1
|
Mou L, Zhang L, Qiu Y, Liu M, Wu L, Mo X, Chen J, Liu F, Li R, Liu C, Tian M. Endogenous Hormone Levels and Transcriptomic Analysis Reveal the Mechanisms of Bulbil Initiation in Pinellia ternata. Int J Mol Sci 2024; 25:6149. [PMID: 38892337 PMCID: PMC11173086 DOI: 10.3390/ijms25116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Pinellia ternata is a medicinal plant that has important pharmacological value, and the bulbils serve as the primary reproductive organ; however, the mechanisms underlying bulbil initiation remain unclear. Here, we characterized bulbil development via histological, transcriptomic, and targeted metabolomic analyses to unearth the intricate relationship between hormones, genes, and bulbil development. The results show that the bulbils initiate growth from the leaf axillary meristem (AM). In this stage, jasmonic acid (JA), abscisic acid (ABA), isopentenyl adenosine (IPA), and salicylic acid (SA) were highly enriched, while indole-3-acetic acid (IAA), zeatin, methyl jasmonate (MeJA), and 5-dexoxystrigol (5-DS) were notably decreased. Through OPLS-DA analysis, SA has emerged as the most crucial factor in initiating and positively regulating bulbil formation. Furthermore, a strong association between IPA and SA was observed during bulbil initiation. The transcriptional changes in IPT (Isopentenyltransferase), CRE1 (Cytokinin Response 1), A-ARR (Type-A Arabidopsis Response Regulator), B-ARR (Type-B Arabidopsis Response Regulator), AUX1 (Auxin Resistant 1), ARF (Auxin Response Factor), AUX/IAA (Auxin/Indole-3-acetic acid), GH3 (Gretchen Hagen 3), SAUR (Small Auxin Up RNA), GA2ox (Gibberellin 2-oxidase), GA20ox (Gibberellin 20-oxidase), AOS (Allene oxide synthase), AOC (Allene oxide cyclase), OPR (Oxophytodienoate Reductase), JMT (JA carboxy l Methyltransferase), COI1 (Coronatine Insensitive 1), JAZ (Jasmonate ZIM-domain), MYC2 (Myelocytomatosis 2), D27 (DWARF27), SMAX (Suppressor of MAX2), PAL (Phenylalanine Ammonia-Lyase), ICS (Isochorismate Synthase), NPR1 (Non-expressor of Pathogenesis-related Genes1), TGA (TGACG Sequence-specific Binding), PR-1 (Pathogenesis-related), MCSU (Molybdenium Cofactor Sulfurase), PP2C (Protein Phosphatase 2C), and SnRK (Sucrose Non-fermenting-related Protein Kinase 2) were highly correlated with hormone concentrations, indicating that bulbil initiation is coordinately controlled by multiple phytohormones. Notably, eight TFs (transcription factors) that regulate AM initiation have been identified as pivotal regulators of bulbil formation. Among these, WUS (WUSCHEL), CLV (CLAVATA), ATH1 (Arabidopsis Thaliana Homeobox Gene 1), and RAX (Regulator of Axillary meristems) have been observed to exhibit elevated expression levels. Conversely, LEAFY demonstrated contrasting expression patterns. The intricate expression profiles of these TFs are closely associated with the upregulated expression of KNOX(KNOTTED-like homeobox), suggesting a intricate regulatory network underlying the complex process of bulbil initiation. This study offers a profound understanding of the bulbil initiation process and could potentially aid in refining molecular breeding techniques specific to P. ternata.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mengliang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (L.Z.); (Y.Q.); (M.L.); (L.W.); (X.M.); (J.C.); (F.L.); (R.L.); (C.L.)
| |
Collapse
|
2
|
Nagle MF, Yuan J, Kaur D, Ma C, Peremyslova E, Jiang Y, Goralogia GS, Magnuson A, Li JY, Muchero W, Fuxin L, Strauss SH. Genome-wide association study and network analysis of in vitro transformation in Populus trichocarpa support key roles of diverse phytohormone pathways and cross talk. THE NEW PHYTOLOGIST 2024. [PMID: 38650352 DOI: 10.1111/nph.19737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Wide variation in amenability to transformation and regeneration (TR) among many plant species and genotypes presents a challenge to the use of genetic engineering in research and breeding. To help understand the causes of this variation, we performed association mapping and network analysis using a population of 1204 wild trees of Populus trichocarpa (black cottonwood). To enable precise and high-throughput phenotyping of callus and shoot TR, we developed a computer vision system that cross-referenced complementary red, green, and blue (RGB) and fluorescent-hyperspectral images. We performed association mapping using single-marker and combined variant methods, followed by statistical tests for epistasis and integration of published multi-omic datasets to identify likely regulatory hubs. We report 409 candidate genes implicated by associations within 5 kb of coding sequences, and epistasis tests implicated 81 of these candidate genes as regulators of one another. Gene ontology terms related to protein-protein interactions and transcriptional regulation are overrepresented, among others. In addition to auxin and cytokinin pathways long established as critical to TR, our results highlight the importance of stress and wounding pathways. Potential regulatory hubs of signaling within and across these pathways include GROWTH REGULATORY FACTOR 1 (GRF1), PHOSPHATIDYLINOSITOL 4-KINASE β1 (PI-4Kβ1), and OBF-BINDING PROTEIN 1 (OBP1).
Collapse
Affiliation(s)
- Michael F Nagle
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Jialin Yuan
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Damanpreet Kaur
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Cathleen Ma
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Ekaterina Peremyslova
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Yuan Jiang
- Statistics Department, Oregon State University, Corvallis, OR, 97331, USA
| | - Greg S Goralogia
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Anna Magnuson
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Jia Yi Li
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, USA
| | - Li Fuxin
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Steven H Strauss
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
3
|
Shu F, Wang D, Sarsaiya S, Jin L, Liu K, Zhao M, Wang X, Yao Z, Chen G, Chen J. Bulbil initiation: a comprehensive review on resources, development, and utilisation, with emphasis on molecular mechanisms, advanced technologies, and future prospects. FRONTIERS IN PLANT SCIENCE 2024; 15:1343222. [PMID: 38650701 PMCID: PMC11033377 DOI: 10.3389/fpls.2024.1343222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/14/2024] [Indexed: 04/25/2024]
Abstract
Bulbil is an important asexual reproductive structure of bulbil plants. It mainly grows in leaf axils, leaf forks, tubers and the upper and near ground ends of flower stems of plants. They play a significant role in the reproduction of numerous herbaceous plant species by serving as agents of plant propagation, energy reserves, and survival mechanisms in adverse environmental conditions. Despite extensive research on bulbil-plants regarding their resources, development mechanisms, and utilisation, a comprehensive review of bulbil is lacking, hindering progress in exploiting bulbil resources. This paper provides a systematic overview of bulbil research, including bulbil-plant resources, identification of development stages and maturity of bulbils, cellular and molecular mechanisms of bulbil development, factors influencing bulbil development, gene research related to bulbil development, multi-bulbil phenomenon and its significance, medicinal value of bulbils, breeding value of bulbils, and the application of plant tissue culture technology in bulbil production. The application value of the Temporary Immersion Bioreactor System (TIBS) and Terahertz (THz) in bulbil breeding is also discussed, offering a comprehensive blueprint for further bulbil resource development. Additionally, additive, seven areas that require attention are proposed: (1) Utilization of modern network technologies, such as plant recognition apps or websites, to collect and identify bulbous plant resources efficiently and extensively; (2) Further research on cell and tissue structures that influence bulb cell development; (3) Investigation of the network regulatory relationship between genes, proteins, metabolites, and epigenetics in bulbil development; (4) Exploration of the potential utilization value of multiple sprouts, including medicinal, ecological, and horticultural applications; (5) Innovation and optimization of the plant tissue culture system for bulbils; (6) Comprehensive application research of TIBS for large-scale expansion of bulbil production; (7) To find out the common share genetics between bulbils and flowers.
Collapse
Affiliation(s)
- Fuxing Shu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Dongdong Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Surendra Sarsaiya
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Leilei Jin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Kai Liu
- Bozhou Xinghe Agricultural Development Co., Ltd., Bozhou, Anhui, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of Institution of Health and Medicine, Bozhou, Anhui Provence, China
| | - Mengru Zhao
- Bozhou Xinghe Agricultural Development Co., Ltd., Bozhou, Anhui, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Zhaoxu Yao
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guoguang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Jishuang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Desnitskiy AG. Volvox as a Model for Studying Cell Death and Senescence. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The spherical green alga Volvox consists of several hundred or thousand of somatic cells that undergo terminal differentiation, senescence and death, and a small number of gonidia (asexual reproductive cells) that give rise to the next generation. In the first part of this paper, the ontogenetic diversity of the genus Volvox is briefly considered, as well as the mechanisms of differentiation into the two types of cells mentioned above, which have been thoroughly studied during recent years in Volvox carteri. Then, a detailed critical analysis of the literature and some of my own data on senescence and cell death (mainly in V. carteri and, to a lesser extent, in V. aureus) was carried out, and it was noted that this aspect of Volvox developmental biology has not been sufficiently studied. Some perspectives of further research of the processes of cell death and senescence in representatives of the genus Volvox in a comparative aspect are indicated.
Collapse
|
5
|
A Novel Epigenetic Regulator ZRF1: Insight into Its Functions in Plants. Genes (Basel) 2021; 12:genes12081245. [PMID: 34440419 PMCID: PMC8393682 DOI: 10.3390/genes12081245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022] Open
Abstract
Recently, Zuotin-related factor 1 (ZRF1), an epigenetic regulator, was found to be involved in transcriptional regulation. In animals and humans, ZRF1 specifically binds to monoubiquitinated histone H2A through a ubiquitin-binding domain and derepresses Polycomb target genes at the beginning of cellular differentiation. In addition, ZRF1 can work as a tumor suppressor. According to bioinformatics analysis, ZRF1 homologs are widely found in plants. However, the current studies on ZRF1 in higher plants are limited and few in-depth studies of its functions have been reported. In this review, we aim to summarize the key role of AtZRF1a/b in Arabidopsis thaliana growth and development, as well as the research progress in this field in recent years.
Collapse
|
6
|
Liu Y, Zeng Y, Li Y, Liu Z, Lin-Wang K, Espley RV, Allan AC, Zhang J. Genomic survey and gene expression analysis of the MYB-related transcription factor superfamily in potato (Solanum tuberosum L.). Int J Biol Macromol 2020; 164:2450-2464. [DOI: 10.1016/j.ijbiomac.2020.08.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
|
7
|
Chen D, Wang Q, Feng J, Ruan Y, Shen WH. Arabidopsis ZUOTIN RELATED FACTOR1 Proteins Are Required for Proper Embryonic and Post-Embryonic Root Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1498. [PMID: 31824531 PMCID: PMC6882920 DOI: 10.3389/fpls.2019.01498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
The H2A/UBIQUITIN-binding proteins AtZRF1a/b have been reported as key regulators involved in multiple processes of Arabidopsis plant growth and development. Yet, the cellular and molecular mechanisms underlying the mutant phenotype remain largely elusive. Here we show that loss-of-function of AtZRF1a/b causes defective root elongation and deformed root apical meristem organization in seedlings. The premature termination of the primary root in the atzrf1a;atzrf1b double mutant is associated with an advanced onset of endoreduplication and subsequent consumption of reservoir stem cells. Cytological analyses using cell type-specific markers and florescent dyes indicate that AtZRF1a/b are involved in maintenance of proper cell layer organization, determinacy of cell identity, and establishment of auxin gradient and maximum at the root tip. During embryogenesis AtZRF1a/b act dominantly in regulating the maintenance of ground tissue initial cells and production of lateral root cap. Lastly, quantitative real-time polymerase chain reaction analysis shows mis-expression of some key genes involved in regulating cell patterning, cell proliferation and/or hormone pathways. Our results provide important insight into AtZRF1a/b function in cell fate determinacy and in establishment and maintenance of proper stem cell reservoir during embryonic and post-embryonic root development.
Collapse
Affiliation(s)
- Donghong Chen
- Institut de Biologie Moléculaire des Plantes (IBMP), UPR2357 CNRS, Université de Strasbourg, Strasbourg, France
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, China
| | - Qiannan Wang
- Institut de Biologie Moléculaire des Plantes (IBMP), UPR2357 CNRS, Université de Strasbourg, Strasbourg, France
| | - Jing Feng
- Institut de Biologie Moléculaire des Plantes (IBMP), UPR2357 CNRS, Université de Strasbourg, Strasbourg, France
| | - Ying Ruan
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Hunan Agricultural University, Changsha, China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes (IBMP), UPR2357 CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Zhang B, Qiu HL, Qu DH, Ruan Y, Chen DH. Phylogeny-dominant classification of J-proteins in Arabidopsis thaliana and Brassica oleracea. Genome 2018; 61:405-415. [PMID: 29620479 DOI: 10.1139/gen-2017-0206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hsp40s or DnaJ/J-proteins are evolutionarily conserved in all organisms as co-chaperones of molecular chaperone HSP70s that mainly participate in maintaining cellular protein homeostasis, such as protein folding, assembly, stabilization, and translocation under normal conditions as well as refolding and degradation under environmental stresses. It has been reported that Arabidopsis J-proteins are classified into four classes (types A-D) according to domain organization, but their phylogenetic relationships are unknown. Here, we identified 129 J-proteins in the world-wide popular vegetable Brassica oleracea, a close relative of the model plant Arabidopsis, and also revised the information of Arabidopsis J-proteins based on the latest online bioresources. According to phylogenetic analysis with domain organization and gene structure as references, the J-proteins from Arabidopsis and B. oleracea were classified into 15 main clades (I-XV) separated by a number of undefined small branches with remote relationship. Based on the number of members, they respectively belong to multigene clades, oligo-gene clades, and mono-gene clades. The J-protein genes from different clades may function together or separately to constitute a complicated regulatory network. This study provides a constructive viewpoint for J-protein classification and an informative platform for further functional dissection and resistant genes discovery related to genetic improvement of crop plants.
Collapse
Affiliation(s)
- Bin Zhang
- a Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Han-Lin Qiu
- b State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Dong-Hai Qu
- a Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ying Ruan
- a Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Dong-Hong Chen
- b State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|