1
|
Kim JY, Lee YJ, Lee HM, Jung YS, Go J, Lee HJ, Nam KS, Kim JH, Kang KK, Jung YJ. A Knockout of the OsGAPDHC6 Gene Encoding a Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase Reacts Sensitively to Abiotic Stress in Rice. Genes (Basel) 2025; 16:436. [PMID: 40282396 PMCID: PMC12027454 DOI: 10.3390/genes16040436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) enzyme, encoded by OsGAPDHC6, plays a crucial role in glycolysis while participating in various physiological and stress response pathways. METHODS In this study, the expression levels of the OsGAPDHC1 and OsGAPDHC6 genes were investigated over time by treating various abiotic stresses (ABA, PEG, NaCl, heat, and cold) in rice seedlings. RESULTS As a result, the expression levels of both genes in the ABA-treated group increased continuously for 0-6 h and then de-creased sharply from 12 h onwards. The mutational induction of the GAPDHC6 gene by the CRISPR/Cas9 system generated a stop codon through a 1 bp insertion into protein production. The knockout (KO) lines showed differences in seed length, seed width, and seed thickness compared to wild-type (WT) varieties. In addition, KO lines showed a lower germination rate, germination ability, and germination index of seeds under salt treatment compared to WT, and leaf damage due to 3,3'-diaminobenzidine (DAB) staining was very high due to malondialdehyde (MDA) accumulation. The KO line was lower regarding the expression level of stress-related genes compared to WT. CONCLUSIONS Therefore, the OsGAPDHC6 gene is evaluated as a gene that can increase salt resistance in rice as it actively responds to salt stress in the early stages of growth, occurring from seed germination to just before the tilling stage.
Collapse
Affiliation(s)
- Jin-Young Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (J.-Y.K.); (Y.-J.L.); (H.-M.L.); (Y.-S.J.); (H.-J.L.); (K.-S.N.); (J.-H.K.)
| | - Ye-Ji Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (J.-Y.K.); (Y.-J.L.); (H.-M.L.); (Y.-S.J.); (H.-J.L.); (K.-S.N.); (J.-H.K.)
| | - Hye-Mi Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (J.-Y.K.); (Y.-J.L.); (H.-M.L.); (Y.-S.J.); (H.-J.L.); (K.-S.N.); (J.-H.K.)
| | - Yoo-Seob Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (J.-Y.K.); (Y.-J.L.); (H.-M.L.); (Y.-S.J.); (H.-J.L.); (K.-S.N.); (J.-H.K.)
| | - Jiyun Go
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Hyo-Ju Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (J.-Y.K.); (Y.-J.L.); (H.-M.L.); (Y.-S.J.); (H.-J.L.); (K.-S.N.); (J.-H.K.)
| | - Ki-Sun Nam
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (J.-Y.K.); (Y.-J.L.); (H.-M.L.); (Y.-S.J.); (H.-J.L.); (K.-S.N.); (J.-H.K.)
| | - Jong-Hee Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (J.-Y.K.); (Y.-J.L.); (H.-M.L.); (Y.-S.J.); (H.-J.L.); (K.-S.N.); (J.-H.K.)
| | - Kwon-Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (J.-Y.K.); (Y.-J.L.); (H.-M.L.); (Y.-S.J.); (H.-J.L.); (K.-S.N.); (J.-H.K.)
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| | - Yu-Jin Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea; (J.-Y.K.); (Y.-J.L.); (H.-M.L.); (Y.-S.J.); (H.-J.L.); (K.-S.N.); (J.-H.K.)
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| |
Collapse
|
2
|
Bian X, Chen C, Wang Y, Qu C, Jiang J, Sun Y, Liu G. Identification of a potential homeodomain-like gene governing leaf size and venation architecture in birch. FRONTIERS IN PLANT SCIENCE 2025; 15:1502569. [PMID: 39845490 PMCID: PMC11751010 DOI: 10.3389/fpls.2024.1502569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025]
Abstract
Leaf vein, an essential part of leaf architecture, plays significant roles in shaping the proper leaf size. To date, the molecular mechanisms governing leaf development including leaf venation patterning remains poorly understood in birch. Here, we performed the genome-wide identification of homeodomain-like (HD-like) superfamily genes using phylogenetic analysis and revealed the functional role of a potential HD-like gene in leaf growth and development using transgenic technology and transcriptomic sequencing. A total of 267 HD-like genes were identified based on Arabidopsis HD-containing transcription factors, which were members of KNOTTED1-like homeobox (KNOX) family, BELL1-like homeobox (BLH) family, Zinc finger-HD (ZHD) family, HD-leucine zipper (HD-Zip) family, Golden2, ARR-B, Psr1 (GARP) family, WUSCHEL-related homeobox (WOX) family, and Myeloblastosis (MYB) and MYB-like family. Further, 41 HD-like genes showing co-expression with marker genes related to leaf vascular tissues exhibited differential expression during primary vein development. Among them, a potential HD-like gene (BpPHD4) of GARP family served as a negative factor in governing leaf size and venation patterning. Compared to non-transgenic plants, BpPHD4 repression transgenic plants showed increased leaf length, leaf width, leaf area, leaf thickness, spongy tissue thickness, stomata number, epidermal cell size, primary vein length, the distance between the secondary veins, and primary vein diameter, which was opposite to those of BpPHD4 overexpression transgenic plants. Meanwhile, reduced expression levels of BpPHD4 could remarkably promote phloem tissue development. Transcriptome analysis of BpPHD4 overexpression transgenic plants showed two candidate genes (Bpev01.c0518.g0018 and Bpev01.c2797.g0002) probably regulated by BpPHD4. To conclude, our findings contribute to a better understanding of HD-like superfamily genes and unravel the role of a potential HD-like gene in genetically controlling leaf size and venation patterning in birch, which provides clues to genetic improvement of woody plants with diverse geometric and topological properties of leaf vascular network.
Collapse
Affiliation(s)
- Xiuyan Bian
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Chen Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Harbin Daowai District Bureau of Agriculture and Rural Affairs, Harbin, China
| | - Yang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Encyclopedia of China Publishing House, Beijing, China
| | - Chang Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yao Sun
- National Forestry and Grassland Administration Key State-owned Forest Areas Forest Resources Monitoring Center, Jiagedaqi, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
3
|
Guarino F, Cicatelli A, Nissim WG, Colzi I, Gonnelli C, Basso MF, Vergata C, Contaldi F, Martinelli F, Castiglione S. Epigenetic changes induced by chronic and acute chromium stress treatments in Arabidopsis thaliana identified by the MSAP-Seq. CHEMOSPHERE 2024; 362:142642. [PMID: 38908441 DOI: 10.1016/j.chemosphere.2024.142642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Chromium (Cr) is an highly toxic metal to plants and causes severe damage to their growth, development, and reproduction. Plant exposure to chronic and acute Cr stress treatments results in significant changes at short time in the gene expression profile and at long time in the genomic DNA methylation profile at a transgenerational level and, consequently, in gene expression. These epigenetic modifications and their implications imposed by the Cr stress are not yet completely known in plants. Herein, were identified the epigenetic changes induced by chronic and acute Cr stress treatments in Arabidopsis thaliana plants using Methylation Sensitive Amplification Polymorphism coupled with next-generation sequencing (MSAP-Seq). First-generation Arabidopsis plants (termed F0 plants) kept under hoagland solution were subjected to Cr stress treatments. For chronic Cr stress, plants were treated through hoagland solution with 2.5 μM Cr during the entire cultivation period until seed harvest. Meanwhile, for acute Cr stress, plants were treated with 5 μM Cr during the first three weeks and returned to unstressful control condition until seed harvest. Seeds from F0 plants were sown and F1 plants were re-submitted to the same Cr stress treatments. The seed germination rate was evaluated from F-2 seeds harvested of F1 plants kept under different Cr stress treatments (0, 10, 20, and 40 μM) compared to the unstressful control condition. These data showed significant changes in the germination rate of F-2 seeds originating from stressed F1 plants compared to F-2 seeds harvested from unstressful control plants. Given this data, F1 plants kept under these chronic and acute Cr stress treatments and unstressful control condition were evaluated for the transgenerational epigenetic modifications using MSAP-Seq. The MSAP-Seq data showed that several genes were modified in their methylation status as a consequence of chronic and acute Cr stress treatment to maintain plant defenses activated. In particular, RNA processing, protein translation, photorespiration, energy production, transmembrane transport, DNA transcription, plant development, and plant resilience were the major biological processes modulated by epigenetic mechanisms identified in F1 plants kept under chronic and acute Cr stress. Therefore, collective data suggested that Arabidopsis plants kept under Cr stress regulate their epigenetic status over generations based on DNA methylation to modulate defense and resilience mechanisms.
Collapse
Affiliation(s)
- Francesco Guarino
- Department of Chemical and Biology "A. Zambelli", University of Salermo, 84084, Fisciano, Salerno, Italy
| | - Angela Cicatelli
- Department of Chemical and Biology "A. Zambelli", University of Salermo, 84084, Fisciano, Salerno, Italy
| | - Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | - Ilaria Colzi
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Cristina Gonnelli
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Marcos Fernando Basso
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Chiara Vergata
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Felice Contaldi
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy.
| | - Stefano Castiglione
- Department of Chemical and Biology "A. Zambelli", University of Salermo, 84084, Fisciano, Salerno, Italy
| |
Collapse
|
4
|
Sheng H, Ai C, Yang C, Zhu C, Meng Z, Wu F, Wang X, Dou D, Morris PF, Zhang X. A conserved oomycete effector RxLR23 triggers plant defense responses by targeting ERD15La to release NbNAC68. Nat Commun 2024; 15:6336. [PMID: 39068146 PMCID: PMC11283518 DOI: 10.1038/s41467-024-50782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Oomycete pathogens deliver many effectors to enhance virulence or suppress plant immunity. Plant immune networks are interconnected, in which a few effectors can trigger a strong defense response when recognized by immunity-related proteins. How effectors activate plant defense response remains poorly understood. Here we report Phytophthora capsici effector RxLR23KM can induce plant cell death and plant immunity. RxLR23KM specifically binds to ERD15La, a regulator of abscisic acid and salicylic acid pathway, and the binding intensity depends on the amino acid residues (K93 and M320). NbNAC68, a downstream protein of ERD15La, can stimulate plant immunity that is compromised after binding with ERD15La. Silencing of NbNAC68 substantially prevents the activation of plant defense response. RxLR23KM binds to ERD15La, releasing NbNAC68 to activate plant immunity. These findings highlight a strategy of plant defense response that ERD15La as a central regulator coordinates RxLR23KM to regulate NbNAC68-triggered plant immunity.
Collapse
Affiliation(s)
- Hui Sheng
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Congcong Ai
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Cancan Yang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Chunyuan Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhe Meng
- College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaodan Wang
- College of Plant Protection, China Agricultural University, 100083, Beijing, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Paul F Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43043, USA
| | - Xiuguo Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
5
|
Chutimanukul P, Saputro TB, Mahaprom P, Plaimas K, Comai L, Buaboocha T, Siangliw M, Toojinda T, Chadchawan S. Combining Genome and Gene Co-expression Network Analyses for the Identification of Genes Potentially Regulating Salt Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:704549. [PMID: 34512689 PMCID: PMC8427287 DOI: 10.3389/fpls.2021.704549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/06/2021] [Indexed: 06/04/2023]
Abstract
Salinity stress tolerance is a complex polygenic trait involving multi-molecular pathways. This study aims to demonstrate an effective transcriptomic approach for identifying genes regulating salt tolerance in rice. The chromosome segment substitution lines (CSSLs) of "Khao Dawk Mali 105 (KDML105)" rice containing various regions of DH212 between markers RM1003 and RM3362 displayed differential salt tolerance at the booting stage. CSSL16 and its nearly isogenic parent, KDML105, were used for transcriptome analysis. Differentially expressed genes in the leaves of seedlings, flag leaves, and second leaves of CSSL16 and KDML105 under normal and salt stress conditions were subjected to analyses based on gene co-expression network (GCN), on two-state co-expression with clustering coefficient (CC), and on weighted gene co-expression network (WGCN). GCN identified 57 genes, while 30 and 59 genes were identified using CC and WGCN, respectively. With the three methods, some of the identified genes overlapped, bringing the maximum number of predicted salt tolerance genes to 92. Among the 92 genes, nine genes, OsNodulin, OsBTBZ1, OsPSB28, OsERD, OsSub34, peroxidase precursor genes, and three expressed protein genes, displayed SNPs between CSSL16 and KDML105. The nine genes were differentially expressed in CSSL16 and KDML105 under normal and salt stress conditions. OsBTBZ1 and OsERD were identified by the three methods. These results suggest that the transcriptomic approach described here effectively identified the genes regulating salt tolerance in rice and support the identification of appropriate QTL for salt tolerance improvement.
Collapse
Affiliation(s)
- Panita Chutimanukul
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Triono Bagus Saputro
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Puriphot Mahaprom
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing Research Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Luca Comai
- Genome Center and Department of Plant Biology, University of California Davis Genome Center, UC Davis, Davis, CA, United States
| | - Teerapong Buaboocha
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Meechai Siangliw
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Thailand
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Zhu T, Wu L, He H, Song J, Jia M, Liu L, Wang X, Han R, Niu L, Du W, Zhang X, Wang W, Liang X, Li H, Liu J, Xu H, Liu C, Ma P. Bulked Segregant RNA-Seq Reveals Distinct Expression Profiling in Chinese Wheat Cultivar Jimai 23 Responding to Powdery Mildew. Front Genet 2020; 11:474. [PMID: 32536936 PMCID: PMC7268692 DOI: 10.3389/fgene.2020.00474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive fungal diseases threatening global wheat production. Host resistance is well known to be the most efficient method to control this disease. However, the molecular mechanism of wheat powdery mildew resistance (Pm) is still unclear. To analyze the molecular mechanism of Pm, we used the resistant wheat cultivar Jimai 23 to investigate its potential resistance components and profiled its expression in response to powdery mildew infection using bulked segregant RNA-Seq (BSR-Seq). We showed that the Pm of Jimai 23 was provided by a single dominant gene, tentatively designated PmJM23, and assigned it to the documented Pm2 region of chromosome 5DS. 3,816 consistently different SNPs were called between resistant and susceptible parents and the bulked pools derived from the combinations between the resistant parent Jimai23 and the susceptible parent Tainong18. 58 of the SNPs were assigned to the candidate region of PmJM23. Subsequently, 3,803 differentially expressed genes (DEGs) between parents and bulks were analyzed by GO, COG and KEGG pathway enrichment. The temporal expression patterns of associated genes following Bgt inoculation were further determined by RT-qPCR. Expression of six disease-related genes was investigated during Bgt infection and might serve as valuable genetic resources for the improvement of durable resistance to Bgt.
Collapse
Affiliation(s)
- Tong Zhu
- School of Life Sciences, Yantai University, Yantai, China
| | - Liru Wu
- School of Life Sciences, Yantai University, Yantai, China
| | - Huagang He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jiancheng Song
- School of Life Sciences, Yantai University, Yantai, China
| | - Mengshu Jia
- School of Life Sciences, Yantai University, Yantai, China
| | - Liancheng Liu
- Beijing Biomics Technology Company Limited, Beijing, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ran Han
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liping Niu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenxiao Du
- School of Life Sciences, Yantai University, Yantai, China
| | - Xu Zhang
- School of Life Sciences, Yantai University, Yantai, China
| | - Wenrui Wang
- School of Life Sciences, Yantai University, Yantai, China
| | - Xiao Liang
- School of Life Sciences, Yantai University, Yantai, China
| | - Haosheng Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianjun Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongxing Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Pengtao Ma
- School of Life Sciences, Yantai University, Yantai, China
| |
Collapse
|
7
|
Jespersen D, Yu J, Huang B. Metabolic Effects of Acibenzolar- S-Methyl for Improving Heat or Drought Stress in Creeping Bentgrass. FRONTIERS IN PLANT SCIENCE 2017; 8:1224. [PMID: 28744300 PMCID: PMC5504235 DOI: 10.3389/fpls.2017.01224] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/28/2017] [Indexed: 05/27/2023]
Abstract
Acibenzolar-S-methyl (ASM) is a synthetic functional analog of salicylic acid which can induce systemic acquired resistance in plants, but its effects on abiotic stress tolerance is not well known. The objectives of this study were to examine effects of acibenzolar-S-methyl on heat or drought tolerance in creeping bentgrass (Agrostis stolonifera) and to determine major ASM-responsive metabolites and proteins associated with enhanced abiotic stress tolerance. Creeping bentgrass plants (cv. 'Penncross') were foliarly sprayed with ASM and were exposed to non-stress (20/15°C day/night), heat stress (35/30°C), or drought conditions (by withholding irrigation) in controlled-environment growth chambers. Exogenous ASM treatment resulted in improved heat or drought tolerance, as demonstrated by higher overall turf quality, relative water content, and chlorophyll content compared to the untreated control. Western blotting revealed that ASM application resulted in up-regulation of ATP synthase, HSP-20, PR-3, and Rubisco in plants exposed to heat stress, and greater accumulation of dehydrin in plants exposed to drought stress. Metabolite profiling identified a number of amino acids, organic acids, and sugars which were differentially accumulated between ASM treated and untreated plants under heat or drought stress, including aspartic acid, glycine, citric acid, malic acid, and the sugars glucose, and fructose. Our results suggested that ASM was effective in improving heat or drought tolerance in creeping bentgrass, mainly through enhancing protein synthesis and metabolite accumulation involved in osmotic adjustment, energy metabolism, and stress signaling.
Collapse
Affiliation(s)
- David Jespersen
- Department of Plant Biology and Pathology, Rutgers University, New BrunswickNJ, United States
- Department of Crop and Soil Sciences, University of Georgia, GriffinGA, United States
| | - Jingjin Yu
- College of Agro-Grassland Science, Nanjing Agricultural UniversityNanjing, China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New BrunswickNJ, United States
| |
Collapse
|
8
|
Yin M, Wang Y, Zhang L, Li J, Quan W, Yang L, Wang Q, Chan Z. The Arabidopsis Cys2/His2 zinc finger transcription factor ZAT18 is a positive regulator of plant tolerance to drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2991-3005. [PMID: 28586434 PMCID: PMC5853917 DOI: 10.1093/jxb/erx157] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Environmental stress poses a global threat to plant growth and reproduction, especially drought stress. Zinc finger proteins comprise a family of transcription factors that play essential roles in response to various abiotic stresses. Here, we found that ZAT18 (At3g53600), a nuclear C2H2 zinc finger protein, was transcriptionally induced by dehydration stress. Overexpression (OE) of ZAT18 in Arabidopsis improved drought tolerance while mutation of ZAT18 resulted in decreased plant tolerance to drought stress. ZAT18 was preferentially expressed in stems, siliques, and vegetative rosette leaves. Subcellular location results revealed that ZAT18 protein was predominantly localized in the nucleus. ZAT18 OE plants exhibited less leaf water loss, lower content of reactive oxygen species (ROS), higher leaf water content, and higher antioxidant enzyme activities after drought treatment when compared with the wild type (WT). RNA sequencing analysis showed that 423 and 561 genes were transcriptionally modulated by the ZAT18 transgene before and after drought treatment, respectively. Pathway enrichment analysis indicated that hormone metabolism, stress, and signaling were over-represented in ZAT18 OE lines. Several stress-responsive genes including COR47, ERD7, LEA6, and RAS1, and hormone signaling transduction-related genes including JAZ7 and PYL5 were identified as putative target genes of ZAT18. Taken together, ZAT18 functions as a positive regulator and plays a crucial role in the plant response to drought stress.
Collapse
Affiliation(s)
- Mingzhu Yin
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lihua Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jinzhu Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenli Quan
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei, China
| | - Li Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingfeng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei, China
- Correspondence: or
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei, China
- Correspondence: or
| |
Collapse
|
9
|
Yu D, Zhang L, Zhao K, Niu R, Zhai H, Zhang J. VaERD15, a Transcription Factor Gene Associated with Cold-Tolerance in Chinese Wild Vitis amurensis. FRONTIERS IN PLANT SCIENCE 2017; 8:297. [PMID: 28326090 PMCID: PMC5339311 DOI: 10.3389/fpls.2017.00297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/17/2017] [Indexed: 05/23/2023]
Abstract
Early responsive to dehydration (ERD) genes can be rapidly induced to counteract abiotic stresses, such as drought, low temperatures or high salinities. Here, we report on an ERD gene (VaERD15) related to cold tolerance from Chinese wild Vitis amurensis accession 'Heilongjiang seedling'. The full-length VaERD15 cDNA is 685 bp, including a 66 bp 5'-untranslated region (UTR), a 196 bp 3'-UTR region and a 423 bp open reading frame encoding 140 amino acids. The VaERD15 protein shares a high amino acid sequence similarity with ERD15 of Arabidopsis thaliana. In our study, VaERD15 was shown to have a nucleic localization function and a transcriptional activation function. Semi-quantitative PCR and Western blot analyses showed that VaERD15 was constitutively expressed in young leaves, stems and roots of V. amurensis accession 'Heilongjiang seedling' plants, and expression levels increased after low-temperature treatment. We also generated a transgenic Arabidopsis Col-0 line that over-expressed VaERD15 and carried out a cold-treatment assay. Real-time quantitative PCR (qRT-PCR) and Western blot analyses showed that as the duration of cold treatment increased, the expression of both gene and protein levels increased continuously in the transgenic plants, while almost no expression was detected in the wild type Arabidopsis. Moreover, the plants that over-expressed VaERD15 showed higher cold tolerance and accumulation of proline, soluble sugars, proteins, malondialdehyde and three antioxidases (superoxide dismutase, peroxidase, and catalase). Lower levels of relative ion leakage also occurred under cold stress. Taken together, our results indicate that the transcription factor VaERD15 was induced by cold stress and was able to enhance cold tolerance.
Collapse
Affiliation(s)
- Dongdong Yu
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| | - Lihua Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| | - Kai Zhao
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| | - Ruxuan Niu
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| | - Huan Zhai
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of AgricultureYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
| |
Collapse
|
10
|
Mostafa I, Yoo MJ, Zhu N, Geng S, Dufresne C, Abou-Hashem M, El-Domiaty M, Chen S. Membrane Proteomics of Arabidopsis Glucosinolate Mutants cyp79B2/B3 and myb28/29. FRONTIERS IN PLANT SCIENCE 2017; 8:534. [PMID: 28443122 PMCID: PMC5387099 DOI: 10.3389/fpls.2017.00534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/24/2017] [Indexed: 05/09/2023]
Abstract
Glucosinolates (Gls) constitute a major group of natural metabolites represented by three major classes (aliphatic, indolic and aromatic) of more than 120 chemical structures. In our previous work, soluble proteins and metabolites in Arabidopsis mutants deficient of aliphatic (myb28/29) and indolic Gls (cyp79B2B3) were analyzed. Here we focus on investigating the changes at the level of membrane proteins in these mutants. Our LC/MS-MS analyses of tandem mass tag (TMT) labeled peptides derived from the cyp79B2/B3 and myb28/29 relative to wild type resulted in the identification of 4,673 proteins, from which 2,171 are membrane proteins. Fold changes and statistical analysis showed 64 increased and 74 decreased in cyp79B2/B3, while 28 increased and 17 decreased in myb28/29. As to the shared protein changes between the mutants, one protein was increased and eight were decreased. Bioinformatics analysis of the changed proteins led to the discovery of three cytochromes in glucosinolate molecular network (GMN): cytochrome P450 86A7 (At1g63710), cytochrome P450 71B26 (At3g26290), and probable cytochrome c (At1g22840). CYP86A7 and CYP71B26 may play a role in hydroxyl-indolic Gls production. In addition, flavone 3'-O-methyltransferase 1 represents an interesting finding as it is likely to participate in the methylation process of the hydroxyl-indolic Gls to form methoxy-indolic Gls. The analysis also revealed additional new nodes in the GMN related to stress and defense activity, transport, photosynthesis, and translation processes. Gene expression and protein levels were found to be correlated in the cyp79B2/B3, but not in the myb28/29.
Collapse
Affiliation(s)
- Islam Mostafa
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig UniversityZagazig, Egypt
| | - Mi-Jeong Yoo
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
| | - Ning Zhu
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
| | - Sisi Geng
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | | | - Maged Abou-Hashem
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig UniversityZagazig, Egypt
| | - Maher El-Domiaty
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig UniversityZagazig, Egypt
| | - Sixue Chen
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
- Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
- *Correspondence: Sixue Chen
| |
Collapse
|
11
|
Wong MM, Chong GL, Verslues PE. Epigenetics and RNA Processing: Connections to Drought, Salt, and ABA? Methods Mol Biol 2017; 1631:3-21. [PMID: 28735388 DOI: 10.1007/978-1-4939-7136-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There have been great research advances in epigenetics, RNA splicing, and mRNA processing over recent years. In parallel, there have been many advances in abiotic stress and Abscisic Acid (ABA) signaling. Here we overview studies that have examined stress-induced changes in the epigenome and RNA processing as well as cases where disrupting these processes changes the plant response to abiotic stress. We also highlight some examples where specific connections of stress or ABA signaling to epigenetics or RNA processing have been found. By implication, this also points out cases where such mechanistic connections are likely to exist but are yet to be characterized. In the absence of such specific connections to stress signaling, it should be kept in mind that stress sensitivity phenotypes of some epigenetic or RNA processing mutants maybe the result of indirect, pleiotropic effects and thus may perhaps not indicate a direct function in stress acclimation.
Collapse
Affiliation(s)
- Min May Wong
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Geeng Loo Chong
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan. .,Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|