1
|
Peng CY, Wu Y, Hua QL, Shen YB. Hydrological transport and endosperm weakening mechanisms during dormancy release in Tilia henryana seeds. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154405. [PMID: 39689459 DOI: 10.1016/j.jplph.2024.154405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 11/12/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Seed germination is a pivotal stage in the plant life cycle, with endosperm weakening and radicle elongation serving as crucial prerequisites for successful endospermic seed germination. Tilia henryana seeds exhibit deep dormancy, necessitating a period of 2-3 years to germinate in a natural environment, and the germination rate is extremely low. This study employed morphological and physiological approaches to dynamically analyzing the hydrological mechanism and the endosperm weakening process during the dormancy release of T. henryana seeds. It was found that there was no physiological post-ripening effect of embryos, but there were mechanical and physiological obstacles in endosperm. During the dormancy release process of T. henryana seeds, initial endosperm weakening occurred at the radicle-endosperm interface. In this process, the GA/ABA level is imbalanced along with a continuous decrease in IAA and SA levels. Substantial depletion of storage materials within cells resulted in degradation of endosperm cell contents, forming numerous cavities through which significant amounts of free water entered. As moisture content increased, endosperm hardness gradually decreased to approximately 5 N/0.09 cm2. Furthermore, the area and content of lignin and cellulose were reduced by 58.91% and 84.49%, respectively, while the hemicellulose and pectin contents were decreased by 72.11% and 83.50%, in that order. Following treatment, the activity of pectin lyase, propectinase, galacturonase, and cellulase was observed to be 5.81, 8.72, 5.96, and 9.43 times higher, respectively, in comparison to their respective activities before treatment. The physiological changes facilitated the rapid rupture of the endosperm cell wall, leading to a transition in cell morphology from palisade-like to irregular and interlocking, thereby further expediting the weakening and cleavage of the endosperm. Additionally, T. henryana seeds exhibited high carbohydrate composition content throughout their dormancy release process, this extensive utilization of storage substances provided energy for radicle elongation and expansion.
Collapse
Affiliation(s)
- Chen Yin Peng
- College of Forestry, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing, Jiangsu, 210037, PR China; State Key Laboratory of Rice Biology and Breeding, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Wu
- College of Forestry, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing, Jiangsu, 210037, PR China; Co-innovation Center for Sustainable Forestry in Southern China, Southern Tree Inspection Center National Forestry Administration, 159 Longpan Road, Xuanwu District, Nanjing, Jiangsu, 210037, PR China
| | - Qi Long Hua
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Woodhouse Lane, Leeds, West Yorkshire, LS2 9JT, UK
| | - Yong Bao Shen
- College of Forestry, Nanjing Forestry University, 159 Longpan Road, Xuanwu District, Nanjing, Jiangsu, 210037, PR China; Co-innovation Center for Sustainable Forestry in Southern China, Southern Tree Inspection Center National Forestry Administration, 159 Longpan Road, Xuanwu District, Nanjing, Jiangsu, 210037, PR China.
| |
Collapse
|
2
|
Jeon J, Rahman MM, Yang HW, Kim J, Gam HJ, Song JY, Jeong SW, Kim JI, Choi MG, Shin DH, Choi G, Shim D, Jung JH, Lee IJ, Jeon JS, Park YI. Modulation of warm temperature-sensitive growth using a phytochrome B dark reversion variant, phyB[G515E], in Arabidopsis and rice. J Adv Res 2024; 63:57-72. [PMID: 37926145 PMCID: PMC11379985 DOI: 10.1016/j.jare.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023] Open
Abstract
INTRODUCTION Ambient temperature-induced hypocotyl elongation in Arabidopsis seedlings is sensed by the epidermis-localized phytochrome B (phyB) and transduced into auxin biosynthesis via a basic helix-loop-helix transcription factor, phytochrome-interacting factor 4 (PIF4). Once synthesized, auxin travels down from the cotyledons to the hypocotyl, triggering hypocotyl cell elongation. Thus, the phyB-PIF4 module involved in thermosensing and signal transduction is a potential genetic target for engineering warm temperature-insensitive plants. OBJECTIVES This study aims to manipulate warm temperature-induced elongation of plants at the post-translational level using phyB variants with dark reversion, the expression of which is subjected to heat stress. METHODS The thermosensitive growth response of Arabidopsis was manipulated by expressing the single amino acid substitution variant of phyB (phyB[G515E]), which exhibited a lower dark reversion rate than wild-type phyB. Other variants with slow (phyB[G564E]) or rapid (phyB[S584F]) dark reversion or light insensitivity (phyB[G767R]) were also included in this study for comparison. Warming-induced transient expression of phyB variants was achieved using heat shock-inducible promoters. Arabidopsis PHYB[G515E] and PHYB[G564E] were also constitutively expressed in rice in an attempt to manipulate the heat sensitivity of a monocotyledonous plant species. RESULTS At an elevated temperature, Arabidopsis seedlings transiently expressing PHYB[G515E] under the control of a heat shock-inducible promoter exhibited shorter hypocotyls than those expressing PHYB and other PHYB variant genes. This warm temperature-insensitive growth was related to the lowered PIF4 and auxin responses. In addition, transgenic rice seedlings expressing Arabidopsis PHYB[G515E] and PHYB[G564E] showed warm temperature-insensitive shoot growth. CONCLUSION Transient expression of phyB variants with altered dark reversion rates could serve as an effective optogenetic technique for manipulating PIF4-auxin-mediated thermomorphogenic responses in plants.
Collapse
Affiliation(s)
- Jin Jeon
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Md Mizanor Rahman
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hee Wook Yang
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaewook Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ho-Jun Gam
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji Young Song
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seok Won Jeong
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong-Il Kim
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Myoung-Goo Choi
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Dong-Ho Shin
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae-Hoon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
3
|
Zhang D, He T, Wang X, Zhou C, Chen Y, Wang X, Wang S, He S, Guo Y, Liu Z, Chen M. Transcription factor DIVARICATA1 positively modulates seed germination in response to salinity stress. PLANT PHYSIOLOGY 2024; 195:2997-3009. [PMID: 38687890 DOI: 10.1093/plphys/kiae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Seed germination is a critical checkpoint for plant growth under unfavorable environmental conditions. In Arabidopsis (Arabidopsis thaliana), the abscisic acid (ABA) and gibberellic acid (GA) signaling pathways play important roles in modulating seed germination. However, the molecular links between salinity stress and ABA/GA signaling are not well understood. Herein, we showed that the expression of DIVARICATA1 (DIV1), which encodes a MYB-like transcription factor, was induced by GA and repressed by ABA, salinity, and osmotic stress in germinating seeds. DIV1 positively regulated seed germination in response to salinity stress by directly regulating the expression of DELAY OF GERMINATION 1-LIKE 3 (DOGL3) and GA-STIMULATED ARABIDOPSIS 4 (GASA4) and indirectly regulating the expression of several germination-associated genes. Moreover, NUCLEAR FACTOR-YC9 (NF-YC9) directly repressed the expression of DIV1 in germinating seeds in response to salinity stress. These results help reveal the function of the NF-YC9-DIV1 module and provide insights into the regulation of ABA and GA signaling in response to salinity stress during seed germination in Arabidopsis.
Collapse
Affiliation(s)
- Da Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tan He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xumin Wang
- Ningxia Agricultural Technology Extension Station, Yinchuan 750001, Ningxia, China
| | - Chenchen Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Youpeng Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shixiang Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuangcheng He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zijin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingxun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Minen RI, Thirumalaikumar VP, Skirycz A. Proteinogenic dipeptides, an emerging class of small-molecule regulators. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102395. [PMID: 37311365 DOI: 10.1016/j.pbi.2023.102395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023]
Abstract
Proteinogenic dipeptides, with few known exceptions, are products of protein degradation. Dipeptide levels respond to the changes in the environment, often in a dipeptide-specific manner. What drives this specificity is currently unknown; what likely contributes is the activity of the different peptidases that cleave off the terminal dipeptide from the longer peptides. Dipeptidases that degrade dipeptides to amino acids, and the turnover rates of the "substrate" proteins/peptides. Plants can both uptake dipeptides from the soil, but dipeptides are also found in root exudates. Dipeptide transporters, members of the proton-coupled peptide transporters NTR1/PTR family, contribute to nitrogen reallocation between the sink and source tissues. Besides their role in nitrogen distribution, it becomes increasingly clear that dipeptides may also serve regulatory, dipeptide-specific functions. Dipeptides are found in protein complexes affecting the activity of their protein partners. Moreover, dipeptide supplementation leads to cellular phenotypes reflected in changes in plant growth and stress tolerance. Herein we will review the current understanding of dipeptides' metabolism, transport, and functions and discuss significant challenges and future directions for the comprehensive characterization of this fascinating but underrated group of small-molecule compounds.
Collapse
Affiliation(s)
| | | | - Aleksandra Skirycz
- Boyce Thompson Institute, 14853, Ithaca, NY, USA; Cornell University, 14853, Ithaca, NY, USA.
| |
Collapse
|
5
|
Lv B, Li Y, Wu X, Zhu C, Cao Y, Duan Q, Huang J. Brassica rapa Nitrate Transporter 2 ( BrNRT2) Family Genes, Identification, and Their Potential Functions in Abiotic Stress Tolerance. Genes (Basel) 2023; 14:1564. [PMID: 37628616 PMCID: PMC10454591 DOI: 10.3390/genes14081564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Nitrate transporter 2 (NRT2) proteins play vital roles in both nitrate (NO3-) uptake and translocation as well as abiotic stress responses in plants. However, little is known about the NRT2 gene family in Brassica rapa. In this study, 14 NRT2s were identified in the B. rapa genome. The BrNRT2 family members contain the PLN00028 and MATE_like superfamily domains. Cis-element analysis indicated that regulatory elements related to stress responses are abundant in the promoter sequences of BrNRT2 genes. BrNRT2.3 expression was increased after drought stress, and BrNRT2.1 and BrNRT2.8 expression were significantly upregulated after salt stress. Furthermore, protein interaction predictions suggested that homologs of BrNRT2.3, BrNRT2.1, and BrNRT2.8 in Arabidopsis thaliana may interact with the known stress-regulating proteins AtNRT1.1, AtNRT1.5, and AtNRT1.8. In conclusion, we suggest that BrNRT2.1, BrNRT2.3, and BrNRT2.8 have the greatest potential for inducing abiotic stress tolerance. Our findings will aid future studies of the biological functions of BrNRT2 family genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiabao Huang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China
| |
Collapse
|
6
|
Barratt LJ, Reynolds IJ, Franco Ortega S, Harper AL. Transcriptomic and co-expression network analyses on diverse wheat landraces identifies candidate master regulators of the response to early drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1212559. [PMID: 37426985 PMCID: PMC10326901 DOI: 10.3389/fpls.2023.1212559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Introduction Over four billion people around the world rely on bread wheat (Triticum aestivum L.) as a major constituent of their diet. The changing climate, however, threatens the food security of these people, with periods of intense drought stress already causing widespread wheat yield losses. Much of the research into the wheat drought response has centred on the response to drought events later in development, during anthesis or grain filling. But as the timing of periods of drought stress become increasingly unpredictable, a more complete understanding of the response to drought during early development is also needed. Methods Here, we utilized the YoGI landrace panel to identify 10,199 genes which were differentially expressed under early drought stress, before weighted gene co-expression network analysis (WGCNA) was used to construct a co-expression network and identify hub genes in modules particularly associated with the early drought response. Results Of these hub genes, two stood out as novel candidate master regulators of the early drought response - one as an activator (TaDHN4-D1; TraesCS5D02G379200) and the other as a repressor (uncharacterised gene; TraesCS3D02G361500). Discussion As well as appearing to coordinate the transcriptional early drought response, we propose that these hub genes may be able to regulate the physiological early drought response due to potential control over the expression of members of gene families well-known for their involvement in the drought response in many plant species, namely dehydrins and aquaporins, as well as other genes seemingly involved in key processes such as, stomatal opening, stomatal closing, stomatal morphogenesis and stress hormone signalling.
Collapse
|
7
|
Identification of NPF Family Genes in Brassica rapa Reveal Their Potential Functions in Pollen Development and Response to Low Nitrate Stress. Int J Mol Sci 2023; 24:ijms24010754. [PMID: 36614198 PMCID: PMC9821126 DOI: 10.3390/ijms24010754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Nitrate Transporter 1/Peptide Transporter Family (NPF) genes encode membrane transporters involved in the transport of diverse substrates. However, little is known about the diversity and functions of NPFs in Brassica rapa. In this study, 85 NPFs were identified in B. rapa (BrNPFs) which comprised eight subfamilies. Gene structure and conserved motif analysis suggested that BrNFPs were conserved throughout the genus. Stress and hormone-responsive cis-acting elements and transcription factor binding sites were identified in BrNPF promoters. Syntenic analysis suggested that tandem duplication contributed to the expansion of BrNPFs in B. rapa. Transcriptomic profiling analysis indicated that BrNPF2.6, BrNPF2.15, BrNPF7.6, and BrNPF8.9 were expressed in fertile floral buds, suggesting important roles in pollen development. Thirty-nine BrNPFs were responsive to low nitrate availability in shoots or roots. BrNPF2.10, BrNPF2.19, BrNPF2.3, BrNPF5.12, BrNPF5.16, BrNPF5.8, and BrNPF6.3 were only up-regulated in roots under low nitrate conditions, indicating that they play positive roles in nitrate absorption. Furthermore, many genes were identified in contrasting genotypes that responded to vernalization and clubroot disease. Our results increase understanding of BrNPFs as candidate genes for genetic improvement studies of B. rapa to promote low nitrate availability tolerance and for generating sterile male lines based on gene editing methods.
Collapse
|
8
|
Farooq MA, Ma W, Shen S, Gu A. Underlying Biochemical and Molecular Mechanisms for Seed Germination. Int J Mol Sci 2022; 23:ijms23158502. [PMID: 35955637 PMCID: PMC9369107 DOI: 10.3390/ijms23158502] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
With the burgeoning population of the world, the successful germination of seeds to achieve maximum crop production is very important. Seed germination is a precise balance of phytohormones, light, and temperature that induces endosperm decay. Abscisic acid and gibberellins—mainly with auxins, ethylene, and jasmonic and salicylic acid through interdependent molecular pathways—lead to the rupture of the seed testa, after which the radicle protrudes out and the endosperm provides nutrients according to its growing energy demand. The incident light wavelength and low and supra-optimal temperature modulates phytohormone signaling pathways that induce the synthesis of ROS, which results in the maintenance of seed dormancy and germination. In this review, we have summarized in detail the biochemical and molecular processes occurring in the seed that lead to the germination of the seed. Moreover, an accurate explanation in chronological order of how phytohormones inside the seed act in accordance with the temperature and light signals from outside to degenerate the seed testa for the thriving seed’s germination has also been discussed.
Collapse
|
9
|
Chandrasekaran U, Zhao X, Luo X, Wei S, Shu K. Endosperm weakening: The gateway to a seed's new life. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:31-39. [PMID: 35276594 DOI: 10.1016/j.plaphy.2022.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Seed germination is a crucial stage in a plant's life cycle, during which the embryo, surrounded by several tissues, undergoes a transition from the quiescent to a highly active state. Endosperm weakening, a key step in this transition, plays an important role in radicle protrusion. Endosperm weakening is initiated upon water uptake, followed by multiple key molecular events occurring within and outside endosperm cells. Although available transcriptomes have provided information about pivotal genes involved in this process, a complete understanding of the signaling pathways are yet to be elucidated. Much remains to be learnt about the diverse intercellular signals, such as reactive oxygen species-mediated redox signals, phytohormone crosstalk, environmental cue-dependent oxidative phosphorylation, peroxisomal-mediated pectin degradation, and storage protein mobilization during endosperm cell wall loosening. This review discusses the evidences from recent researches into the mechanism of endosperm weakening. Further, given that the endosperm has great potential for manipulation by crop breeding and biotechnology, we offer several novel insights, which will be helpful in this research field and in its application to the improvement of crop production.
Collapse
Affiliation(s)
| | - Xiaoting Zhao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Xiaofeng Luo
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Shaowei Wei
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China
| | - Kai Shu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China.
| |
Collapse
|
10
|
Liu W, Liu Z, Mo Z, Guo S, Liu Y, Xie Q. ATG8-Interacting Motif: Evolution and Function in Selective Autophagy of Targeting Biological Processes. FRONTIERS IN PLANT SCIENCE 2021; 12:783881. [PMID: 34912364 PMCID: PMC8666691 DOI: 10.3389/fpls.2021.783881] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/28/2021] [Indexed: 05/26/2023]
Abstract
Autophagy is an evolutionarily conserved vacuolar process functioning in the degradation of cellular components for reuse. In plants, autophagy is generally activated upon stress and its regulation is executed by numbers of AuTophaGy-related genes (ATGs), of which the ATG8 plays a dual role in both biogenesis of autophagosomes and recruitment of ATG8-interacting motif (AIM) anchored selective autophagy receptors (SARs). Such motif is either termed as AIM or ubiquitin-interacting motif (UIM), corresponding to the LC3-interacting region (LIR)/AIM docking site (LDS) or the UIM docking site (UDS) of ATG8, respectively. To date, dozens of AIM or UIM containing SARs have been characterized. However, the knowledge of these motifs is still obscured. In this review, we intend to summarize the current understanding of SAR proteins and discuss the conservation and diversification of the AIMs/UIMs, expectantly providing new insights into the evolution of them in various biological processes in plants.
Collapse
Affiliation(s)
- Wanqing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Zinan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Zulong Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Shaoying Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Wang Y, Zhang J, Sun M, He C, Yu K, Zhao B, Li R, Li J, Yang Z, Wang X, Duan H, Fu J, Liu S, Zhang X, Zheng J. Multi-Omics Analyses Reveal Systemic Insights into Maize Vivipary. PLANTS (BASEL, SWITZERLAND) 2021; 10:2437. [PMID: 34834800 PMCID: PMC8618366 DOI: 10.3390/plants10112437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Maize vivipary, precocious seed germination on the ear, affects yield and seed quality. The application of multi-omics approaches, such as transcriptomics or metabolomics, to classic vivipary mutants can potentially reveal the underlying mechanism. Seven maize vivipary mutants were selected for transcriptomic and metabolomic analyses. A suite of transporters and transcription factors were found to be upregulated in all mutants, indicating that their functions are required during seed germination. Moreover, vivipary mutants exhibited a uniform expression pattern of genes related to abscisic acid (ABA) biosynthesis, gibberellin (GA) biosynthesis, and ABA core signaling. NCED4 (Zm00001d007876), which is involved in ABA biosynthesis, was markedly downregulated and GA3ox (Zm00001d039634) was upregulated in all vivipary mutants, indicating antagonism between these two phytohormones. The ABA core signaling components (PYL-ABI1-SnRK2-ABI3) were affected in most of the mutants, but the expression of these genes was not significantly different between the vp8 mutant and wild-type seeds. Metabolomics analysis integrated with co-expression network analysis identified unique metabolites, their corresponding pathways, and the gene networks affected by each individual mutation. Collectively, our multi-omics analyses characterized the transcriptional and metabolic landscape during vivipary, providing a valuable resource for improving seed quality.
Collapse
Affiliation(s)
- Yiru Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Minghao Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Cheng He
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA; (C.H.); (S.L.)
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Rui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Jian Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Zongying Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Haiyang Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
- Collaborative Innovation Center of Henan Grain Crops, Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA; (C.H.); (S.L.)
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475000, China; (J.Z.); (K.Y.); (B.Z.); (X.W.); (H.D.)
| | - Jun Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (M.S.); (R.L.); (J.L.); (Z.Y.); (J.F.)
| |
Collapse
|
12
|
The Expression Characteristics of NPF Genes and Their Response to Vernalization and Nitrogen Deficiency in Rapeseed. Int J Mol Sci 2021; 22:ijms22094944. [PMID: 34066572 PMCID: PMC8125141 DOI: 10.3390/ijms22094944] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 11/24/2022] Open
Abstract
The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY (NPF) genes, initially characterized as nitrate or peptide transporters in plants, are involved in the transport of a large variety of substrates, including amino acids, nitrate, auxin (IAA), jasmonates (JAs), abscisic acid (ABA) and gibberellins (GAs) and glucosinolates. A total of 169 potential functional NPF genes were excavated in Brassica napus, and they showed diversified expression patterns in 90 different organs or tissues based on transcriptome profile data. The complex time-serial expression changes were found for most functional NPF genes in the development process of leaves, silique walls and seeds, which indicated that the expression of Brassica napus NPF (BnaNPF) genes may respond to altered phytohormone and secondary metabolite content through combining with promoter element enrichment analysis. Furthermore, many BnaNPF genes were detected to respond to vernalization with two different patterns, and 20 BnaNPF genes responded to nitrate deficiency. These results will provide useful information for further investigation of the biological function of BnaNPF genes for growth and development in rapeseed.
Collapse
|