual labors. Currently, hybrid rice seeds are produced by crosspollination of male sterile lines by fertile paternal lines. Because seeds from paternal lines can contaminate the hybrid seeds, mechanized production by mixed-seeding and mixed-harvesting is difficult. This problem can be solved if the paternal line is female sterile. RESULTS Here we identified a female infertile mutant named h569 carrying a novel mutation (A1106G) in the MEL2 gene that was previously reported to regulate meiosis entry both in male and female organs. h569 mutant is female infertile but male normal, suggesting that MEL2 regulates meiosis entry in male and female organs through distinct pathways. The MEL2 gene and h569 mutant gave us tools to construct female sterility maintaining systems that can be used for propagation of female sterile lines. We connected the wild-type MEL2 gene with pollen-killer gene ZmAA1 and seed-marker gene DsRed2 in one T-DNA cassette and transformed it into ZZH1607, a widely used restorer line. Transgenic line carrying a single transgene inserted in an intergenic region was selected to cross with h569 mutant. F2 progeny carrying homozygous A1106G mutation and hemizygous transgene displayed 1:1 segregation of fertile and infertile pollen grains and 1:1 segregation of fluorescent and non-fluorescent seeds upon self-fertilization. All of the non-fluorescent seeds generated female infertile plants, while the fluorescent seeds generated fertile plants that reproduced in the way as their previous generation. CONCLUSIONS These results indicated that the female sterility maintaining system constructed in the study can be used to breed and propagate paternal lines that are female infertile. The application of this system will enable mechanized production of hybrid rice seed by using the mixed-seeding and mixed harvesting approach, which will significantly reduce the cost in hybrid rice seed production.
Collapse
Affiliation(s)
- Xia Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Shuting Yuan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, 518107, Shenzhen, China
| | - Changjian Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Gang Xie
- Shenzhen Institute of Molecular Crop Design, 518107, Shenzhen, China
| | - Cuifang Wang
- Shenzhen Institute of Molecular Crop Design, 518107, Shenzhen, China
| | - Shijun Qiu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Xing Wang Deng
- Shenzhen Institute of Molecular Crop Design, 518107, Shenzhen, China.
- School of Advanced Agricultural Sciences, Peking University, 100871, Beijing, China.
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, 518107, Shenzhen, China.
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 510631, Guangzhou, China.
- Shenzhen Institute of Molecular Crop Design, 518107, Shenzhen, China.
| |
Collapse
|
4
|
Zhang Q, Xie J, Zhu X, Ma X, Yang T, Khan NU, Zhang S, Liu M, Li L, Liang Y, Pan Y, Li D, Li J, Li Z, Zhang H, Zhang Z. Natural variation in Tiller Number 1 affects its interaction with TIF1 to regulate tillering in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1044-1057. [PMID: 36705337 PMCID: PMC10106862 DOI: 10.1111/pbi.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2022] [Accepted: 01/23/2023] [Indexed: 05/04/2023]
Abstract
Tiller number per plant-a cardinal component of ideal plant architecture-affects grain yield potential. Thus, alleles positively affecting tillering must be mined to promote genetic improvement. Here, we report a Tiller Number 1 (TN1) protein harbouring a bromo-adjacent homology domain and RNA recognition motifs, identified through genome-wide association study of tiller numbers. Natural variation in TN1 affects its interaction with TIF1 (TN1 interaction factor 1) to affect DWARF14 expression and negatively regulate tiller number in rice. Further analysis of variations in TN1 among indica genotypes according to geographical distribution revealed that low-tillering varieties with TN1-hapL are concentrated in Southeast Asia and East Asia, whereas high-tillering varieties with TN1-hapH are concentrated in South Asia. Taken together, these results indicate that TN1 is a tillering regulatory factor whose alleles present apparent preferential utilization across geographical regions. Our findings advance the molecular understanding of tiller development.
Collapse
Affiliation(s)
- Quan Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jianyin Xie
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xiaoyang Zhu
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xiaoqian Ma
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Tao Yang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Najeeb Ullah Khan
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Shuyang Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Miaosong Liu
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Lin Li
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yuntao Liang
- Guangxi Key Laboratory of Rice Genetics and BreedingRice Research Institute of Guangxi Academy of Agricultural SciencesNanningGuangxiChina
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and BreedingRice Research Institute of Guangxi Academy of Agricultural SciencesNanningGuangxiChina
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and BreedingRice Research Institute of Guangxi Academy of Agricultural SciencesNanningGuangxiChina
| | - Jinjie Li
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zichao Li
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Hongliang Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
- Sanya Nanfan Research Institute of Hainan UniversitySanyaChina
| | - Zhanying Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
5
|
Roca-Martínez J, Dhondge H, Sattler M, Vranken WF. Deciphering the RRM-RNA recognition code: A computational analysis. PLoS Comput Biol 2023; 19:e1010859. [PMID: 36689472 PMCID: PMC9894542 DOI: 10.1371/journal.pcbi.1010859] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/02/2023] [Accepted: 01/07/2023] [Indexed: 01/24/2023] Open
Abstract
RNA recognition motifs (RRM) are the most prevalent class of RNA binding domains in eucaryotes. Their RNA binding preferences have been investigated for almost two decades, and even though some RRM domains are now very well described, their RNA recognition code has remained elusive. An increasing number of experimental structures of RRM-RNA complexes has become available in recent years. Here, we perform an in-depth computational analysis to derive an RNA recognition code for canonical RRMs. We present and validate a computational scoring method to estimate the binding between an RRM and a single stranded RNA, based on structural data from a carefully curated multiple sequence alignment, which can predict RRM binding RNA sequence motifs based on the RRM protein sequence. Given the importance and prevalence of RRMs in humans and other species, this tool could help design RNA binding motifs with uses in medical or synthetic biology applications, leading towards the de novo design of RRMs with specific RNA recognition.
Collapse
Affiliation(s)
- Joel Roca-Martínez
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels, Belgium
- Structural biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
- Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Wim F. Vranken
- Interuniversity Institute of Bioinformatics in Brussels, VUB/ULB, Brussels, Belgium
- Structural biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
Böwer F, Schnittger A. How to Switch from Mitosis to Meiosis: Regulation of Germline Entry in Plants. Annu Rev Genet 2021; 55:427-452. [PMID: 34530640 DOI: 10.1146/annurev-genet-112618-043553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the major cell fate transitions in eukaryotes is entry into meiosis. While in single-celled yeast this decision is triggered by nutrient starvation, in multicellular eukaryotes, such as plants, it is under developmental control. In contrast to animals, plants have only a short germline and instruct cells to become meiocytes in reproductive organs late in development. This situation argues for a fundamentally different mechanism of how plants recruit meiocytes, and consistently, none of the regulators known to control meiotic entry in yeast and animals are present in plants. In recent years, several factors involved in meiotic entry have been identified, especially in the model plant Arabidopsis, and pieces of a regulatory network of germline control in plants are emerging. However, the corresponding studies also show that the mechanisms of meiotic entry control are diversified in flowering plants, calling for further analyses in different plant species. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Franziska Böwer
- Department of Developmental Biology, Institute for Plant Sciences and Microbiology, University of Hamburg, D-22609 Hamburg, Germany;
| | - Arp Schnittger
- Department of Developmental Biology, Institute for Plant Sciences and Microbiology, University of Hamburg, D-22609 Hamburg, Germany;
| |
Collapse
|
7
|
Gutiérrez Pinzón Y, González Kise JK, Rueda P, Ronceret A. The Formation of Bivalents and the Control of Plant Meiotic Recombination. FRONTIERS IN PLANT SCIENCE 2021; 12:717423. [PMID: 34557215 PMCID: PMC8453087 DOI: 10.3389/fpls.2021.717423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 06/06/2023]
Abstract
During the first meiotic division, the segregation of homologous chromosomes depends on the physical association of the recombined homologous DNA molecules. The physical tension due to the sites of crossing-overs (COs) is essential for the meiotic spindle to segregate the connected homologous chromosomes to the opposite poles of the cell. This equilibrated partition of homologous chromosomes allows the first meiotic reductional division. Thus, the segregation of homologous chromosomes is dependent on their recombination. In this review, we will detail the recent advances in the knowledge of the mechanisms of recombination and bivalent formation in plants. In plants, the absence of meiotic checkpoints allows observation of subsequent meiotic events in absence of meiotic recombination or defective meiotic chromosomal axis formation such as univalent formation instead of bivalents. Recent discoveries, mainly made in Arabidopsis, rice, and maize, have highlighted the link between the machinery of double-strand break (DSB) formation and elements of the chromosomal axis. We will also discuss the implications of what we know about the mechanisms regulating the number and spacing of COs (obligate CO, CO homeostasis, and interference) in model and crop plants.
Collapse
|
8
|
Dhaka N, Krishnan K, Kandpal M, Vashisht I, Pal M, Sharma MK, Sharma R. Transcriptional trajectories of anther development provide candidates for engineering male fertility in sorghum. Sci Rep 2020; 10:897. [PMID: 31964983 PMCID: PMC6972786 DOI: 10.1038/s41598-020-57717-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/06/2020] [Indexed: 01/22/2023] Open
Abstract
Sorghum is a self-pollinated crop with multiple economic uses as cereal, forage, and biofuel feedstock. Hybrid breeding is a cornerstone for sorghum improvement strategies that currently relies on cytoplasmic male sterile lines. To engineer genic male sterility, it is imperative to examine the genetic components regulating anther/pollen development in sorghum. To this end, we have performed transcriptomic analysis from three temporal stages of developing anthers that correspond to meiotic, microspore and mature pollen stages. A total of 5286 genes were differentially regulated among the three anther stages with 890 of them exhibiting anther-preferential expression. Differentially expressed genes could be clubbed into seven distinct developmental trajectories using K-means clustering. Pathway mapping revealed that genes involved in cell cycle, DNA repair, regulation of transcription, brassinosteroid and auxin biosynthesis/signalling exhibit peak expression in meiotic anthers, while those regulating abiotic stress, carbohydrate metabolism, and transport were enriched in microspore stage. Conversely, genes associated with protein degradation, post-translational modifications, cell wall biosynthesis/modifications, abscisic acid, ethylene, cytokinin and jasmonic acid biosynthesis/signalling were highly expressed in mature pollen stage. High concurrence in transcriptional dynamics and cis-regulatory elements of differentially expressed genes in rice and sorghum confirmed conserved developmental pathways regulating anther development across species. Comprehensive literature survey in conjunction with orthology analysis and anther-preferential accumulation enabled shortlisting of 21 prospective candidates for in-depth characterization and engineering male fertility in sorghum.
Collapse
Affiliation(s)
- Namrata Dhaka
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Kushagra Krishnan
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Manu Kandpal
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Ira Vashisht
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Manoj Kumar Sharma
- Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Rita Sharma
- Crop Genetics & Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
9
|
Transcriptomic data-driven discovery of global regulatory features of rice seeds developing under heat stress. Comput Struct Biotechnol J 2020; 18:2556-2567. [PMID: 33033578 PMCID: PMC7522763 DOI: 10.1016/j.csbj.2020.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
Abstract
Plants respond to abiotic stressors through a suite of strategies including differential regulation of stress-responsive genes. Hence, characterizing the influences of the relevant global regulators or on stress-related transcription factors is critical to understand plant stress response. Rice seed development is highly sensitive to elevated temperatures. To elucidate the extent and directional hierarchy of gene regulation in rice seeds under heat stress, we developed and implemented a robust multi-level optimization-based algorithm called Minimal Regulatory Network identifier (MiReN). MiReN could predict the minimal regulatory relationship between a gene and its potential regulators from our temporal transcriptomic dataset. MiReN predictions for global regulators including stress-responsive gene Slender Rice 1 (SLR1) and disease resistance gene XA21 were validated with published literature. It also predicted novel regulatory influences of other major regulators such as Kinesin-like proteins KIN12C and STD1, and WD repeat-containing protein WD40. Out of the 228 stress-responsive transcription factors identified, we predicted de novo regulatory influences on three major groups (MADS-box M-type, MYB, and bZIP) and investigated their physiological impacts during stress. Overall, MiReN results can facilitate new experimental studies to enhance our understanding of global regulatory mechanisms triggered during heat stress, which can potentially accelerate the development of stress-tolerant cultivars.
Collapse
|
10
|
Yamasaki S, Suzuki A, Yamano Y, Kawabe H, Ueno D, Demura T, Kato K. Identification of 5'-untranslated regions that function as effective translational enhancers in monocotyledonous plant cells using a novel method of genome-wide analysis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:365-373. [PMID: 31892824 PMCID: PMC6905215 DOI: 10.5511/plantbiotechnology.18.0903a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/03/2018] [Indexed: 05/24/2023]
Abstract
High expression of a transgene is often necessary to produce useful substances in plants. The efficiency of mRNA translation is an important determinant of the level of transgene expression. In dicotyledonous plants, the 5'UTR of certain mRNAs act as translational enhancers, dramatically improving transgene expression levels. On the other hand, translation enhancers derived from dicotyledonous plants are not so much effective in monocotyledonous plants, which are important as industrial crops and as hosts for production of useful substances. In this study, we evaluated the polysome association on a large scale with high resolution for each 5'UTR variant from multiple transcription start site in normal and heat-stressed Oryza sativa suspension cultures. Translational enhancer candidates were selected from the resultant large-scale data set, and their enhancer activities were evaluated by transient expression assay. In this manner, we obtained several translational enhancers with significantly higher activities than previously reported enhancers. Their activities were confirmed in a different monocotyledonous plant, Secale cereale, and using a different reporter gene. In addition, enhancer activities of tested 5'UTRs were different between monocotyledonous and dicotyledonous plants, suggesting that the enhancer activities were not compatible between them. Overall, we demonstrate these useful 5'UTRs as enhancer sequence for transgene expression in monocotyledonous plants.
Collapse
Affiliation(s)
- Shotaro Yamasaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Atsunobu Suzuki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yasuaki Yamano
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Harunori Kawabe
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Daishin Ueno
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Ko Kato
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|