1
|
Zhao J, Chen L, Zhao T, Gai J. Chicken Toes-Like Leaf and Petalody Flower (CTP) is a novel regulator that controls leaf and flower development in soybean. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5565-5581. [PMID: 29077868 DOI: 10.1093/jxb/erx358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A soybean mutant displaying chicken toes-like leaves and petalody flowers was identified as being caused by a single recessive gene, termed ctp. Using heterozygous-inbred recombinants, this gene was fine-mapped to a 37-kb region harbouring three predicted genes on chromosome 5. The gene Glyma05g022400.1 was detected to have a 33-bp deletion in its first exon that was responsible for ctp. Validation for this gene was provided by the fact that the 33-bp deletion-derived marker I2 completely co-segregated with the phenotypes of 96 F10-derived residual heterozygous lines and 2200 fine-mapping individuals, and by the fact that the orthologue NbCTP in Nicotiana benthamiana also influenced leaf and flower development under virus-induced gene silencing. In terms of characterization, the CTPs shared highly conserved domains specifically in higher plants, GmCTP was alternatively spliced, and it was expressed in multiple organs, especially in lateral meristems. GmCTP was localized to the nucleus and other regions and performed transcriptional activity. In ctp, the expression levels and splicing patterns were dramatically disrupted, and many key regulators in leaf and/or floral developmental pathways were interrupted. Thus, CTP is a novel and critical pleiotropic regulator of leaf and flower development that participates in multiple regulation pathways, and may play key roles in lateral organ differentiation as a putative novel transcription regulator.
Collapse
Affiliation(s)
- Jing Zhao
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Chen
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tuanjie Zhao
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Junyi Gai
- Soybean Research Institute, Nanjing Agricultural University, Nanjing 210095, China
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|